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Abstract Influence of small time-delays in coupling between noisy excitable systems on the
coherence resonance and self-induced stochastic resonance is studied. Parameters of delayed
coupled deterministic excitable units are chosen such that the system has only one attractor,
namely the stationary state, for any value of the coupling and the time-lag. Addition of white
noise induces qualitatively different types of coherent oscillations, and we analyzed the
influence of coupling time-delay on the properties of these coherent oscillations. The main
conclusion is that time-lag τ ≥ 1, but still smaller than the refractory period, and sufficiently
strong coupling drastically change signal to noise ratio in the quantitative and qualitative
way. An interval of noise values implies quite large signal to noise ratio and different types
of noise induced coherence are greatly enhanced. We also observed coincident spiking for
small noise intensity and time-lag proportional to the inter-spike interval of the coherent
spike trains. On the other hand, time-lags τ < 1 and/or weak coupling induce negligible
changes in the properties of the stochastic coherence.
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1 Introduction

Excitability is a common property of many physical and biological systems. Although there
is no unique definition [1] the intuitive meaning is clear: A small perturbation from the
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single stable stationary state can result in a large and long lasting excursion away from the
stationary state before the system is returned back asymptotically to equilibrium. Further
more, as an external parameter is changed, the global attractor in the form of the stationary
point bifurcates into a stable periodic orbit, and the excitability is replaced by the oscillatory
dynamics.

Typical example of excitable behavior is provided by the dynamics of neurons. However,
realistic models of coupled neurons, must include the following two phenomena: (a) influ-
ence of different types of noise and (b) different time scales of the creation of impulses on
one hand and their transmission between neurons on the other. It is well known that neu-
rons in vivo function under influences of many sources of noise [2]. It is also well known
that the noise of an appropriate small intensity can change the systems dynamics by turn-
ing the quiescent state of the neuron into the state of periodic firing [3]. There are different
types of noise induced coherent oscillations [4, 5] that could occur in examples of excitable
systems without [6] or with time-delay [7, 8], as will be discussed later. Description of in-
teractions between neurons should include the details of the electrochemical processes in
real synapses which occur on much slower time scale then the occurrence of an impulse and
its transport along axons [9]. Alternatively, the transport of information between neurons
can be phenomenologically described by time-delayed inter-neuronal interaction. It is well
known that, depending on the parameters the time-delay can, but need not, induce drastic
qualitative changes on the evolution of coupled deterministic excitable systems (please see
for example [10–15]). However, a system of delay-differential equations is infinite dimen-
sional with initial states represented by a vector functions on the interval (−τ,0). Stabil-
ity of stochastic delay-differential equations has been studied by mathematicians [16, 17].
Due to the time-delay the generated stochastic process is not Markovian so that the well
known techniques, like the equivalent Focker-Plank equation, are not applicable. Neverthe-
less, there are some analytical methods, like generalization of the Lyapunov functional on
the problem of stochastic stability. Approximations by stochastic differential equations with-
out time-delay, by treating the time-delay as a small perturbation, lead to the replacement of
the non-Markovian evolution with the Markovian and in some cases analytical treatment of
the resulting Fokker-Plank equation can provide useful information [18]. However, even the
stationary solution of the Fokker-Planck equation for a single stochastic FitzHugh-Nagumo
neuron is known only for special values of the parameters. There is no applicable analytic
treatment of the second order statistics of coupled stochastic FitzHugh-Nagumo systems
(with or without delay) which is needed for the description of noise induced coherence [3].

Influence of noise on time-delay induced bifurcations and properties of synchronization
have been analyzed elsewhere, for example in [19–22]. On the other hand the influence of
coupling delay on different types of coherent oscillations that have been induced solely by
the noise has been studied much less [23–25]. Noise induced resonant jumping between
different attractors of systems with time-delayed feedback has been studied in [26, 27].
Such an analyzes would supply information complementary to the research on the effects of
noise on the properties of oscillations and synchrony introduced by sufficient time-lag in the
delayed coupling. It is our goal in this paper to study the effects of time-delay in the coupling
between two excitable units on different types of noise induced coherent oscillations in each
of the units.

The structure of the paper is as follows. In the next section we present the model of two
FitzHugh-Nagumo excitable systems with noise perturbations and coupled by delayed elec-
trical synapses. We restrict the parameter values to such domain that the deterministic system
has the stable stationary state as the only attractor for any value of the time-delay. Both units
are perturbed by noise which can induce different types of coherent oscillations. In Sect. 3
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we present and discuss the results of our numerical computations. We have analyzed effects
of time delay on coherence in the case that both units display the same type of noise induced
coherent oscillations and the situation when the units display different types of oscillations.
In each case we study the effects of time-delay on coherence properties of both single units
and coincidence of spiking between the units. Finally, in Sect. 4, we summarize our results
and propose some future projects.

2 The Model

Excitable behavior of a single neuron could be of two qualitatively different types [1]. They
are distinguished phenomenologically by different properties of the frequencies and the am-
plitudes of the oscillatory dynamics in each of the two types, and the corresponding qualita-
tive mathematical models are characterized by different bifurcation mechanisms. In this pa-
per we shall consider typical type II excitable systems, as modeled by the FitzHugh-Nagumo
differential equation [1], where the excitable behavior bifurcates into the oscillatory regime
via the Hopf bifurcation. Each of the excitable neurons in the model is subjected to white
noise that could appear in the model equations in two qualitatively different ways. Thus each
neuron is described by the following stochastic differential equations:

εdx = f (x, y) = (x − x3/3 − y)dt + √
ε
√

2D1dW1

dy = g(x, y) = (x + a)dt + √
2D2dW2,

(1)

where dWx,y are independent increment of normalized Winer processes, that is E(dWi) = 0,
E(dWidWj) = δij , i, j = 1,2 and E(. . .) denotes expectation with respect to the stochastic
process. The small parameter ε, which is in our paper fixed as ε = 10−2, takes care of the
different time scales in the dynamics of the excitatory variable x (membrane potential) and
the recovery variable y. The parameter a is the bifurcation parameter. For |a| > 1 the de-
terministic system (1) is excitable and for |a| < 1 the stationary state is unstable and there
exists a stable limit cycle. In this paper a is fixed to a = 1.05. Membrane potential during an
impulse in a real neuron varies between approximately −80 mV and 20 mV and the refrac-
tory period is roughly 1 to 2 ms. This values can be used to rescale the variable x and the
time t in (1) if a comparison with trains of spikes from a real specific neuron are attempted.
However, the model is usually used for qualitative studies of the type II excitability rather
then for simulations of real neuronal activity.

There are many different sources of noise in real neurons. Some are due to random synap-
tic inputs from other neurons, random switching of ion channels and stochastic release of
neurotransmitters in synapses. In (1) these random processes are modeled by the additive
white noise terms in the first and the second equation. The two noise terms can produces
series of spikes in the x variable which for certain values of the parameters D1 or D2 occur
regularly so that the dynamics appears simply periodic i.e. coherent with quite well defined
frequency. However the coherent oscillations induced by D1 = 0, D2 �= 0 are qualitatively
different from those that occur due to D1 �= 0, D2 = 0. The first case, i.e. D1 = 0, D2 �= 0
has been extensively studied, since it was reported in [28]. The effect is traditionally called
coherence resonance [3], but we shall use the term stochastic coherence (SC) [29] in or-
der to emphasize the noisy origin of the coherent oscillations. SC occurs only when the
parameter a is close to its bifurcation value, the properties of the ensuing oscillation resem-
ble the Hopf limit cycle of the deterministic system, and the properties of SC follow from
this fact. The oscillations in the other case, D1 �= 0, D2 = 0 are induced by quite different
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mechanism from that of the SC. It has been studied in details for example in [6], where it
has been called self-induced stochastic resonance (SISR). The main properties of SISR (and
the name) follow from the fact that the system (1) asymptotically resembles a particle in a
double well potential [6], and thus the coherent oscillations resemble the well known effect
of the stochastic resonance [4, 5]. In particular SISR happens even when a is far from the
bifurcation value, and the resulting stochastic limit cycle does not resemble anything that
could occur in the deterministic system. Of course, models with colored and parametric or
multiplicative noise could also be justified [30]. However, our goal is to study the qualitative
influence of time-delay on the SC and SISR which are induced by the two types of noise as
in (1).

We shall study a pair of excitable FHN neurons (1) coupled by the electrical synapses.
This type of synapse is modeled by delayed diffusive coupling between the membrane po-
tentials of the coupled neurons. The model equations are as follows:

εdxi = f (xi, yi) + c(xj (t − τ) − xi)dt

dyi = g(xi, yi), i, j = 1,2
(2)

where f (xi, yi) and g(xi, yi) are given by (1). The coupling constant c in this paper always
assumes positive values, which ensures that the system (2) with a = 1.05 and for D1, D2

all equal to zero, has the stable stationary state as the only attractor for any value of the
time-lag τ . Thus, possible oscillatory behavior of (2) can occur only because of the noise,
and not because of strong coupling or time-delay. However, as we shall see, once the noise
has produced spike trains that look coherent, relatively small time delay of the order of
the refractory period and with sufficiently strong coupling can induce important qualitative
changes in the SC and SISR as well as in the properties of synchronization between the two
units.

3 Numerical Results

Each of the isolated noisy FHN neurons can display a train of spikes due to the noise even
when the only attractor of the deterministic system is the stable stationary solution. Time
distribution of the spikes can be regular with almost constant inter-spike interval. Occur-
rence of coherent series of spikes for particular values of the noise intensity is the common
manifestation of both SC and SISR. However, the two cases occur via quite different mech-
anisms and have different properties, like dependence of the inter-spike period and on the
noise intensity. Mechanisms of SC and SISR, and their properties, have been compared in
[6]. Coupling between the neurons which are in the state of SC or SISR could preserve the
coherence of each of the units and furthermore lead to synchronization of noise induced
oscillations. This effects have been studied in the case of instantaneous coupling (no time-
delay) for example in [31] for the case of equal units, and in [29] for the case of one unit
in the state of SC and the other in the state of SISR. In this section we illustrate the main
effects of the time-delay in the coupling on the properties of SC and SISR, for both units
either in the SC or in the SISR state or when one unit displays SC and the other SISR.

The coherence of noise induced series of spikes in each of the neurons is commonly
characterized by a kind of signal to noise ratio defined by:

S = Tk

[Var(Tk)]1/2
(3)
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where Tk = tk − tk−1 is the k-th inter-spike time interval and the overline, like in T k , denotes
time averaging. Large S corresponds to high coherence of the noise induced spike trains.

There are different types of synchronization between the two coherently spiking neurons
that could be of interest. For example, the strongest kind is the exact synchronization, i.e.
x1(t) = x2(t) for all t > t0, and another commonly studied is the synchronization between
the phases of the two oscillators. We shall analyze the kind of synchronization such that each
spike of one of the neurons occurs within the duration of some spike of the other neuron.
This notion of synchrony is motivated by neurological considerations [32], and is quantified
by the so called coincidence function (CF). This is defined as the time average of the ratio
between the number of spikes of one of the neurons, which are coincident with some of the
spikes of the other neuron, and the average number of spikes per neuron. Two spikes are
considered coincident whenever the sum of x1(t) + x2(t) is larger then some threshold, say
the hight of spikes max{xi}. This type of synchrony does not assume coherent spiking and
is weaker than either exact or phase synchronization.

In our numerical integration we have used the Runge-Kutta 4-th order routine for the
deterministic part of (2) and the Euler method for the stochastic part. Many sample paths for
each value of the variable parameters D1,2 and τ have been calculated. Results are compared
with examples of other published work [29] and with computations performed using ready
made programs for solving SDDE’s available within the XPP package [33]. Values of S

and C that are presented in what follows represent values that have been obtained with
single typical sample paths. The sample paths were always sufficiently long so that the time
average in (3) and the value of S did not change (on the scale of the figures) by increasing
the length of the paths.

Results of our numerical calculations are illustrated in Figs. 1, 2, 3 and 4, where Fig. 1
corresponds to two SC and Fig. 2 to two SISR neurons, and Figs. 3 and 4 to the cases of
nonequal units. We fix the noise intensity of one of the neurons, say D2 to the maximal co-
herence of SC type (Fig. 1) or D1 to the maximal coherence of SISR type (Fig. 2) and study
the dependence of firing coherence of both neurons and coincidences on the noise intensity
D1 or D2 of the adjustable unit and on the time-lag τ . We consider only relatively small
time-lags up to the refractory period which is about τ ≤ 1.3. Coherence of noise induced
spiking is not qualitatively affected by weak coupling with arbitrary time-delay. However,
stronger coupling introduces significant modifications which also very much depend on the
time-lag as is illustrated in Figs. 1, 2, 3 and 4.

In Fig. 1a we show typical effects of small time-lag, illustrated with τ = 0.7, on functions
S1(log10 D2) and S2(log10 D2), when both neurons are of the SC type and the noise intensity
of one of them is held fixed at the SC maximum. Other values of the time-lag less then
τ < 1 cause similar small modifications of the dependencies S1(log10 D2) and S2(log10 D2).
However, large influence of the time-delay on S1(log10 D2) and S2(log10 D2) is demonstrated
for all τ ≥ 1, as is illustrated in Fig. 1b, c for τ = 1 and τ = 1.3 respectively. The curves
S1(log10 D2) and S2(log10 D2) with τ ≥ 1 are qualitatively and quantitatively different from
those with τ < 1. Let us stress that deterministic systems with delayed coupling of the same
coupling strength c = 0.1 show no bifurcation or other qualitative change for any τ ≥ 0.
Thus, qualitative change in the properties of noise induced spiking coherence achieved with
τ ≥ 1 should be attributed to the simultaneous action of noise and time-delay.

Figures 2a, b, c illustrate the same effects in the case when the two neurons are of the
SISR type with fixed noise intensity in one of them. The situation is qualitatively similar
to the previous case: small τ < 1 introduces only small quantitative changes, but τ ≥ 1
changes the curves S1(log10 D1) and S2(log10 D1) drastically. Observe that the influence of
time-delay for τ = 1 in the SC-SC case is quite different from the SISR-SISR case.
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Fig. 1 Illustrates coherence (a, b, c) and spiking coincidence (d) in the SC-SC case. D2 of the second (SC)
neuron is fixed to D2 = 0.01. D2 of the first (SC) neuron, shown on the x axes as Log10(D2), is adjustable.
S1 (circles) and S2 (triangles) for τ = 0 (a, b, c full line) and τ = 0.7 (a, dotted) τ = 1 (b, dotted) and τ = 1.3
(c, dotted) are shown. In (d) coincidence functions C for τ = 0 (black full), τ = 1 (black dotted) and τ = 2.7
(gray dotted) are shown. Calculated values of S1,2 and C are indicated by symbols and the lines serve only
to connect the values corresponding to the same τ and different log10 D2

In Figs. 3 and 4 we illustrate influence of the time-delay on S1(log10 D1,2) and
S2(log10 D1,2) when fixed SC is coupled with adjustable SISR (Fig. 3) and adjustable SC is
coupled with fixed SISR neurons (Fig. 4). Conclusions are qualitatively the same as in the
corresponding cases of coupled equal neurons. For τ < 1 there are no important changes in
S1(log10 D1,2) and S2(log10 D1,2). For τ = 1 and if SC neuron is fixed and SISR is adjustable
S1(log10 D1) and S2(log10 D1) are significantly smaller then for τ < 1 or τ > 1. On the other
hand if the fixed neuron is of the SISR type then τ = 1 implies larger and qualitatively dif-
ferent S1(log10 D2) and S2(log10 D2). Time-lag τ > 1 introduces important qualitative and
quantitative changes paralleling the cases of equal units.

Figures 1d, 2d, 3d, and 4d illustrate the influence of time-delay on coincidence of spiking
of the two neurons as measured by the coincidence function. Obviously, when there is no
interaction time-delay spike in one neuron immediately causes the other neuron to fire so the
spikes largely overlap and are considered coincident. Spikes also coincide when the time-
lag is close to the inter-spike interval, if such is relatively well defined. Otherwise nonzero
interaction time-lag destroys the coincidence of spiking. As the noise becomes larger the
coincidence that occurs at special values of the time-lag decreases.

Results presented in Fig. 1 to Fig. 4 illustrate dependence of coherence on noise as mea-
sured by S1(Di), S2(Di) when the noise in one of the neurons Dj is fixed and the other
Di is variable. The fixed value Dj always corresponds to the maximal SC or SISR for the
decoupled units, which is approximately Dj = 0.01 (for a = 1.05). The influence of the
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Fig. 2 Illustrates coherence (a, b, c) and spiking coincidence (d) in the SISR-SISR case. D1 of the first
SISR neuron is fixed to D1 = 0.01. D1 of the second SISR neuron, shown on the x axes as Log10(D1), is
adjustable. S1 (circles) and S2 (triangles) for τ = 0 (a, b, c full line) and τ = 0.7 (a, dotted) τ = 1 (b, dotted)
and τ = 1.3 (c, dotted) are shown. In (d) coincidence functions C for τ = 0 (black full), τ = 1 (black dotted)
and τ = 2.7 (gray dotted) are shown. Calculated values of S1,2 and C are indicated by symbols and the lines
serve only to connect the values corresponding to the same τ and different log10 D1

time-delay of the size up to the refractory period on the curves S1,2(log10 Di) for such fixed
Dj = 0.01 is illustrated in Fig. 1 to Fig. 4. For τ > 1 the curves S1,2(log10 Di) can be con-
sidered as monotonically decreasing with increasing Di . Such monotonic dependence is due
to relatively large value of the fixed noise Dj . Significantly smaller values of the fixed noise
lead to the characteristic bell shaped dependence of S1,2(log10 Di), illustrated in Fig. 5a, b.

We can conclude that small time-lag τ < 1 only slightly changes the properties of noise
induced coherence in each of the considered cases. On the other hand, τ ≥ 1 introduces
significant qualitative and quantitative changes in the functions which characterize the noise
induces coherence S1 and S2. In general the curves acquire a plateau of large values for an
intermediate interval of noise intensities. Time-delay τ > 1 significantly increases the coher-
ence and shifts the corresponding noise parameters towards smaller values. Dependence of
the values of S1,2(log10 Di) on τ at Di that corresponds to the maximum coherence for τ = 0
is illustrated in Fig. 6a, b. When τ = 1 two cases can be distinguished: (a) the noise intensity
in the SISR neuron is fixed to the coherence maximum of the isolated neuron or (b) the noise
intensity in the SC neuron is fixed to the coherence maximum of the isolated neuron and in
both cases the adjustable neuron is either SISR or SC. In the case (b) the firing coherence
of both neurons as measured by S1(log10 D1,2) and S2(log10 D1,2) is significantly smaller
for any D1,2 for τ = 1 then for τ < 1. In the case (a) S1(log10 D1,2) and S2(log10 D1,2) for
τ = 1 and small D are larger then for τ < 1. In either of the considered cases the large local
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Fig. 3 Illustrates coherence (a, b, c) and spiking coincidence (d) in the SC-SISR case. D2 of the first (SC)
neuron is fixed to D2 = 0.01. D1 of the second (SISR), shown on the x axes as Log10(D1), is adjustable.
S1 (circles) and S2 (triangles) for τ = 0 (a, b, c full line) and τ = 0.8 (a, dotted) τ = 1 (b, dotted) and τ = 1.3
(c, dotted) are shown. In (d) coincidence functions C for τ = 0 (black full), τ = 1 (black dotted) and τ = 2.7
(gray dotted) are shown. Calculated values of S1,2 and C are indicated by symbols and the lines serve only
to connect the values corresponding to the same τ and different log10 D1

maxima in S1(log10 D1,2) and S2(log10 D1,2) that appear for τ > 1 must be considered as a
consequence of very small variance over long time of the values of the inter-spike intervals
and not of large values of these intervals. In Fig. 7 we illustrate the coherent oscillations in
the example of SC-SC case achieved with τ = 1.3 and compare the time-series with that
for τ = 1 and τ < 1. It is obvious that the coherence is significantly improved in the case
τ = 1.3 compared to τ ≤ 1 even though the frequency of the spiking is also increased. The
reason for the significant increase of the maximal coherence for sufficiently large time-lag
could be due to the fact that the time-lag becomes similar to the refractory period. However,
we have no qualitative explanation for the sudden, bifurcation like, change of the curves
S1,2(log10 Di) at τ = 1. Let us stress once again that the two deterministic FHN neurons in
the considered range of the parameters with delayed coupling do not have any bifurcations
to oscillatory dynamics for any value of the time-lag.

4 Summary

We have studied a pair of FitzHugh-Nagumo neurons with noise coupled by time-delayed
diffusive coupling. The bifurcation parameters of each of the neurons and the coupling
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Fig. 4 Illustrates coherence (a, b, c) and spiking coincidence (d) in the SC-SISR case. D1 of the second
(SISR) neuron is fixed to D1 = 0.01. D2 of the first (SC), shown on the x axes as Log10(D2), is adjustable.
S1 (circles) and S2 (triangles) for τ = 0 (a, b, c full line) and τ = 0.8 (a, dotted) τ = 1 (b, dotted) and τ = 1.3
(c, dotted) are shown. In (d) coincidence functions C for τ = 0 (black full), τ = 1 (black dotted) and τ = 2.7
(gray dotted) are shown. Calculated values of S1,2 and C are indicated by symbols and the lines serve only
to connect the values corresponding to the same τ and different log10 D2

strength were such that the only attractor of the system without the noise terms is the stable
stationary state for any value of the time-lag. Thus, the deterministic system is excitable with
no oscillatory dynamics for any value of the time-lag. Addition of white noise in two differ-
ent ways produces spiking that appears periodic for particular values of the noise strength.
We have studied the influence of time-delay in the coupling on the coherent spiking in-
duced by noise in the slow variable, called stochastic coherence (SC), and on that induced
by the noise in the fast variable which is called self-induced stochastic resonance (SISR).
This research is complementary to the analyzes of the effects of noise on the properties of
oscillations and synchrony introduced by sufficient time-lag in the delayed coupling. Noise
induced coherent spiking is studied using the signal to noise ratio and coincidence of spikes
between the two neurons was measured using the coincidence function. As pointed before,
the isolated neurons without noise were always in the excitable regime and the coupling
strength was always positive, which guaranties that the train of spikes can only be intro-
duced by noise, and not by time-delay. Then we numerically studied changes in the signal to
noise ratio introduced by small time-delay for each of the neurons in the pairs like SC-SC,
SISR-SISR and SC-SISR. Our main results can be summarized as follows: Weak coupling
with any time-lag does not introduce any qualitative change of the signal to noise ratio.
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Fig. 5 Illustrates S1(Log10 D2) (triangle), S2(Log10 D2) (circle) for D1 = 0.001 in SC-SC (a) and
SISR-SISR (b) cases, for τ = 1.3. Other parameters are a = 1.05, c = 0.1

Fig. 6 Illustrates dependence of S1 (triangles) and S2 (circles) on the time-lag τ for the values of D1, D2
that imply in the maximal SC-SC D1 = 0.0, D2 = 0.01 (a) and maximal SISR-SISR D1 = 0.0, D2 = 0.01
(b) when there is no time-delay τ = 0

Strong coupling with the time-lag τ < 1 induces only small changes of the signal to noise
ratio. However, time-lag τ ≥ 1 and sufficiently strong coupling drastically change signal to
noise ratio in the quantitative and qualitative way. An interval of noise values implies quite
large signal to noise ratio and SC or SISR is greatly enhanced. We also observed coincident
spiking for small noise intensity and time-lag proportional to the inter-spike interval of the
coherent spike trains.

In this paper we have used the FitzHugh-Nagumo neuron as the typical example of an
excitable type II system, and the diffusive coupling as the model of an electrical synapse.
We expect that noise can induce coherent spiking of excitable neurons of type I, as modeled
for example by Terman-Wang system, and the influence of coupling delay in this case might
be different, which deserves to be studied. Obviously it would be interesting to perform the
analyzes of the influence of time-delay on noise induced coherence in the case of chemically
coupled neurons.

Acknowledgements This work is partly supported by the Serbian Ministry of Science contract No. 171017
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Fig. 7 Time series x1(t) in the case SC-SC with D2 = 0.01 for the first neuron and for (a) τ = 0, D1 = 0.01
for the second; (b) τ = 0, D2 = 0.001 for the second; (c) τ = 1, D2 = 0.01 for the second and (d) τ = 1.3,
D2 = 0.001, corresponding to a local coherence maxima in Fig. 1c, for the second
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