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ABSTRACT
Computationally tractable and reliable, albeit approximate, methods for studying exciton transport in molecular aggregates immersed in
structured bosonic environments have been actively developed. Going beyond the lowest-order (Born) approximation for the memory
kernel of the quantum master equation typically results in complicated and possibly divergent expressions. Starting from the memory
kernel in the Born approximation, and recognizing the quantum master equation as the Dyson equation of Green’s functions theory, we
formulate the self-consistent Born approximation to resum the memory-kernel perturbation series in powers of the exciton–environment
interaction. Our formulation is in the Liouville space and frequency domain and handles arbitrary exciton–environment spectral densities.
In a molecular dimer coupled to an overdamped oscillator environment, we conclude that the self-consistent cycle significantly improves
the Born-approximation energy-transfer dynamics. The dynamics in the self-consistent Born approximation agree well with the solutions of
hierarchical equations of motion over a wide range of parameters, including the most challenging regimes of strong exciton–environment
interactions, slow environments, and low temperatures. This is rationalized by the analytical considerations of coherence-dephasing dynam-
ics in the pure-dephasing model. We find that the self-consistent Born approximation is good (poor) at describing energy transfer modulated
by an underdamped vibration resonant (off-resonant) with the exciton energy gap. Nevertheless, it reasonably describes exciton dynamics
in the seven-site model of the Fenna–Matthews–Olson complex in a realistic environment comprising both an overdamped continuum and
underdamped vibrations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0237483

I. INTRODUCTION

The light absorption and thus initiated excitation energy trans-
fer (EET) in molecular aggregates constitute the first steps of
solar-energy conversion in both natural1,2 and artificial3–6 systems.
The EET takes place in a complex dynamic spatiotemporal land-
scape stemming from the competition of interactions promoting
exciton delocalization (resonance coupling between molecules) and
localization (static and dynamic disorder).7 As the energy scales
of these counteracting interactions are typically comparable to
one another,8,9 theoretical descriptions of EET dynamics are quite
challenging.

When approached from the perspective of the theory of open
quantum systems,10,11 the challenge transforms into describing

non-Markovian quantum dynamics of excitons interacting with
their environment. As standard theories (such as Redfield12 and
Förster13 theories) do not meet this challenge,14 various numerically
exact methods have been developed. Two most common founda-
tions of these are (i) the Feynman–Vernon influence functional
theory15 and (ii) the Nakajima–Zwanzig [time-convolution (TC)]
quantum master equation (QME).16–18 The approaches rooted in
(i) include the hierarchical equations of motion (HEOM)19–21 and
a host of path-integral and process-tensor-based methods.22–29 Each
of these approaches develops a different representation of the so-
called exact reduced evolution superoperator (or the dynamical
map) U(t), which becomes its central object. Meanwhile, the main
aim of the approaches originating from (ii) is to evaluate the exact
memory-kernel superoperator K(t).30–32 All the above-referenced
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approaches are in general computationally intensive. Their appli-
cations to realistic EET models, which feature a larger number
of chromophores and/or structured spectral densities (SDs) of the
exciton–environment interaction extracted from experiments or
atomistic simulations,33–38 can thus be impractical. A need for com-
putationally less demanding and reliable, although approximate,
approaches to study EET dynamics in realistic multichromophoric
models cannot be overemphasized.

Recent years have witnessed the emergence of many such
approaches, among others quantum–classical methods,39–44 and
related quantum–chemical approaches to nonadiabatic dynamics
(e.g., the surface hopping).45–47 One can also devise approxima-
tions to U and K starting from the formally exact expressions
of (i) and (ii), respectively. For example, the former give rise to
cumulant-expansion-based approaches,48–51 while the latter result
in various approximations to the exact memory kernel.52,53 The
authors of Ref. 54 noted that the second-order TC (TC2) QME,
which retains only the lowest-order (second-order) term K(2)(t) in
the expansion of K in powers of the exciton–environment interac-
tion, can qualitatively reproduce the main features of EET dynamics
in multichromophoric systems. The most obvious improvement
over the TC2 QME, also known as the (second) Born approxima-
tion (BA),55 is to retain some of the higher-order contributions to
K. Such a route generally leads to involved expressions that might
not always be convergent and that can be practically evaluated only
for the simplest models, where they show some improvements over
the original theory.56–63 While already the lowest-order kernel of
polaron-transformed QMEs64–67 can significantly improve over TC2
QME, decent results can also be obtained by partially resumming
the perturbation expansion for K using only low-order terms as the
input. Partial resummations are most commonly performed in the
frequency domain, and one usually applies Padé or Landau–Zener
resummation schemes to K(2)(ω) and K(4)(ω).62,68 Another pos-
sibility, the self-consistent resummation schemes strongly rooted in
condensed-matter physics,69–72 has received even less attention in
this context.

Successful self-consistent improvements over the TC2 QME
have been reported in the context of quantum theory of elec-
tronic transport through molecular junctions.73–76 These approaches
have mainly considered purely electronic quantum transport, when
the role of the bath is played by electronic leads. Their applica-
tions to the quantum transport in the presence of both electronic
leads and molecular vibrations are much more recent and scarcer.77

A proposal for a self-consistent description of the dynamics of a gen-
eral open quantum system has been made only very recently.78 It
leans on a diagrammatic representation of the perturbation series
for U(t), which has indeed appeared in the context of open quan-
tum dynamics; see, for example, Refs. 79–81. The novelty of the
approach by Scarlatella and Schirò78 lies in the subsequent formu-
lation of the perturbation series for K(t), which is related to U(t)
via the TC QME. In the context of the theory of Green’s func-
tions in quantum many-body systems,71,72,82 the memory kernel
K(t) is analogous to the self-energy, whereas the TC QME plays
the role of the Dyson equation. Considering the zero-temperature
dynamics of the spin–boson model, Scarlatella and Schirò78 find
that performing the self-consistent cycle starting from the BA mem-
ory kernel K(2) produces promising results. However, they consider
only the zero temperature and SDs commonly used when studying

the spin–boson model in its narrowest sense.83 Moreover, their
time-domain formulation of the self-consistent Born approxima-
tion (SCBA) involves solving an integrodifferential equation in each
iteration of the cycle.

This study explores the applicability of the self-consistent
memory-kernel resummation scheme introduced in Ref. 78 to EET
dynamics in multichromophoric aggregates. For the sake of com-
pleteness, we first reconsider the theoretical developments of Ref. 78
and make them technically simpler by working in the Liouville space
and replacing the above-mentioned integrodifferential equation in
the time domain by a matrix equation in the frequency domain. In a
molecular dimer coupled to an overdamped phonon environment,
we find that the self-consistent cycle greatly improves the origi-
nal BA (TC2 QME) over a wide range of dimer parameters. This
success of the SCBA is rationalized by considering the analytically
tractable example of coherence dephasing in the pure-dephasing
model. Remarkably, we find that the SCBA remains reliable even
in the generally difficult regimes of strong exciton–environment
interactions and/or slow environments, when multiple environmen-
tally assisted processes dominate the dynamics,84,85 as well as at low
temperatures. Considering exciton dynamics modulated by a sin-
gle underdamped vibrational mode, we conclude that the SCBA
delivers good results only when the vibrational energy is resonant
with the exciton–energy gap. Upon including overdamped phonon
continuum on top of a number of underdamped modes, we find
that the SCBA delivers decent results for EET dynamics in the
seven-site model of the FMO complex interacting with the realistic
environment extracted from atomistic simulations.

This paper is organized as follows. Section II introduces our
theoretical framework, whose applicability to EET dynamics is
assessed in Sec. III. Section IV summarizes our main findings and
discusses prospects for future work.

II. THEORETICAL CONSIDERATIONS
A. Model

We model EET dynamics in an aggregate composed of
N chromophores using the Frenkel–Holstein Hamiltonian,

H = HS +HB +HS−B. (1)

We take into account only the ground and one excited state on each
chromophore so that the purely electronic part HS reads as

HS =∑
n

εn∣n⟩⟨n∣ +∑
m≠n

Jmn∣m⟩⟨n∣. (2)

Here, ∣n⟩ is the collective singly excited state residing on chro-
mophore n (all the other chromophores are unexcited), εn is the
energy of the vertical transition from the ground state to the
excited state on chromophore n, while Jmn is the resonance (typi-
cally dipole–dipole) coupling between chromophores m and n. The
aggregate is in contact with the environment modeled as collections
of mutually independent harmonic oscillators associated with each
chromophore,

HB =∑
nξ

ωnξb†
nξbnξ. (3)
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Here, ωnξ is the frequency of oscillator ξ on chromophore n, while
bosonic operators b†

nξ (bnξ) create (annihilate) the corresponding
oscillation quantum and obey [bnξ , bmξ′] = 0, [bnξ , b†

mξ′] = δnmδξξ′ .
The exciton–environment interaction is of the Holstein type, i.e.,
local and linear in oscillator displacements,

HS−B =∑
nξ

gnξVn(bnξ + b†
nξ), (4)

where Vn = ∣n⟩⟨n∣. Its strength, determined by the interaction con-
stants gnξ , is more conveniently described using the reorganization
energy on chromophore n,

λn =∑
ξ

g2
nξ

ωnξ
= ∫

+∞

−∞

dω
2π

J n(ω)
ω

, (5)

where the SD of the exciton–environment interaction

J n(ω) = π∑
ξ

g2
nξ[δ(ω − ωnξ) − δ(ω + ωnξ)] (6)

is typically a continuous function of ω. We focus on exciton
dynamics starting from the factorized initial condition

W(0) = ρ(0)ρeq
B , (7)

where ρ(0) is the excitonic reduced density matrix (RDM) at the
initial instant t = 0, while

ρeq
B =

e−βHB

TrB e−βHB
(8)

represents the state of the environment (equilibrium at temperature
T = β−1) with no excitons present. Within the Condon approxima-
tion,86 this choice of the initial condition leads to the dynamics
that can be probed in ultrafast nonlinear spectroscopies.87 As our
formalism deals with Green’s function, we can still reconstruct
the dynamics under an arbitrary excitation condition as long as
the light–matter interaction is weak and the Condon approxima-
tion is valid.87–89 The only environmental quantity influencing the
reduced excitonic dynamics starting from Eq. (7) is the displacement
autocorrelation function,15

Cn(t) =∑
ξ

g2
nξTrB{[bnξ(t) + b†

nξ(t)](bnξ + b†
nξ)ρ

eq
B }

= ∫

+∞

−∞

dω
π

e−iωt J n(ω)
1 − e−βω . (9)

The time dependence in Eq. (9) is taken with respect to HB, i.e.,
bnξ(t) = e−iωnξ tbnξ .

B. Real-time diagrammatic representation: Green’s
superoperator and self-energy superoperator

The assumption embodied in Eq. (7) permits us to define the
exact reduced evolution superoperator (dynamical map) U(t) by

∣ρ(t)⟩⟩ = U(t)∣ρ(0)⟩⟩. (10)

Equation (10) is formulated in the Liouville space,86 in which
the excitonic RDM at t > 0, represented by the operator ρ(t) in

the Hilbert space, becomes the N2-component vector ∣ρ(t)⟩⟩. The
reduced evolution superoperator is then a tetradic quantity compris-
ing N4 entries ⟨⟨e′2e′1∣U(t)∣e2e1⟩⟩, where {∣e⟩} is an arbitrary basis in
the single-exciton manifold. U(t) is formally expressed as (see, for
example, Ref. 90 and references therein)

U(t) = e−iLStTrB{T te−i∫ t
0 ds L(I)

S−B(s)ρeq
B }, (11)

where the Liouvillian La associated with the term Ha (a = S, B,
S − B) in Eq. (1) is defined by its action on an arbitrary Liouville-
space vector ∣O⟩⟩ corresponding to the Hilbert-space operator
O, La∣O⟩⟩↔ [Ha, O], while the interaction-picture counterpart of
LS−B is

L(I)S−B(t) = ei(LS+LB)t LS−Be−i(LS+LB)t. (12)

The time-ordering sign T t imposes the chronological order (lat-
est to the left) among the Liouvillians in the expansion of
Eq. (11) in powers of the exciton–environment interaction. The
Liouville-space approach adopted here is somewhat different from
standard real-time approaches to the RDM of a particle in an oscil-
lator environment,78,91 which consider the forward and backward
Hilbert-space evolution operators separately. Dealing with superop-
erators, we simplify the formalism, as we consider only the forward
evolution in the Liouville space.92 The average in Eq. (11) can be
performed term-by-term using Wick’s theorem,91 and only even-
order powers in LS−B remain. The order 2k (k ≥ 1) consists of
(2k − 1)!! terms. Further manipulations usually proceed in two
different manners.

The first possibility is to observe that, because of the T t
sign, all the terms appearing in any given order are mutually
identical.81 Retaining the T t sign, one obtains the well-known
Feynman–Vernon expression,20,81

U(t) = e−iLSt T te−Φ(t), (13)

with

Φ(t) =∑
n
∫

t

0
ds2∫

s2

0
ds1 V(I)n (s2)

×

× [Cr
n(s2 − s1)V(I)n (s1)

×
+ iCi

n(s2 − s1)V(I)n (s1)
○
]. (14)

In Eq. (14), the superoperators V× and V○ are defined by the corre-
spondences V×∣O⟩⟩↔ [V , O] and V○∣O⟩⟩↔ {V , O} (anticommu-
tator), respectively. Assuming that Cn(t) can be decomposed into a
number of exponentially decaying terms, Eqs. (13) and (14) serve as
the starting point for the HEOM method.

The possibility we opt for here is to make the time ordering
explicit in each term, in which case the terms in any given order
appear as different. Further developments are facilitated by consid-
ering the (retarded) evolution superoperator [the (retarded) Green’s
function or Green’s superoperator]86

G(t) = −iθ(t)U(t) (15)

instead of U(t). Each term in order 2k of the expansion of G(t) can
be represented by a diagram [Fig. 1(d)] comprising a total of 2k + 2
(2 terminal and 2k internal) instants,

s2k+1 = t ≥ s2k ≥ ⋅ ⋅ ⋅ ≥ s1 ≥ 0 = s0,
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and k chromophore indices nk, . . ., n1 associated with k pairs selected
from the set {s2k, . . ., s1} by the application of Wick’s theorem.
The consecutive instants sj+1 and sj (0 ≤ j ≤ 2k + 1) of a diagram
are connected by a straight line directed from sj to sj+1 [Fig. 1(d)]
and represent the (retarded) free-exciton Green’s superoperator
[Fig. 1(b)]

GS(t) = −iθ(t)e−iLSt. (16)

The directed double-line represents G(t) [Fig. 1(a)]. The dashed cir-
cumferences connect the instants sl and sj (sl ≥ sj) that are paired
by Wick’s theorem; see Fig. 1(c). These instants are accompanied
by the same chromophore index njl [see Eq. (4)] and the following
superoperators [cf. Eq. (14)]:

sl ↔ V×n jl , (17)

sj ↔ Cr
n jl(sl − sj)V×n jl + iCi

n jl(sl − sj)Vnjl
○. (18)

Having placed all the superoperators in a chronologically
ordered string (reading diagrams from left to right), one performs
integrations ∫

t
0 ds2k . . . ∫

s2
0 ds1 over 2k internal instants and sum-

mations over k independent chromophore indices. Any diagram is
either reducible or irreducible, depending on whether it can be cut
into two by cutting a free Green’s superoperator line or not.93 Exam-
ples of irreducible diagrams in Fig. 1(d) are diagrams (2), (4.2), and
(4.3), while the diagram (4.1) is reducible. Amputating the external
lines corresponding to GS(s1) and GS(t − s2k) of irreducible dia-
grams, one obtains the diagrammatic representation of the so-called
(retarded) self-energy superoperator; see Fig. 1(f). The self-energy
superoperator thus consists of all amputated diagrams that cannot
be cut into two by cutting a free Green’s superoperator line. One can
then derive the following Dyson equation:93

G(t) = GS(t) + ∫
+∞

−∞
ds2∫

+∞

−∞
ds1 GS(t − s2)Σ(s2 − s1)G(s1),

(19)
whose diagrammatic representation is shown in Fig. 1(e). All the
superoperators in Eq. (19) are retarded, and the integrals in Eq. (19)
can run from −∞ to +∞, which facilitates the transition to the
frequency domain. Rewriting Eq. (19) as an equation for U(t),

inserting the result thus obtained into Eq. (10), and differentiating
with respect to t, one obtains the QME,

∂t ∣ρ(t)⟩⟩ = −iLS∣ρ(t)⟩⟩ − ∫
t

0
ds K(t − s)∣ρ(s)⟩⟩, (20)

where the relation between the memory kernel K and the retarded
self-energy Σ is

Σ(t) = −iθ(t)K(t). (21)

Equation (20) differs from the standard QME only by the repre-
sentation of the memory kernel. The memory kernel is commonly
expressed in terms of projection superoperators P and Q = 𝟙 − P,
and its perturbation expansion in the exciton–environment interac-
tion is most often hidden in the propagator of the irrelevant part
QLS−B Q of the interaction Liouvillian; see, for example, Refs. 10
and 18. Choosing P∣O⟩⟩↔ TrB{Oρeq

B }
94,95 and expanding the afore-

mentioned irrelevant propagator in power series, one obtains the
perturbation expansion of the memory kernel in terms of the so-
called partial cumulants of the interaction Liouvillian.96 The results
of Ref. 95 suggest that the same final result is obtained using
the more conventional Agyres–Kelley97 projection superoperator
P∣O⟩⟩↔ ρeq

B TrB{O}. One can convince themselves that the partial
cumulants in Ref. 96 simply restate that the memory-kernel (or self-
energy) perturbation series does not contain disconnected diagrams,
as in Fig. 1(f). To that end, the general expressions of Ref. 96 have
to be transformed by applying Wick’s theorem and diagrammati-
cally representing the resulting series according to the above-stated
rules. These two steps, which were not considered in Ref. 96, are
vital to the formulation of the self-consistent resummation scheme
in Sec. II E.

C. Frequency-domain description
Resummation techniques usually require transferring to the

frequency space. This is most conveniently done starting from
Eq. (19) and forming the dynamical equation for G(t),

∂t G(t) = −iδ(t) − iLS G(t) − i∫
+∞

−∞
ds Σ(t − s)G(s). (22)

FIG. 1. Diagrammatic representation of (a) the interacting Green’s superoperator and (b) the free-exciton Green’s superoperator. (c) In an arbitrary diagram, the environmental
assistance starting at sj , ending at sl (t ≥ sl ≥ sj ≥ 0), and involving the environment that surrounds chromophore njl is represented by a dashed circumference connecting
sj and sl . The connections of the circumference with free-exciton lines, represented by full dots, correspond to the superoperators in Eqs. (17) and (18). Diagrammatic
representation of (d) the perturbation expansion for G(t) up to the fourth order in the exciton–environment interaction, (e) the Dyson equation [Eq. (19)], and (f) the
self-energy superoperator up to the fourth order in the exciton–environment interaction.
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With the standard definition of the frequency-dependent quantities,

G(t) = ∫
+∞

−∞

dω
2π

e−iωt G(ω). (23)

Equation (22) becomes the following algebraic equation:

G(ω) = [ω − LS − Σ(ω)]−1. (24)

The Hermitian property of the RDM implies that G(ω) satisfies

⟨⟨e′2e′1∣G(ω)∣e2e1⟩⟩ = −⟨⟨e′1e′2∣G(−ω)∣e1e2⟩⟩
∗. (25)

This property shows that it is sufficient to compute G(ω) only for
ω ≥ 0, while the values for negative frequencies follow from this
symmetry property. We additionally note that the same symme-
try property also characterizes the inverse Green’s superoperator
G−1
(ω), as well as the self-energy superoperator Σ(ω), which now

carries the dimension of energy.
The frequency-domain diagrammatic representations of G(ω)

and Σ(ω) appear the same as the time-domain representations
in Figs. 1(d) and 1(f), respectively. The general rules for translat-
ing diagrams into formulas can be inferred from the discussion in
Sec. II D.

D. Born and Redfield approximations
The lowest, second-order approximation to Σ is known as the

(second) BA.55 The corresponding self-energy superoperator, shown
in Fig. 2(a1), reads as (see also Refs. 84 and 85)

ΣBA(t) =∑
n

V×n GS(t)[C
r
n(t)V

×
n + iCi

n(t)V
○
n], (26)

while its frequency-domain counterpart is

ΣBA(ω) =∑
n
∫

+∞

−∞

dν
2π

J n(ω − ν)

× {coth(
β(ω − ν)

2
)V×n GS(ν)V

×
n + V×n GS(ν)V

○
n}. (27)

Upon inserting KBA(t) = iΣBA(t) into Eq. (20), we obtain the well-
known TC2 QME,54

∂tρ(t) = −i[HS, ρ(t)]

−∑
n
[Vn,∫

t

0
ds Cn(t − s)e−iHS(t−s)Vnρ(s)eiHS(t−s)

]

+∑
n
[Vn,∫

t

0
ds Cn(t − s)∗e−iHS(t−s)ρ(s)VneiHS(t−s)

].

(28)

For delta-correlated noise characterized by the dephasing rate Γ,
Cn(t) = Γδ(t), Eq. (28) assumes the Lindblad form,

∂tρ(t) = −i[HS, ρ(t)] − Γ∑
n
(

1
2
{V2

n , ρ(t)} − Vnρ(t)Vn). (29)

We will use this result in Sec. III B 3.
The time-independent and nonsecular Redfield theory (see, for

example, Sec. 3.8.2 of Ref. 55 or Sec. 11.2 of Ref. 98),

∂t ∣ρ(t)⟩⟩ = −iLS∣ρ(t)⟩⟩ − R∣ρ(t)⟩⟩, (30)

is obtained by inserting Eq. (26) into Eq. (22) and then per-
forming the Markovian and adiabatic approximations. These
approximations result in the delta-like self-energy in the time
domain, ΣRed(t) = ΣRedδ(t), the frequency-independent self-energy
ΣRed(ω) = ΣRed, and the Redfield tensor R = iΣRed [see Eq. (21)],
where

ΣRed = ∫

+∞

−∞
ds ΣBA(s) eiLSs. (31)

The Redfield theory is formulated in the exciton basis {∣x⟩} defined
through HS∣x⟩ = ωx∣x⟩. Equation (31) then implies that the Redfield-
tensor matrix elements read

⟨⟨x′2x′1∣R∣x2x1⟩⟩ = i⟨⟨x′2x′1∣ΣBA(ωx2 − ωx1)∣x2x1⟩⟩. (32)

For delta-correlated noise, Cn(t) = Γδ(t), the Redfield equation
[Eq. (30)] also assumes the Lindblad form [Eq. (29)].98

E. Self-consistent Born approximation
In this work, we improve upon the BA by replacing the free-

exciton Green’s superoperator GS in Fig. 2(a1) or Eq. (27) with the
interacting Green’s superoperator G; see Fig. 2(b1). The resultant
equation for the self-energy superoperator

Σ(ω) =∑
n
∫

+∞

−∞

dν
2π

J n(ω − ν)

× {coth(
β(ω − ν)

2
)V×n G(ν)V×n + V×n G(ν)V○n} (33)

is to be solved together with the Dyson equation [Eq. (24)] in a
self-consistent loop. Namely, one starts from the free-exciton case,
Σ(0)
(ω) = 0, when Eq. (24) gives the free-exciton Green’s function

(η→ +0),

G(0)(ω) = GS(ω) = [ω + iη − LS]
−1. (34)

G(0)(ω) is then inserted into Eq. (33) to yield Σ(1)
(ω) = ΣBA(ω),

which is then inserted into Eq. (24) to yield G(1)(ω), etc. The

FIG. 2. Diagrammatic representation of
(a1) the BA self-energy superoperator
[Eq. (26) or Eq. (27)], (b1) the SCBA
self-energy superoperator [Eq. (33)], (a2)
Green’s superoperator in the BA, and
(b2) Green’s superoperator in the SCBA.
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above-described procedure is repeated until the difference between
two consecutive iterations Σ(k)

(ω) and Σ(k−1)
(ω) for the self-energy

(k ≥ 1) becomes smaller than a prescribed numerical tolerance
(see Sec. III A for more details).

Using either BA or SCBA for the self-energy superoperator,
we do perform a partial resummation of the perturbation series for
G [Fig. 1(d)]. The resulting G(SC)BA contains contributions from all
orders in the exciton–environment interaction constant. Neverthe-
less, the diagrammatic content of the SCBA is much richer than
that of the BA, compare Fig. 2(b2) to Fig. 2(a2), suggesting that
the SCBA is reliable in a much wider parameter range than the BA.
Still, the SCBA retains only a very limited subset of all possible dia-
grams appearing in Figs. 1(d),99 and its reliability is to be carefully
checked.

III. RESULTS
A. Technical details

Equation (34) features an infinitesimally small frequency η,
which ensures the causality, i.e., GS(t) = 0 for t < 0. We always shift
ω→ ω + iη on the right-hand side of the Dyson equation [Eq. (24)],
which, apart from the causality, ensures that the matrix inversion
in Eq. (24) is numerically stable. However, the numerical Fourier
transformation of G(ω) thus obtained produces the exponentially
damped Green’s superoperator G̃(t) = e−ηt G(t). The results for the
true Green’s superoperator G(t) = eηt G̃(t) are thus the most reliable
for t ≪ η−1. In all our computations, we set η = 1 cm−1, meaning
that our results for exciton dynamics are bound to be reliable for
t ≪ 5 ps. While we find that our results in the real-time domain are
free of finite-η effects on timescales beyond η−1, we always show only
the initial 2–3 ps of exciton dynamics.

Generally, G(ω) slowly decays toward zero as ∣ω∣→ +∞.
The dominant component of the high-frequency tail of G(ω)
can be inferred by performing one partial integration of G(ω)
= ∫

+∞
0 dt ei(ω+iη)t G(t), which results in

G(ω) = 𝟙
ω + iη

+ O(ω−2
), ∣ω∣→ +∞. (35)

Deriving Eq. (35), we use G(t = 0) = −i𝟙, where 𝟙 denotes the unit
operator in the Liouville space. The strongly pronounced high-
frequency tail of G(ω) means that we have to consider many
values of ω in order for the discrete Fourier transform to pro-
duce decent results in the time domain. This is to be avoided
as computing G(ω) and Σ(ω) involves inversion of an N2

×N2

matrix [Eq. (24)] and numerical integration [Eq. (33)], respectively.
Defining T (ω) = 𝟙

ω+iη and Gnt
(ω) = G(ω) − T (ω),100 the discrete

(numerical) Fourier transformation of the non-tailed part Gnt
(ω)

produces G̃ nt
(t), while the Fourier transformation of the high-

frequency tail T (ω) can be performed analytically to yield T̃ (t)
= −iθ(t)e−ηt𝟙. Finally,

G(t) = −iθ(t)𝟙 + eηt G̃ nt
(t). (36)

As we assume local exciton–environment interaction [Eq. (4)], G(ω)
and Σ(ω) are most conveniently represented in the site basis {∣n⟩}.
In all the examples to be discussed, we assume for simplicity that the

environments of individual chromophores are identical. The inte-
gration in Eq. (33) expressing Σ in terms of G is performed using
the ordinary trapezoidal rule. Because of the symmetry property in
Eq. (25), we perform a numerical integration of Eq. (33) from 0 to
ωmax with frequency step Δω. The contribution around ν = ω to the
integral in Eq. (33) may be divergent for sub-Ohmic SDs, while it is
finite (zero) for Ohmic (super-Ohmic) SDs. The correct treatment
of the possible divergence when computing Eq. (33) for sub-Ohmic
SDs is beyond the scope of this study. Importantly, the SDs that
are most widely used in studying EET through multichromophoric
aggregates are either super-Ohmic or Ohmic101,102 and can be han-
dled in the manner presented here; see Sec. III C and Appendix C.
We stop the self-consistent cycle once we achieve δΣ(k)

≤ εtol, where
(k ≥ 1),

δΣ(k) = max
n′2n′1
n2n1

∣
2⟨⟨n′2n′1∣Σ(k)(ω) − Σ(k−1)

(ω)∣n2n1⟩⟩

⟨⟨n′2n′1∣Σ(k)(ω) + Σ(k−1)
(ω)∣n2n1⟩⟩

∣, (37)

while εtol is the desired (relative) accuracy. We summarize the val-
ues of adjustable numerical parameters (η, ωmax, Δω, εtol) involved
in our computations in Table I.

The computational performance of the numerical integration
of Eq. (33) mainly depends on the high-frequency rather than low-
frequency behavior of the SD. In the examples analyzed in Sec. III B,
J (ω) ∼ ω−1 as ∣ω∣→ +∞ so that the integrand in Eq. (33) falls off as
ν−2 as ∣ν∣→ +∞; see also Eq. (35). Other widely used SDs decrease
even more rapidly in the high-frequency limit.101,102 This suggests
that the bottleneck in the self-consistent cycle is the inversion of the
N2
×N2 matrix in Eq. (24).

Figures 3(a) and 3(b), respectively, show δΣ(k) as a function
k when the SCBA is used on the dimer in the overdamped phonon
continuum [the examples analyzed in Figs. 7(a)–7(d)] and on the
seven-site FMO model in the realistic environment [the examples
analyzed in Figs. 12(b1) and 12(b2)]. Notably, the convergence of
the self-consistent algorithm is achieved in a couple of tens of steps,
even in a multichromophoric system immersed in a structured envi-
ronment. After its initial increase with k, starting from the value of
2 [see the text above Eq. (34)], δΣ(k) decreases in a power-law fashion
for sufficiently large k.

In both BA and SCBA, the trace of the RDM is preserved
because of the outermost commutator in self-energies in Eqs. (27)
and (33). The RDM positivity is a much subtler issue, but we
observe that, whenever SCBA improves over the BA, the results of
both approximations conform to the positivity requirement on the
timescales analyzed.

TABLE I. Summary of the adjustable numerical parameters needed to perform the
self-consistent cycle and the values used in our computations.

Parameter (unit) Value

η (cm−1
) 1

ωmax (cm−1
) 3000–5000

Δω (cm−1
) 0.5

εtol (−) 10−6
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FIG. 3. Dependence of the quantity δΣ(k)

[Eq. (37)] monitoring the convergence of
the self-consistent algorithm on the itera-
tion number k in the examples analyzed
in (a) Figs. 7(a)–7(d) and (b) Figs. 12(b1)
and 12(b2). Note the logarithmic scale on
both axes.

As we are primarily interested in examining the reliability of the
BA and SCBA, we use

∣ρ(0)⟩⟩ =
1
N∑n2n1

∣n2n1⟩⟩ (38)

as the initial condition in all numerical computations. Apart from its
simplicity, this initial condition provides a fairer assessment of the
approximation performance than the widely used initial condition
∣n0n0⟩⟩, in which the exciton is placed at chromophore n0. In more
detail, exciton dynamics in an arbitrary basis {∣e⟩} is

⟨⟨e2e1∣ρ(t)⟩⟩ =∑
n2n1
n′2n′1

⟨e2∣n2⟩⟨n1∣e1⟩⟨⟨n2n1∣G(t)∣n′2n′1⟩⟩⟨⟨n
′
2n′1∣ρ(0)⟩⟩.

(39)

If the exciton is initially placed at chromophore n0, its sub-
sequent dynamics is determined by only N2 matrix elements
⟨⟨n2n1∣G(t)∣n0n0⟩⟩ of G out of the total of N4 elements. Quite gener-
ally,103 the quality of approximate dynamics is different for different
matrix elements of G, that is, for different starting chromophores
n0. Inserting the initial condition of Eq. (38) into Eq. (39), we can
assess the overall approximation performance, which is effectively
“averaged” over different matrix elements of G.

B. Reliability of the SCBA: Asymmetric dimer
The advantages and shortcomings of the SCBA are most

transparently identified on the simplest model relevant for EET,
the molecular dimer. In the site basis {∣1n⟩, ∣2n⟩}, the exciton
Hamiltonian HS is represented by the matrix

HS = (
Δε J
J 0

), (40)

where Δε is the site-energy gap, while J is the resonance coupling.
The exciton state of lower (higher) energy is denoted as ∣1x⟩ (∣2x⟩).

In Secs. III B 1–III B 4, we consider exciton dynamics in
the featureless phonon environment described by the overdamped
Brownian oscillator (OBO) SD,86

J ph(ω) = 2λph
ωγph

ω2
+ γ2

ph
, (41)

TABLE II. Summary of the default values of excitonic (Δε, J) and
exciton–environment interaction (λph, γph) parameters used in Secs. III B 1–III B 4.

Parameter (unit) Value

Δε (cm−1
) 100

J (cm−1
) 50

λph (cm−1
) 40

γph (cm−1
) 40

T (K) 300

where λph is the reorganization energy, while γ−1
ph determines the

environment–reorganization timescale. Table II summarizes the
default values of model parameters, which are broadly representative
of photosynthetic aggregates. The performance of our approxima-
tions upon varying these parameters is studied in Secs. III B 1 and
III B 3.

In Sec. III B 5, we assume that the exciton interacts with a sin-
gle underdamped vibrational mode so that the interaction can be
modeled by the underdamped Brownian oscillator SD,86

J vib(ω) = S0ω0[
ωγ0

(ω − ω0)
2
+ γ2

0
+

ωγ0

(ω + ω0)
2
+ γ2

0
], (42)

where ω0 is the vibrational frequency, S0 is the Huang–Rhys factor,
while γ0 is the relaxation rate. Quite generally, γ0 ≪ ω0 and S0 ≪ 1.
The values used in benchmarks are taken from Ref. 50 and are listed
in Sec. III B 5.

1. Overdamped phonon continuum: Variations
in excitonic parameters

Here, we fix the exciton–environment interaction parameters
λph and γph and study the quality of SCBA and BA for different
excitonic parameters J and Δε. Figure 4 provides an overall assess-
ment of the performance of BA [Fig. 4(a)] and SCBA [Fig. 4(b)]
and of the improvement of the SCBA over the BA introduced by
the self-consistent cycle [Fig. 4(c)]. A convenient performance mea-
sure is the trace distance between the approximate [ρ(SC)BA(t)] and
numerically exact [ρHEOM(t)] RDM. As the trace distance is time-
dependent, while we also limit ourselves to the short-time dynamics
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FIG. 4. (a) and (b) Heat maps of the maximum trace distance D((SC)BA∣HEOM) [Eq. (43)] between the numerically exact and BA [(a)] or SCBA [(b)] excitonic RDM
over the interval [0, tmax]. (c) Heat map of the ratio D(BA∣HEOM)

D(SCBA∣HEOM) between the performance metrics used in (a) and (b). All quantities are computed for different values

of the resonance coupling J and the site-energy gap Δε, the remaining parameters assume their default values listed in Table II, the initial condition is specified in Eq. (38),
while tmax = 2 ps.

(see Sec. III A), we quantify the performance of our approximations
using the maximum trace distance over the time window [0, tmax],

D((SC)BA∣HEOM) = max
0≤t≤tmax

1
2

2

∑
k=1
∣r(SC)BA−HEOM

k (t)∣, (43)

where r(SC)BA−HEOM
k (t) is the kth eigenvalue of the operator

ρ(SC)BA(t) − ρHEOM(t). We set tmax = 2 ps in Eq. (43). The colorbar
ranges in Figs. 4(a) and 4(b) suggest that the SCBA is generally a
better approximation to the exact dynamics than the BA. To quan-
tify the improvement of the SCBA over the BA, in Fig. 4(c), we plot
the ratio D(BA∣HEOM)

D(SCBA∣HEOM) , which we find to be greater than or equal
to unity for all the pairs (J, Δε) examined. The larger the ratio, the
more pronounced the improvement of the SCBA over the BA.

Figures 4(a) and 4(b) show that the reliability of both BA and
SCBA generally improves with increasing J and/or decreasing Δε.
This suggests that the approximations are best suited for relatively
delocalized excitons, when the mixing angle θ ∈ [0, π/4], defined as
tan(2θ) = 2J/Δε, significantly deviates from zero. Still, for Δε = 0,
when excitons are perfectly delocalized, the quality of both BA and
SCBA increases with increasing J, i.e., decreasing λph/J. The impact
of the exciton–environment interaction on the approximation reli-
ability will be analyzed in detail in Sec. III B 3. Figure 4(c) reveals
that the improvement of SCBA over BA is the most pronounced in
the region of moderate resonance coupling 50 cm−1

≲ J ≲ 150 cm−1

and large site-energy gap Δε ≳ 200 cm−1. The improvement is also
appreciable for small resonance coupling, irrespective of the value of
Δε, when both BA and SCBA perform relatively poorly; see Figs. 4(a)
and 4(b).

2. Overdamped phonon continuum: Analytical
insights into the pure-dephasing model

For J = 0, the model reduces to the pure-dephasing model,
in which there is no population dynamics, but only dephasing

of the initially present interexciton coherences. The superopera-
tors entering Eq. (14) are then time independent, and combining
Eqs. (13)–(15), we readily obtain the following exact expression for
the reduced evolution superoperator:

⟨⟨n′2n′1∣G(t)∣n2n1⟩⟩ = −iθ(t)δn′2n2 δn′1n1

× {δn2n1 + (1 − δn2n1)e
−iεn2n1 te−2gr(t)

}, (44)

where gr
(t) = ∫

t
0 ds2∫

s2
0 ds1 Cr

(s1) is the real part of the line shape
function, whereas εn2n1 = εn2 − εn1 (for the dimer, εn2n1 = ±Δε). The
derivation of Eq. (44), in which only gr appears, crucially relies
on our assumption that individual-chromophore environments
are identical. While the exact coherence dynamics, which follows
from Eqs. (38), (39), and (44), can be recovered from the time-
convolutionless second-order QME,104 the corresponding BA and
SCBA results remain only approximations to the exact solution, as
both involve an explicit convolution in the time domain. Still, rele-
vant analytical insights concerning the (SC)BA can be obtained for
the pure-dephasing model in the high-temperature limit 2πT ≫ γph.
In Appendix A, we derive that the matrix elements of the exact
self-energy superoperator ⟨⟨n2n1∣Σ(ω)∣n2n1⟩⟩ for n2 ≠ n1 have the
following continued-fraction expansion (CFE):

⟨⟨n2n1∣Σ(ω)∣n2n1⟩⟩

=
4λphT

ω − εn2n1 + iγph −
2 ⋅ 4λphT

ω − εn2n1 + 2iγph −
3 ⋅ 4λphT

ω − εn2n1 + 3iγph − ⋅ ⋅ ⋅

.

(45)

Truncating the CFE in the first layer, we obtain the BA result
(n2 ≠ n1),

⟨⟨n2n1∣ΣBA(ω)∣n2n1⟩⟩ =
4λphT

ω − εn2n1 + iγph
. (46)
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The same result follows from Eq. (27) upon approximating
coth ( β(ω−ν)

2 ) ≈ 2T
ω−ν , as appropriate in the high-temperature limit,

and performing a contour integration by closing the contour in
the upper half-plane. In the pure-dephasing model, we can use
Eqs. (32) and (46) to obtain the matrix elements of the self-energy
superoperator in the Redfield theory,

⟨⟨n2n1∣ΣRed∣n2n1⟩⟩ = −i
4λphT

γph
. (47)

Appendix A also demonstrates that the CFE of the SCBA self-energy
reads

⟨⟨n2n1∣ΣSCBA(ω)∣n2n1⟩⟩

=
4λphT

ω − εn2n1 + iγph −
4λphT

ω − εn2n1 + 2iγph −
4λphT

ω − εn2n1 + 3iγph − ⋅ ⋅ ⋅

.

(48)

Comparing Eq. (45) to Eq. (48), we find that the CFE of the
SCBA result can be obtained from the exact result by changing all
the coefficients multiplying 4λphT in the CFE numerators to unity.
While this could suggest that the SCBA is, in general, a poor approx-
imation to the exact solution,99,105 we note that the broadening
factors are the same at each CFE denominator in both the SCBA and
exact self-energy. One can then expect that the SCBA is superior to
both the BA and the Redfield theory at reproducing the timescale
of coherence dephasing. This expectation is confirmed in Fig. 5(a)
comparing different approximations to the coherence dynamics in a
symmetric (Δε = 0) pure-dephasing dimer. The Redfield theory pre-
dicts an excessively fast coherence dephasing whose analytical form
reads as [see Appendix A and the circles in Fig. 5(a)]

⟨⟨1n2n∣ρRed(t)⟩⟩ =
1
2

exp(−
4λphT

γph
t). (49)

On the contrary, the BA predicts an excessively slow coherence
dephasing that can be reasonably described by [see Appendix A and
the down-triangles in Fig. 5(a)]

⟨⟨1n2n∣ρBA(t)⟩⟩ ≈
1
2

cos (2
√

λphT t)e−γpht/2. (50)

The exact coherence-dephasing timescale is in between the results of
the Redfield theory and BA, while the corresponding exact dynamics
can be reasonably approximated by [see Appendix A and the up-
triangles in Fig. 5(a)]

⟨⟨1n2n∣ρ(t)⟩⟩ ≈
1
2

exp (−2λphTt2
). (51)

The SCBA indeed reproduces the correct order of magnitude of the
dephasing timescale, although it displays oscillations similar to that
predicted by Eq. (50). The performance of different approximations
can also be inferred from (the imaginary part of) the corresponding
self-energy profile presented in Fig. 5(a). The self-energy within the
Redfield theory [Eq. (47)] does not bear even a qualitative resem-
blance to the exact result. The BA, SCBA, and the exact result all
display a peak centered around ω = 0. The BA peak is the narrowest
and highest and has a Lorentzian shape whose full width at half-
maximum is determined by γph only; see Eq. (46). The exact peak

FIG. 5. (a) Time dependence of the real part of the coherence in a symmetric
(Δε = 0) pure-dephasing dimer. (b) Frequency profile of the imaginary part of the
matrix element of the self-energy superoperator describing coherence dephas-
ing in a symmetric pure-dephasing dimer. We compare the results of the SCBA
(solid lines), BA (dashed lines), and Redfield theory (dotted lines) to the exact
result (double dashed-dotted lines). The lines in (a) display Fourier-transformed
frequency-domain results using the self-energies given in Eq. (45) (label “exact”),
Eq. (48) (label “SCBA”), Eq. (46) (label “BA”), and Eq. (47) (label “Red”). Full
symbols in (a) display the analytical results given by Eq. (49) (circles), Eq. (50)
(down-triangles), and Eq. (51) (up-triangles). For visual clarity, the BA and Redfield
self-energies in (b) are scaled down by a factor of 4.

[Eq. (45)] is much broader than the BA peak, while the width of the
SCBA peak [Eq. (48)] is somewhat smaller than, yet comparable to,
the width of the exact peak.

3. Overdamped phonon continuum: Variations
in exciton–environment interaction parameters
and temperature

Here, we fix exciton parameters Δε and J and vary λph and γph
to examine the reliability of BA [Fig. 6(a)] and SCBA [Fig. 6(b)],
as well as the improvement over the BA brought about by the self-
consistent cycle [Fig. 6(c)]. Overall, we find that the quality of both
BA and SCBA improves with decreasing the reorganization energy
and/or shortening the environment–reorganization timescale; see
Figs. 6(a) and 6(b). Figure 6(c) shows that the SCBA is always bet-
ter at approximating the exact dynamics than the BA. Within the
range of values of λph and γ−1

ph typically used in models of photo-
synthetic EET (25 cm−1

≲ λph ≲ 250 cm−1 and 50 fs ≲ γ−1
ph ≲ 200 fs),1

the self-consistent cycle significantly improves the BA results; see
the dashed-line rectangle in Fig. 6(c). Notably, for very fast envi-
ronments (γ−1

ph ≲ 10 fs), we find that the quality of BA and SCBA
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FIG. 6. (a) and (b) Heat maps of the maximum trace distance D((SC)BA∣HEOM) between the numerically exact and BA [(a)] or SCBA [(b)] excitonic RDM over the
interval [0, tmax] [Eq. (43)]. (c) Heat map of the ratio D(BA∣HEOM)

D(SCBA∣HEOM) between the performance metrics used in (a) and (b). All quantities are computed for different values of

the reorganization energy λph and the environment–reorganization timescale γ−1
ph , the remaining parameters assume their default values listed in Table II, the initial condition

is specified in Eq. (38), while tmax = 2 ps. The dashed-line rectangle in (c) delimits the range of values of γ−1
ph and λph typically used in modeling photosynthetic EET.

is virtually the same, i.e., D(SCBA∣HEOM) ≈ D(BA∣HEOM), for
all reorganization energies examined. To understand this, we
observe that when γph →∞ and T →∞ so that γph/T → 0, our
model reduces to the well-known Haken–Strobl–Reineker white-
noise model,106,107 within which Cn(t) = Γδ(t), with Γ = 2λphT/γph.
Inserting this Cn(t) into Eq. (14) for the exact evolution super-
operator U(t), we conclude that the exact equation of motion for
ρ(t) coincides with the Lindblad-like equation (29). To reach this

conclusion, we use that the white-noise assumption renders the
time-ordering sign upon differentiating Eq. (14) effective only on
the superoperator e−Φ(t) and ineffective on the superoperator ∂tΦ(t).
Our discussion in Sec. II D then implies that the BA, and even the
Redfield theory, becomes exact in the white-noise limit. The exact-
ness of the BA implies that the self-consistent cycle cannot improve
on BA any further, meaning that the SCBA result is also exact in the
white-noise limit.

FIG. 7. Dynamics of the population of the lower-energy exciton state ∣1x⟩ [(a1)–(d1)] and the real part of the interexciton coherence [(a2)–(d2)] computed using SCBA (solid
lines), BA (dashed lines), Redfield theory (dotted lines), and HEOM (double dashed-dotted lines). The insets in (a1)–(d1) present the very initial dynamics of the imaginary
part of the interexciton coherence (BA and Redfield results are omitted for visual clarity). The parameters λph, γph, T , and λph assume their default values in (a1) and (a2),

while we change γph = 5 cm−1 in (b1) and (b2), T = 77 K in (c1) and (c2), and λph = 200 cm−1 in (d1) and (d2).
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Figure 6(c) shows that the improvement of SCBA over BA is
the most pronounced for sluggish environments or large reorga-
nization energies. Both observations are ultimately rooted in the
richer diagrammatic content of the SCBA compared to that of the
BA, see Fig. 2, and are remarkable as computing exciton dynamics
modulated by strong exciton–environment interactions and/or slow
environments has to take into account higher-order environmen-
tally assisted processes.84,85 Similar challenges are encountered when
studying exciton dynamics at low temperatures. Additional insights
into the quality of different approximations can be gained from
Fig. 7, which compares approximate and numerically exact exciton
dynamics for the default values of model parameters [Figs. 7(a1)
and 7(a2)], slow environment [γph = 5 cm−1, Figs. 7(b1) and 7(b2)],
strong exciton–environment interaction [λph = 200 cm−1, Figs. 7(c1)
and 7(c2)], and low temperature [T = 77 K, Figs. 7(d1) and 7(d2)].
The overall performance of approximate methods is essentially as
discussed in Sec. III B 2. The Redfield theory shows pronounced
deviations from the exact result already on shortest timescales,
whereas the BA and SCBA reproduce the very initial stages
(t ≲ 50 fs) of the exact dynamics quite well. While the subsequent
dynamics within the BA generally exhibits oscillatory features that
are damped relatively slowly, cf. Fig. 5(a), the SCBA dynamics of
exciton populations and the interexciton coherence follows the cor-
responding HEOM results very reasonably. The SCBA approximates
the true exciton-population dynamics in both realistically slow
[Fig. 7(a1)] and excessively slow [Fig. 7(b1)] environments quite
well, both on subpicosecond and on somewhat longer timescales.
Meanwhile, Figs. 7(a2) and 7(b2), as well as the insets of Figs. 7(a1)
and 7(b1), suggest that the SCBA is not that good at reproducing
the true interexciton-coherence dynamics. Still, it does capture the
correct long-time behavior (the imaginary part of the interexciton
coherence tends to zero, and the real part tends to a non-zero value).
For strong interactions and at low temperatures, the subpicosecond
dynamics of exciton populations within the SCBA is quite close to

FIG. 8. Heat map of the number of steps kconv needed to achieve the convergence
of the SCBA [δΣ(k)

≤ εtol for k ≥ kconv] for different values of the reorganization
energy λph and the environment–reorganization timescale γ−1

ph .

the true dynamics, see Figs. 7(c1) and 7(d1), while some quantita-
tive differences between them appear on longer timescales (these are
more pronounced for the higher-energy exciton state). Meanwhile,
the SCBA dynamics of the interexciton coherence agrees well with
the corresponding numerically exact dynamics, especially at lower
temperatures; see Figs. 7(c2) and 7(d2) and the insets of Figs. 7(c1)
and 7(d1).

Figure 3(a) suggests that the convergence of the SCBA
slows down with increasing the reorganization energy or the
environment–reorganization timescale. This is corroborated in
Fig. 8, which shows the heat map of the number of iterations
kconv the SCBA needs to converge [δΣ(k)

≤ εtol for k ≥ kconv] for dif-
ferent values of λph and γ−1

ph . Even in the regime of strong interaction
(λph = 500 cm−1

) with slow environment (γ−1
ph = 1 ps), the conver-

gence is achieved in around 70 iterations. Interestingly, we find that
kconv remains essentially unaffected by variations in the excitonic
parameters J and Δε for fixed λph and γph. For all parameter com-
binations in Fig. 4, the SCBA converges in 10–13 iterations. The
pace of the convergence appears to be relatively weakly affected
by temperature variations; see Fig. 3(a). Figure 3(b) suggests that
this holds true even in larger aggregates interacting with structured
environments [Figs. 12(b1) and 12(b2)].

4. Overdamped phonon continuum: Self-energy
superoperator

We formulate our approximate approaches in the frequency
domain, with the self-energy (memory-kernel) superoperator as
their central quantity, and Figs. 9(a)–9(d) discuss the reflections of
the above-summarized time-domain observations on the frequency
domain. We choose the slow-environment regime analyzed in
Fig. 7(b) and concentrate on the matrix elements ⟨⟨2x2x∣Σ(ω)∣2x2x⟩⟩

and ⟨⟨1x2x∣Σ(ω)∣2x2x⟩⟩ describing, respectively, the population flux
out of the higher-energy exciton state and the population-to-
coherence transfer from that state. The results in Figs. 9(a)–9(d) are
obtained setting the artificial-broadening parameter to η = 1 cm−1,
and we have checked that varying η over the range [0.5, 5] cm−1

does not qualitatively (and to a large extent quantitatively) affect
the results presented here. Within the BA, the imaginary parts of
both self-energy matrix elements display very narrow peaks cen-
tered around the exciton energy gap (at ω = ±ΔεX), see Figs. 9(a)
and 9(c), which is compatible with the oscillatory features of the BA
in Fig. 7(b). Meanwhile, the peaks of the numerically exact profiles
are much wider, and their centers are somewhat shifted from ΔεX .
While the SCBA profiles overall reasonably reproduce the numeri-
cally exact ones in terms of both peak positions and shapes, we note
the tendency of the SCBA toward somewhat excessive peak shift-
ing and narrowing. The relative advantage of the SCBA over the
BA is the most obvious for the population-to-coherence transfer,
when the BA completely misses the peak appearing somewhat below
ΔεX in both HEOM and SCBA profiles; see Fig. 9(c).

In Figs. 9(e) and 9(f), we compare the BA and SCBA results
for the self-energy superoperator in the time domain to the cor-
responding numerically exact result. As discussed in Sec. III A,
these time-domain results do not depend on η. The general ten-
dencies observed in the exciton dynamics in Fig. 7(b) are also seen
on the level of the time-dependent memory kernel. Namely, the
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FIG. 9. (a)–(d) Frequency dependence of the imaginary [(a) and (c)] and real [(b) and (d)] parts of the matrix elements of the self-energy superoperator Σ(ω) computed
using SCBA (solid lines), BA (dashed lines), and HEOM (double dashed-dotted lines). We show matrix elements describing the population flux out of the higher-energy
exciton state ∣2x⟩ [(a) and (b)] and the population-to-coherence transfer from the higher-energy exciton state [(c) and (d)]. For visual clarity, the BA results are multiplied by
a factor of (a) and (b) 0.1 and (c) and (d) 0.05. In panels (a)–(d), we use η = 1 cm−1. (e) and (f) Time dependence of the matrix elements of the self-energy superoperator
Σ(t) computed using SCBA, BA, and HEOM. The time-domain results on the timescales shown in (e) and (f) do not depend on η; see Sec. III A. Model parameters assume
the same values as in Figs. 7(b1) and 7(b2).

BA result for the time-dependent memory kernel displays pro-
nounced weakly damped oscillatory features, while the SCBA repro-
duces the exact result reasonably well. The quantitative agreement
between the SCBA and HEOM results for the matrix element con-
nected to population-to-population transfer is somewhat better than
in the case of population-to-coherence transfer; compare Fig. 9(e)
to Fig. 9(f). We finally note that obtaining the memory-kernel
superoperator in the time domain is generally difficult.108 On the
contrary, our time-domain results are readily obtained by the
numerical Fourier transformation of the corresponding frequency-
domain self-energies.

5. A single underdamped vibrational mode
Here, using the values of J, Δε, and T summarized in Table II,

we benchmark the (SC)BA when the SD of the exciton–environment
interaction is modeled using Eq. (42). We set γ0 = 3 cm−1, cor-
responding to the relaxation timescale of γ−1

0 = 1.77 ps. Keeping
in mind that the interaction with an individual intrachromophore
mode is, in general, relatively weak (S0 ∼ 0.01, irrespective of the
vibrational frequency ω0),109 one could expect that already the BA
recovers the numerically exact exciton dynamics. Figures 10(a) and
10(b) reveal that this is indeed the case when the vibrational mode
is not resonant with the excitonic energy gap (ω0 ≠ ΔεX). The
true dynamics then exhibits weakly damped oscillations in both
exciton populations and interexciton coherence, which reflect the
relatively slow and inefficient interchromophore population transfer

discussed in the literature.110 While the BA reproduces the oscilla-
tory behavior fairly well on the timescales we focus on, the SCBA
produces an excessively fast oscillation damping and an overall
incorrect dynamics of exciton populations. One may then expect
that the general tendency of the self-consistent cycle toward the fast
equilibration of the excitonic subsystem could render the SCBA a
reliable approximation when the vibrational frequency is nearly res-
onant with the exciton-energy gap (ω0 ≈ ΔεX). At resonance, the
existing results show that the damping of the interexciton coher-
ence and the concomitant interchromophore population transfer are
particularly fast.110 Figures 11(a) and 11(b) show that the SCBA is
indeed sufficiently good at reproducing this rapid equilibration of
both exciton populations and coherences.

In the off-resonant case, the exciton populations and interexci-
ton coherence predominantly oscillate at frequencies ∣ω0 − ΔεX ∣ and
ΔεX , respectively; see the most pronounced features of the spectra
in Figs. 10(c) and 10(d). The spectra in Figs. 10(c), 10(d), 11(c), and
11(d) originate from our frequency-domain computations so that
they are broadened with the parameter η. The incorrect SCBA pop-
ulation dynamics in Fig. 10(a) is reflected on the frequency domain
as the spurious low-frequency feature in Fig. 10(c). In the reso-
nant case, the dynamics of interexciton coherence displays beats
most probably stemming from oscillations at two similar frequen-
cies; see the most intensive features in Fig. 11(d). In contrast to the
off-resonant case, the relation of the beating frequency or the fre-
quency of population oscillations in Fig. 11(c) to the inherent energy
scales of the problem (Δε, J, ω0) is not obvious. To establish such
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FIG. 10. Time dependence of (a) the population of the
lower-energy exciton state ∣1x⟩ and (b) the real part of the
interexciton coherence computed using SCBA (solid lines),
BA (dashed lines), and HEOM (double dashed-dotted
lines). (c) and (d) The real part of the Fourier transformation
of the quantities displayed in (a) and (b), respectively.
The dimer is coupled to an underdamped vibrational
mode characterized by ω0 = 213 cm−1, S0 = 0.024, and
γ0 = 3 cm−1. The vertical lines in (c) [(d)] show the
frequencies of oscillatory features in exciton-population
(interexciton-coherence) dynamics obtained using
the weak-interaction vibronic-exciton model; see
Eqs. (54)–(56).

FIG. 11. Time dependence of (a) the population of the
lower-energy exciton state ∣1x⟩ and (b) the real part of
the interexciton coherence computed using SCBA (solid
lines), BA (dashed lines), and BA (double dashed-dotted
lines). (c) and (d) The real part of the Fourier transfor-
mation of the quantities displayed in (a) and (b), respec-
tively. The dimer is coupled to an underdamped vibrational
mode characterized by ω0 = 138 cm−1, S0 = 0.023, and
γ0 = 3 cm−1. The vertical lines in (c) [(d)] show the
frequencies of oscillatory features in exciton-population
(interexciton-coherence) dynamics obtained using the
weak-interaction vibronic-exciton model; see Eqs. (52)
and (53).

a relation, we note that even the weak exciton–vibration interac-
tion can induce appreciable mixing of the vibrational and excitonic
levels and thus render the description in terms of vibronic–exciton
states more appropriate. To discuss our observations in terms of
these hybrid states, we assume, for simplicity, that the vibrational
mode is undamped, i.e., γ0 = 0. Then, the Hamiltonian is analo-
gous to the Jaynes–Cummings Hamiltonian of quantum optics.111

When S0 ≪ 1, it is sufficient to consider at most a single vibra-
tional quantum,112 and in Appendix B, we conclude that the first
two states above the lowest-lying vibronic-exciton state ∣1x, v0 = 0⟩

are linear combinations of the states ∣1x, v0 = 1⟩ and ∣2x, v0 = 0⟩. In
the nearly resonant case (ΔεX ≈ ω0), the energies corresponding to
the oscillatory features in exciton populations,

Ωres
pop ≈ ω0

√
2S0∣ sin (2θ)∣, (52)

and the interexciton coherence,

Ωres
coh,± ≈ ΔεX ± ω0

√
S0

2
∣ sin (2θ)∣, (53)
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are proportional to
√

S0 and agree reasonably well with the corre-
sponding numerically exact and SCBA results; see Figs. 11(c) and
11(d). Interestingly, the frequency of the beats in the interexciton-
coherence dynamics virtually coincides with the frequency of pop-
ulation oscillations, i.e., Ωres

pop ≈ Ωres
coh,+ −Ωres

coh,−. In the off-resonant
case ΔεX ≠ ω0, we find that the frequency of population oscillations
is shifted from ∣ΔεX − ω0∣ by an amount proportional to S0, i.e.,

Ωoff
pop − ∣ΔεX − ω0∣ ≈ S0 sin2

(2θ)
ω2

0

∣ΔεX − ω0∣
, (54)

which agrees very well with the HEOM result, and not so well with
the BA and SCBA results; see Fig. 10(c). The frequency shift of
the most pronounced component of exciton-coherence oscillations
from ΔεX is also linear in S0,

Ωoff
coh,− − ΔεX ≈ −

1
2

S0 sin2
(2θ)

ω2
0

∣ΔεX − ω0∣
, (55)

in good agreement with the HEOM and BA results in Fig. 10(d).
We mention that the much less intensive feature of the coherence-
oscillation spectrum appearing around the vibration energy is
shifted from ω0 by

Ωoff
coh,+ − ω0 ≈

1
2

S0 sin2
(2θ)

ω2
0

∣ΔεX − ω0∣
. (56)

C. Reliability of the SCBA: Seven-site model
of the FMO complex

In Figs. 12 and 13, we benchmark the SCBA and BA on the
widely studied seven-site model of the FMO complex found in
green sulfur bacteria. Detailed benchmarks of our approximations

for chromophore populations (Fig. 12) and interchromophore
coherences (Fig. 13) against numerically exact results are possible
for the OBO SD [Eq. (41)]. In Figs. 12(a1), 12(b1), 13(a1), and
13(b1), we use λph = 35 cm−1 and γ−1

ph = 50 fs (γph = 106.2 cm−1
).

To explore the viability of our methodology, we also apply it to
the model using the structured SD emerging from atomistic simu-
lations performed in Ref. 34. As we are not aware of any numerically
exact results for the dynamics modulated by this structured bath,
Figs. 12(a2), 12(b2), 13(a2), and 13(b2) compare the SCBA and BA
results. Details on the excitonic Hamiltonian HS and the structured
SD used are summarized in Appendix C.

Using the OBO SD, the BA already provides a good approx-
imation to the subpicosecond dynamics of chromophore popula-
tions [Figs. 12(a1) and 12(b1)], in agreement with the findings of
Ref. 54. Nevertheless, on a picosecond timescale, the BA overes-
timates (underestimates) populations of low-energy (high-energy)
states, and this effect becomes more pronounced with decreasing the
temperature; compare Fig. 12(a1) to Fig. 12(b1). While the SCBA
suffers from the same deficiency, its predictions for chromophore
populations are systematically closer to the numerically exact results
throughout the time window examined. At higher temperatures,
Figs. 12(a1) and 13(a1) suggest that the SCBA is better at approxi-
mating population dynamics than coherence dynamics. Meanwhile,
Figs. 12(b1) and 13(b1) suggest that the reverse is true at lower tem-
peratures. Figures 13(a1) and 13(b1) do not show BA results, which,
at all temperatures, display oscillatory features lasting much longer
than the numerically exact method predicts.

Comparing panels (a2) and (a1) [(b2) and (b1)] in Figs. 12
and 13, we conclude that our approximations deliver reasonable
results for exciton dynamics in the structured environment, as it is
overall similar to the dynamics in the featureless environment. The
problems with longer-time population dynamics of extremal-energy

FIG. 12. Comparison of SCBA (solid), BA (dashed), and
HEOM (double dashed-dotted) dynamics of BChl popula-
tions within the seven-site model of the FMO complex.
Computations are performed at T = 300 K [(a1) and (a2)]
and T = 77 K [(b1) and (b2)] using the OBO [(a1) and (b1)]
and realistic [(a2) and (b2)] SDs of the exciton–environment
interaction. As the numerically exact dynamics are not avail-
able for the realistic SD, panels (a2) and (b2) compare the
SCBA and BA dynamics.
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FIG. 13. Comparison of SCBA (solid), BA (dashed), and
HEOM (double dashed-dotted) dynamics of the interchro-
mophore coherence between BChl 3 and BChl 6 within the
seven-site model of the FMO complex. Computations are
performed at T = 300 K [(a1) and (a2)] and T = 77 K [(b1)
and (b2)] using the OBO [(a1) and (b1)] and realistic [(a2)
and (b2)] SDs of the exciton–environment interaction. In
(a1) and (b1), we omit BA dynamics for visual clarity. As the
numerically exact dynamics are not available for the real-
istic SD, panels (a2) and (b2) compare the SCBA and BA
dynamics.

states are exacerbated in the structured environment at lower tem-
peratures, when SCBA (and also BA) predicts nonphysical (greater
than 1 or negative) populations of such states; see Fig. 12(b2). A pos-
sible origin of these problems can be understood from our analysis
of the dynamics modulated by an underdamped vibrational mode;
see Sec. III B 5. There, we find that the resonance condition between
the exciton-energy gap and the vibrational energy quantum is crucial
to the success of the SCBA. Here, exciton-energy gaps fluctuate due
to low-frequency phonon modes, their fluctuations becoming more
pronounced with increasing temperature. Therefore, at higher tem-
peratures, satisfying resonance conditions between exciton-energy
gaps and weakly damped vibrational modes is more probable than
at lower temperatures. In other words, the SCBA is expected to
work better at higher temperatures. The SCBA coherence dynamics
in Figs. 13(a2) and 13(b2) is physically sensible, while the lifetime
of interchromophore coherences in the structured environment
is somewhat shorter than in the featureless environment at both
temperatures examined.

IV. SUMMARY AND OUTLOOK
We have developed and benchmarked the self-consistent Born

approximation for studying the dynamics of EET through a mul-
tichromophoric aggregate linearly interacting with a bosonic envi-
ronment. We start from the lowest-order approximation for the
memory kernel of the QME and improve it in the self-consistent
cycle based on the QME represented in the Liouville space. We find
that the SCBA reproduces the exact exciton dynamics modulated
by an overdamped phonon continuum very well, even in the gen-
erally difficult regimes of strong exciton–environment interaction,
slow environmental reorganization, and low temperature. This suc-
cess of the SCBA can be understood from the analytically tractable

example—coherence-dephasing dynamics in the pure-dephasing
model. We conclude that the reliability of the SCBA when the
dynamics is modulated by an underdamped vibrational mode leans
on the resonance between the mode frequency and the exciton-
energy gap. Nevertheless, in a structured environment comprising
both an overdamped phonon continuum and a number of under-
damped vibrational modes, the SCBA reasonably describes exciton
dynamics through the seven-site model of the FMO complex.

Importantly, our method does not introduce any assumptions
on the form of the exciton–environment SD, making it a strong
candidate for studying exciton dynamics modulated by structured
environments whose properties are extracted from experiments or
atomistic simulations. Although the method sometimes leads to
unphysical results [see, for example, Fig. 12(b2)], it can, in principle,
be improved by enlarging the set of the diagrams included in Green’s
superoperator beyond that in Fig. 2(b2). Namely, Fig. 12(b2) shows
that the onset of the unphysical behavior in the SCBA result is shifted
toward later times with respect to the BA result so that including
additional diagrams can be expected to further improve the SCBA
result. Systematic improvements are possible by performing the self-
consistent cycle starting from a higher-order approximation for the
memory kernel. The next member of the family of self-consistent
approximations thus obtained is the so-called one-crossing approx-
imation, in which the starting memory kernel is the sum of the first
two diagrams in Fig. 1(f). The final memory kernel then contains all
diagrams in which the lines representing the environmental assis-
tance cross at most once. However, the one-crossing approximation
is computationally much more demanding than the SCBA, as each
iteration involves a double integral over frequency. The practical
applicability of the one-crossing approximation is thus determined
by the balance between its computational requirements and the
improvements it offers over the SCBA.
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Remarkably, it may happen that the good results obtained in
the lowest-order Born approximation are deteriorated by includ-
ing the higher-order diagrams captured by the SCBA; see, for
example, Fig. 10(a). Such situations typically feature underdamped
(or undamped) environments, whose SDs are narrow (the corre-
sponding bath correlation functions decay very slowly). Then, we
have to recall that the perturbation series in Fig. 1(d) is actually
an asymptotic series, which in general does not converge. Never-
theless, in realistic environments, overdamped contributions may
be considered to come to rescue the convergence of the perturba-
tion series, as these effectively hide the unphysical features caused
by underdamped contributions alone.

Finally, our Liouville-space frequency-domain formulation of
the SCBA suggests that it might be used as a computationally effi-
cient and reasonably accurate approach to compute experimentally
accessible nonlinear response functions. To test such a possibil-
ity, one should generalize the present formulation so that memory
kernels in different excited-state sectors can be computed.
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APPENDIX A: COHERENCE DEPHASING
IN THE PURE-DEPHASING MODEL (OBO SD
AND HIGH-TEMPERATURE LIMIT)

We first show that the CFE of the exact Σ(ω) is given by
Eq. (45). In the high-temperature limit, the real part of the line shape
function can be approximated as86

gr
(t) =

2λphT
γ2

ph
(e−γpht

+ γpht − 1). (A1)

Inserting Eq. (A1) into Eq. (44) and performing the Fourier
transformation of the latter gives (n2 ≠ n1)

⟨⟨n2n1∣G(ω)∣n2n1⟩⟩

= eΛph
+∞
∑
k=0

(−Λph)
k

k!
1

ω − εn2n1 + iΛphγph + ikγph
, (A2)

where we introduce the dimensionless parameter Λph =
4λphT

γ2
ph

.

It is known that the zero-temperature absorption line shape
(the excitation-addition spectral function) of a two-level system
whose energy gap εeg between the ground and excited states is mod-
ulated by an undamped vibrational mode (frequency ω0 and HR
factor S0) is proportional to the negative imaginary part of the
retarded Green’s function (see, for example, Chap. 8 of Ref. 86 or
Chap. 4 of Ref. 82),

GR
(ω) = e−S0

+∞
∑
k=0

Sk
0

k!
1

ω − εeg + S0ω0 − kω0 + iη
. (A3)

The CFE of Eq. (A3) reads as99,105

GR
(ω) =

1

ω − εeg −
S0ω2

0

ω − εeg − ω0 −
2S0ω2

0

ω − εeg − 2ω0 − ⋅ ⋅ ⋅

. (A4)

The CFE of ⟨⟨n2n1∣G(ω)∣n2n1⟩⟩ is then obtained by substituting
ω − εeg → ω − εn2n1 , S0 → −Λph, and ω0 → −iγph in Eq. (A4), which
follows from comparing Eq. (A2) with Eq. (A3), and reads

⟨⟨n2n1∣G(ω)∣n2n1⟩⟩

=
1

ω − εn2n1 −
4λphT

ω − εn2n1 + iγph −
2 ⋅ 4λphT

ω − εn2n1 + 2iγph − ⋅ ⋅ ⋅

. (A5)

Keeping in mind that ⟨⟨n2n1∣Σ(ω)∣n2n1⟩⟩ = ω − εn2n1

− ⟨⟨n2n1∣G(ω)∣n2n1⟩⟩
−1, see Eq. (24), one immediately obtains

Eq. (45).
Working in the high-temperature limit, Tanimura and Kubo

obtained an expression very similar to Eq. (A5); see Appendix
B of Ref. 113. They considered a single two-level chromophore
(labeled n1) and its optical coherence, whose time evolution is
governed by e−iεn1 te−g(t).114 The numerators of their CFE feature
nonzero imaginary parts originating from gi

(t). Here, however,
we consider the interchromophore coherence between excitoni-
cally uncoupled chromophores n2 and n1 and assume that their
environments are identical and uncorrelated. In the time domain,
the coherence involves the de-excitation of chromophore n1 and
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excitation of chromophore n2 so that it evolves according to
e−iεn2 te−g(t)

[e−iεn1 te−g(t)
]
∗
= e−iεn2n1 te−2gr(t). The imaginary parts of

the line shape functions cancel out, in agreement with Eq. (44),
rendering the numerators of the CFE in Eqs. (A5) and (45) purely
real.

We now argue that the CFE of the SCBA self-energy is given by
Eq. (48). Our starting point is the BA propagator in the frequency
domain (n2 ≠ n1),

⟨⟨n2n1∣GBA(ω)∣n2n1⟩⟩ =
1

ω − εn2n1 −
4λphT

ω−εn2n1+iγph

, (A6)

which is obtained by inserting the BA self-energy [Eq. (46)] into the
Dyson equation [Eq. (24)]. The BA propagator is then inserted into
Eq. (33) to obtain the following self-energy Σ(2) in the next iteration:

⟨⟨n2n1∣Σ(2)(ω)∣n2n1⟩⟩ = ∫

+∞

−∞

dν
2π

4λphγphT
(ω − ν)2

+ γ2
ph

× ⟨⟨n2n1∣GBA(ω)∣n2n1⟩⟩. (A7)

Here, we have approximated coth ( β(ω−ν)
2 ) ≈ 2T

ω−ν . The last
integral is solved by integrating along a contour that is closed in the
upper half-plane to ensure causality. As the poles of the BA propaga-
tor are in the lower half-plane by construction, the only pole of the
integrand in the upper half-plane is at ν = ω + iγph. Evaluating the
corresponding residue, we obtain

⟨⟨n2n1∣Σ(2)(ω)∣n2n1⟩⟩ =
4λphT

ω − εn2n1 + iγph −
4λphT

ω−εn2n1+2iγph

. (A8)

Repeating the above-described procedure ad infinitum, we obtain
Eq. (48).

We end this section by presenting analytical results for the
matrix elements of Green’s superoperator that determine the
dynamics of coherence dephasing within the BA and the Red-
field theory; see Eqs. (49) and (50). Equation (A6) implies that the
BA propagator in the time domain can be expressed as

⟨⟨n2n1∣GBA(t)∣n2n1⟩⟩ = e−iεn2n1 t
∫

+∞

−∞

dΩ
2π

e−iΩt Ω + iγph

(Ω −Ω+)(Ω −Ω−)
,

(A9)

where

Ω± =
γph

2

⎡
⎢
⎢
⎢
⎢
⎣

±

¿
Á
ÁÀ

16λphT
γ2

ph
− 1 − i

⎤
⎥
⎥
⎥
⎥
⎦

≈ ±2
√

λphT − i
γph

2
(A10)

are the roots of the quadratic equation Ω2
+ iγphΩ − 4λphT = 0, of

which both lie in the lower half-plane. We use 2πT/γph ≫ 1 to
obtain Ω± in the high-temperature limit. The integral in Eq. (A9)
is solved using the contour integration with the final result,

⟨⟨n2n1∣GBA(t)∣n2n1⟩⟩ = −iθ(t)[
Ω+ + iγph

Ω+ −Ω−
e−iΩ+t

−
Ω− + iγph

Ω+ −Ω−
e−iΩ−t

]. (A11)

Retaining the contributions that are the most dominant in the high-
temperature limit 2πT/γph ≫ 1, Eq. (A11) can be further simplified
to

⟨⟨n2n1∣GBA(t)∣n2n1⟩⟩ = −iθ(t)e−iεn2n1 t cos (2
√

λphT t)e−γpht/2.
(A12)

Equation (32) implies that the Redfield propagator in the time
domain can be expressed as

⟨⟨n2n1∣GRed(t)∣n2n1⟩⟩ = e−iεn2n1 t
∫

+∞

−∞

dΩ
2π

e−iΩt

Ω + i 4λphT
γph

= −iθ(t)e−iεn2n1 t exp(−
4λphT

γph
t). (A13)

The approximation to the exact coherence-dephasing dynamics
embodied in Eq. (51) is obtained by inserting the short-time approx-
imation gr

(t) ≈ λphTt2 to the line shape function [Eq. (A1)] into
Eq. (44).

APPENDIX B: VIBRONIC-EXCITON MODEL

We consider the model dimer, Eq. (40), in which the exci-
tons interact with an undamped vibrational mode of frequency
ω0 and HR factor S0 [we set γ0 = 0 in Eq. (42)]. We assume that
S0 ≪ 1 so that the reorganization energy S0ω0 is much smaller
than all the other energy scales in the problem (Δε, J). It is known
that the center-of-mass motion of the intrachromophore vibra-
tions, described by B+ = (b1 + b2)/

√
2, does not affect the single-

exciton dynamics.109,115 The energies of the exciton states, as well
as transitions between them, are then modulated by the relative
motion of intrachromophore vibrations, which is described by
B− = (b1 − b2)/

√
2. The single-exciton dynamics is governed by the

Hamiltonian H = HX +HB− +HX−B− , where

HX =
2

∑
k=1
∣kx⟩

⎡
⎢
⎢
⎢
⎢
⎣

εkx + (−1)k cos (2θ)ω0

√
S0

2
(B†
− + B−)

⎤
⎥
⎥
⎥
⎥
⎦

⟨kx∣, (B1)

HB− = ω0B†
−B−, (B2)

HX−B− = − sin (2θ)ω0

√
S0

2
(∣2x⟩⟨1x∣ + ∣1x⟩⟨2x∣)(B†

− + B−). (B3)

The energy of the bare exciton state k = 1, 2 is εkx =
Δε
2

[1 + (−1)k
√

1 + tan2
(2θ)]. The dynamic modulation of the

exciton energy can be taken into account exactly by transferring to
the polaron frame, H̃ = UHU†, using the polaron transformation,

U =
2

∑
k=1
∣kx⟩⟨kx∣e(−1)kSθ , Sθ = cos (2θ)

√
S0

2
(B†
− − B−). (B4)

The bare exciton energies εkx are then shifted to ε̃kx = εkx

− S0ω0
2 cos2

(2θ), while the eigenstates ∣kx, v0⟩ of the transformed
Hamiltonian H̃X + H̃B− are enumerated by the exciton number
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k and the number v0 = 0, 1, . . . of excited vibrational quanta. In more
detail,

∣kx, v0⟩ = ∣kx⟩
(B†
−)

v0

√
v0!
∣∅⟩, ε̃k,v0 = εkx −

S0ω0

2
cos2
(2θ) + v0ω0.

(B5)
As we assume that S0 ≪ 1, the leading contribution (proportional to√

S0) to the transformed interaction term H̃X−B− in powers of S0 is
identical to HX−B− . To proceed further, we additionally perform the
rotating-wave approximation, which amounts to

H̃X−B− ≈ −ω0

√
S0

2
(∣2x⟩⟨1x∣B− + ∣1x⟩⟨2x∣B†

−). (B6)

We now limit ourselves to the subspace containing at most a sin-
gle vibrational excitation, where we find that H̃X−B− mixes the states
∣1x, v0 = 1⟩ and ∣2x, v0 = 0⟩. In the resonant case ω0 ≈ ΔεX , these
two states are nearly degenerate, and H̃X−B− lifts this degeneracy.
While there is no degeneracy in the off-resonant case ω0 ≠ ΔεX ,
the vibronic mixing still affects the energy difference between these
two states. The energies of vibronically mixed states measured with
respect to the energy of the lowest-lying state ∣1x, v0 = 0⟩ then read
as

Ev0=1,± − Ev0=0 =
1
2
[ΔεX + ω0 ±

√

(ΔεX − ω0)
2
+ 2S0ω2

0 sin2
(2θ)].

(B7)
The exciton populations then exhibit oscillatory features of fre-
quency,

Ωpop = Ev0=1,+ − Ev0=1,− =
√

(ΔεX − ω0)
2
+ 2S0ω2

0 sin2
(2θ), (B8)

while the oscillations in interexciton coherence have the frequencies

Ωcoh,± = Ev0=1,± − Ev0=0. (B9)

In the nearly resonant case (ΔεX − ω0 ≈ 0), the frequencies of oscil-
latory features in exciton-population and interexciton-coherence
dynamics are given by Eqs. (52) and (53), respectively. To be con-
sistent with the simplifications made up to now, our considerations
in the off-resonant case have to keep only the lowest-order term in
small S0 so that

Ωoff
pop ≈ ∣ΔεX − ω0∣[1 + S0 sin2

(2θ)
ω2

0

(ΔεX − ω0)
2 ], (B10)

Ωoff
coh,± =

1
2
[ΔεX + ω0 ± ∣ΔεX − ω0∣ ± S0 sin2

(2θ)
ω2

0

∣ΔεX − ω0∣
]. (B11)

Equations (54)–(56) are then readily obtained from Eqs. (B10) and
(B11).

APPENDIX C: COMPUTATIONS ON THE SEVEN-SITE
MODEL OF THE FMO COMPLEX

The excitonic Hamiltonian HS is taken from Ref. 116, and the
values of interchromophore couplings and average chromophore
energies are summarized in Table III.

We take the structured SD of the exciton–environment inter-
action from the spreadsheet jz6b01440_si_002.xlsx appearing

TABLE III. Interchromophore couplings and average chromophore energies (in cm−1)
within the seven-site model of the FMO complex considered in Ref. 116. We subtract
the energy of the lowest-lying BChl3 (12 210 cm−1

) from the diagonal entries.

BChl 1 2 3 4 5 6 7

1 200 −87.7 5.5 −5.9 6.7 −13.7 −9.9
2 320 30.8 8.2 0.7 11.8 4.3
3 0 −53.5 −2.2 −9.6 6.0
4 110 −70.7 −17.0 −63.3
5 270 81.1 −1.3
6 420 39.7
7 230

in the supplementary material of Ref. 34. More specifically, we use
the data from the sheet PBE0-FMO_subunitA-J, which reports
the total SD (comprising both the interchromophore and intra-
chromophore contributions) for individual BChls in one of the
FMO subunits. In our computations, we assume that the SDs for
all BChls are identical and thus use the arithmetic average of the
SD data for BChl1, . . ., BChl7. The SD thus obtained is plot-
ted in Fig. 14. The frequency grid is equidistant, with spacing
Δω = 0.53 cm−1, which we find sufficiently fine for the numerical
integration of Eq. (33) using the ordinary trapezoidal rule. The SD is
Ohmic, and we obtain its linear behavior around ω = 0 by fitting
the points (0, 0), (Δω, J (Δω)), . . . , (5Δω, J (5Δω)) to a straight
line. As the SD is available up to ωavail = 2650.8 cm−1, our numer-
ical computations use ωmax = 2ωavail and assume J (ω) = 0 for
ωavail < ω < ωmax.

While we take the excitonic and the exciton–environment
interaction parameters from different studies and different (seven-
site116 and eight-site34) FMO models, we emphasize that our main
goal is to examine the applicability of our approximate methods to
a relatively realistic model of a multichromophoric complex. The
results in Figs. 12 and 13 indeed suggest that our approximate
methods can provide decent results on exciton dynamics in realistic
models.

FIG. 14. Spectral density of the exciton–environment interaction used to obtain
the results presented in Figs. 12 and 13. The SD is extracted from the data
accompanying Ref. 34.
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