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Merons in a finite quantum Hall system

M. V. Milovanović
Institute of Physics, P.O. Box 56, 11001 Belgrade, Yugoslavia

~Received 13 December 2002; published 27 May 2003!

We study quasiparticle states in a finiten51 spin~as an additional degree of freedom! quantum Hall system.
The skyrmion~topological! quasiparticle states are well established in the infinite system, but in finite systems,
in the effective mean-field pictures that we have, as a rule, they are not eigenstates of hamiltonian and some
other generators of the system symmetries. We present a class of states, which are eigenstates of certain
combinations of the generators and are similar in structure to the orbital angular momentum eigenstates of the
Laughlin quasihole in the same system. We refer to the states as states of a meron. They have an upper limit
on the mean orbital angular momentum, and the limit defines an effective edge, at a distance less than the
system radius, in an effective quasiparticle description of the meron. Remarkably, the meron edge~as the usual
quasihole edge! is characterized by a power-law decay of the single-particle, static correlator defined between
positional coherent states of the meron.

DOI: 10.1103/PhysRevB.67.205321 PACS number~s!: 73.43.2f
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I. INTRODUCTION

Merons appear in the description ofn51 ~Ref. 1! spin ~as
an additional degree of freedom! andn51 ~Refs. 2,3! bilayer
~pseudospin! quantum Hall effect~QHE!. In the former case
they are the constituents in the form of a meron pair of
elementary skyrmion excitation. As soon as we have a s
mion excitation, there are two merons that can be recogn
by a SU~2! transformation~see below! on the skyrmion wave
function. In the bilayer case the merons also come in
form of bound pairs, distorted and less entangled than in
SU~2! case2–5 which can be released at some finite tempe
ture of the Kosterlitz-Thouless transition.6

A skyrmion ~variational! wave function in the spin QHE
can be modeled2 as

Cs~w!5)
i 51

N Fzi2w

l
G)

i , j
~zi2zj !, ~1!

wherew andl are complex parameters, the filling factor
n51, and$zi ; i 51, . . . ,N% denote electron two-dimensiona
~2D! coordinates. For simplicity, we suppressed the Gaus
factors. The center of the skyrmion is atw, andl is a pa-
rameter that determines the size of the skyrmion, the dista
when Sz component of the electron spin starts to point
rather than down~as it does if we are at smaller distanc
near the center!. A SU~2! transformation of the form

1

A2
F1 1

1 21G ~2!

can be done on each spinor to obtain the following wa
function:

C2m~w!5)
i 51

N Fzi2w1

zi2w2
G)

i , j
~zi2zj ! ~3!

that describes two merons at positionsw1 andw2. Namely,
as w1→w2 we get a Laughlin quasihole, so that each co
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stituent in Eq.~3! carry half of the unit of charge and can b
ascribed to half of the unit flux.

At this stage, we may ask whether the meron represe
tion @Eq. ~3!# is in any sense superfluous for the effecti
quasiparticle description of the system. Indeed anyn skyr-
mion ~variational! wave function,7 studied in the infinite sys-
tem, can be, similar to the single skyrmion case above, tra
formed by the application of the same SU~2! transformation
@Eq. ~2!# into a 2n meron wave function

Cm~w1 , . . . ,wn ;v1 , . . . ,vn!

5)
i 51

N F ~zi2w1!•••~zi2wn!

~zi2v1!•••~zi2vn!
G)

i , j
~zi2zj !, ~4!

with appropriatew and v variables, and vice versa. If th
constructions are relevant and appropriate in the finite s
tem, we can claim the same equivalence there. Neverthe
we will argue that in the finite system, with no Zeeman co
pling, some of the states of the form given in Eq.~3! can be
interpreted, approximately, as characteristic quasipart
states of the system, and that their representation is m
transparent and convenient. We will call the associated q
siparticles as merons, although due to the strong entan
ment inside the pair in the state, Eq.~3!, it is hard to apply a
particle picture with definite charge and finite extent of t
excitation.

Thus, we will be considering coherent states, states
describe quasiparticles of the system localized or cente
around a single point, which we usually denote by the le
w. These may be hamiltonian eigenstates in the infinite s
tem like the Laughlin construction of the Laughlin quasiho
in the n51/m, m odd case, but usually, almost as a rule,
the finite system these are not. In the Laughlin case, in
finite rotationally symmetric system, there are the quasip
ticle orbital angular momentum eigenstates instead, wh
are simultaneously~or very nearly! hamiltonian eigenstates
In the case of the spin QHE and the underlying skyrm
quasiparticle, this description in the finite system has
been achieved. Although the skyrmion excitations are firm
©2003 The American Physical Society21-1
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experimentally,8 and theoretically1,9,10established in the bulk
of the large thermodynamic systems; in the theoretical s
ies of large but finite systems, we only approximately mo
quasiparticle states~coherent or other! because they are no
the eigenstates of hamiltonian and some other generato
the system symmetries.11,12

A classification of the elementary particle-hole eigensta
in the case of the spin quantum Hall droplet was done in R
11, where a connection~see Appendix A! between these an
some of the coherent states was established. The coh
states reside in the center and have the skyrmion interp
tion. In Appendix B, we classify all rotationally symmetr
states~found in Ref. 11! on the droplet which are made b
the same procedure as the skyrmion coherent states. Som
them are encircling the edge with yet no clear quasipart
interpretation. The question we raise is what are the cohe
states away from the central region? In other words we w
to address the question how topological excitations, wh
are firmly established in the infinite system or in the bulk
large systems, are described~at least in mean field, effec
tively! as they near the boundary. In Sec. II we propose
case for the meron states to be appropriate, candidate q
particle states for the edge region. In the same section
establish a characteristic distance from the center of
droplet at which, in fact, further onto the edge, even
merons, described effectively as quasiparticles, do not e
We may consider this distance as a definition for a me
edge~just as the radius of the system defines the edge of
Laughlin quasihole!. In Sec. III using the ansatz wave fun
tion, Eq.~3!, we calculate, analytically, static correlations
a single meron along the newly defined edge~keeping the
other at the center of the system!. Section IV is devoted to
discussion and conclusions.

II. MERON AND THE EDGE EXCITATIONS

Let us consider the construction, Eq.~3!, of two merons,
where we place one meron with a coordinatew2 in the center
of the disk (w250) and denotew1 asw,

C~w!5)
i 51

N Fzi2w

zi
G)

i , j
~zi2zj !. ~5!

We want to decompose the excitation into a series simila
the well-known decomposition of the Laughlin quasihole,

CL~w!5)
i 51

N Fzi2w

0 G)
i , j

~zi2zj !

5H F2w

0 GN

1(
i 51

N Fzi

0 GF2w

0 GN21

1•••1Fz1

0 G•••FzN

0 G J)
i , j

~zi2zj !, ~6!

in the completely polarized case.13 The coefficients ofz’s in
the series are the elementary symmetric polynomials, and
decomposition, Eq.~6!, can be considered as the one ov
eigenstates,wn, of the hole orbital angular momentum. Th
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larger then, the closer to the edge the hole is. The electro
wave function, in which the Laughlin part is multiplied wit
the symmetric polynomial of degreen, describes the eigen
state of this hole.

In the case of the wave function given in Eq.~5!, we have

C~w!5H)
i 51

N F2w

zi
G1(

i 51

N Fzi

0 G )
kÞ i ,51

N F2w

zk
G1•••

1Fz1

0 G•••FzN

0 G J)
i , j

~zi2zj !. ~7!

The first term is of the form of the so-called edge spin te
ture,

C tex~d!5)
i 51

N F 1

d

A2
zi
G)

i , j
~zi2zj !, ~8!

found in Ref. 11, see also Ref. 14, whered, a complex pa-
rameter, is equal tod52A2(1/w) in our case. In Appendix
A we show11 that Eq.~8! is a mean-field~BCS! construction
of the condensation of the system eigenstates, particle-
~exciton! pairs of opposite spin. In Appendix B we classi
all rotationally symmetric~excited! states of the Laughlin
disk, made by the Hartree-Fock ansatz, and find the stat
Eq. ~8! on the edge, and the skyrmion coherent states at
center of the disk. Only the latter have clear topological q
siparticle interpretation.

Thus an edge state@Eq. ~8!# ~centered not in a point bu
around the edge! enters the description of a coherent state
the meron with coordinatew in Eq. ~5!. As uwu→R* —radius
characteristic for the excitation~8! in the expansion~7!, to be
calculated below—the meron description reduces, in the
approximation, to the edge state with a complex bound
spin structure and bulk polarization that approaches the
of the ground state~all spins up!.

In the case of a single Laughlin quasihole@Eq. ~6!#,
the largest radius that the quasihole takes in the exp
sion is given by the radius of the state with the largest an
lar momentum@0

2w#N. The radius isr o5A2(N11)'A2N
'R—radius of the system. In the Laughlin case, we c
generate13 edge excitations~in the form of multiples of sym-
metric polynomials! by placing and expanding cohere
states of Laughlin quasiholes near the edge. The states

CL~w1 , . . . ,wn!5)
i 51

N F ~zi2w1!•••~zi2wn!

0 G)
i , j

~zi2zj !,

~9!

wheren ~number of quasiholes! 5 1,2, . . . , anduwi u→R,
i 51, . . . ,n. By an analogy, for the present system, besid
these constructions~multiplication by symmetric polynomi-
als!, we would expect that nontrivial edge constructions c
be expressed through coherent states of merons,
1-2
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C~w1 , . . . ,wm!5)
i 51

N F ~zi2w1!•••~zi2wm!

zi
m G)

i , j
~zi2zj !,

~10!

which define various sectors of the~edge! theory for fixed
positive integersm. ~The reason we select these states is a
because their polarization in the center~bulk! is of the
ground state.! The question immediately raised is whether
this case alsouwi u;R,i 51, . . . ,m, because merons are e
tended objects and the notion that they are right at the sys
boundary is not well defined. Indeed, we should look m
carefully into the single~pair! meron case@Eqs.~5! and~7!#.

We can view Eq.~7! as an expansion over unnormalize
states of a meron~which by themselves are superpositions
the orbital angular momentum eigenstates!. A representation
of the absolute square of a normalized meron state sole
the variablew can be obtained by tracing outz variables in
the absolute square of the corresponding state in the ex
sion, and dividing by the trace inw and z variables of the
same square. Similarly we can get the averaged~mean! or-
bital angular momentum for the state in the expansion
sandwichingwd/dw by the same state, tracing out bothz and
w variables, performing the sum, and dividing the sandw
by the same trace and the sum of the square~only! of the
state. In this way we can get that for the first state in
expansion, the mean orbital angular momentum isN/2, so
the effective radius of the meron isR* 'AN'R/A2. This is
a considerable distance away from the usually defined e
region. Therefore, we have a different type of edge of diff
ent radius for the single excitation meron. Thus we sho
have cautiously called the first term in the expansion, Eq.~7!,
the edge state, although indeed it has the form~and underly-
ing construction! of the state@Eq. ~8!# so called in the
reference.11

The states in the expansion, Eq.~7!, orthogonal with re-
spect to the scalar product defined above, are not eigens
of the hamiltonian; they are the eigenstates of the combi
symmetry generators,Lm

z 5M1mSz2(m/2)N, (m51)
where M is the orbital angular momentum andSz is the z
projection of the spin of the system. The eigenvalues
Mo1k, k50,1,2, . . . , whereMo is the~orbital! angular mo-
mentum of then51 polarized ground state. It is easy
generalize these considerations tom561,62, . . . cases,
where we also consider antimeron~see Appendix B! con-
structions, and it is interesting to note that similar combin
tions of the generators as symmetries are characteristic
skyrmion costructions on a sphere,10 and in the center of a
droplet @see Eq.~1! with w50]. The high symmetry of the
states singles them and corresponding coherent s
„generators@Eq. ~10!#… out as, maybe, the most we can get
the search for an effective, mean-field quasiparticle pict
of the system near the boundary.

At this point, we want to emphasize our line of reasonin
We begin with a reasonable meron coherent state@Eq. ~5!#,
and then expand it mimicking the Laughlin quasihole exp
sion @Eq. ~6!#. Explicitly, we see that it is not an expansio
over the orbital momentum eigenstates of a single free
ticle in the lowest Landau level. Therefore, we do not d
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with a well-defined particle. Nevertheless, we want to s
what as a description comes out, if we approximate a
model the expansion in the form@similar to the Laughlin
quasihole expansion~6!#

C~w!;(
k

wm(k)Ck~z1 , . . . ,zN!, ~11!

whereCk’s are electronic wave functions~that include the
description of spin!. ~Therefore, we enforce a particle inte
pretation.! Each term in the expansion approximates a st
in the expansion~7! by a state of meron mean angular m
mentumm(k) ~given above in thek50 case!, and an elec-
tronic wave function that does not depend onw. A way to
obtain the function in thek50 case will be shown below an
other functions can be obtained similarly.

We modelCk50 as the edge spin texture in Eq.~8! with
parameterc5A2/d ~which is not a variable such asw) de-
manding that the mean value ofSz ~or the orbital angular
momentum! in the state of Eq.~7! corresponding tok50 is
equal to the spin~or orbital angular momentum! in a state
which we get from the same state by substituting variablew
with the constantc. In this way we find that̂Sz&uk5050 and
ucu25N5(R* )2 ~for a largeN). We should not be surprise
by the zero of spin; in our work we do not introduce Zeem
energy as a cutoff for the extent of possible excitations.

Similarly, we can get other functions,Ck’s, and corre-
spondingm(k)’s in the expansion~11!. For the second term
in the expansionm(k51)5N/3 ~for a largeN) and the cor-
responding mean radius isR/A3. Therefore we are getting
discrete series,R(1/A2,1/A3, . . . ), for themean radii of the
wave functions in the expansion~7! @or Eq.~11!#. We should
not take the discrete mean radius~and angular momentum!
series too seriously because the mean values are far
being sharply defined, and the distribution in question~over
the angular momentum states!, for example, for the first state
is uniform. Nevertheless, the beginning of the series ma
an unusual behavior for a quasiparticle correlator in the b
as we will see in the following section.

We may easily construct operators that act on the fi
state in the expansion~7! and give the states further on in th
expansion. These are multiplets of

r15(
i 51

N F0 1

0 0G , ~12!

and its inverse operator is

r215(
i 51

N F 2
w

zi
2

w2

zi
2

1
w

zi

G . ~13!

Their commutator is

@r21 ,r1#5(
i 51

N F 21 22
w

zi

0 1
G . ~14!
1-3
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M. V. MILOVANOVIĆ PHYSICAL REVIEW B 67, 205321 ~2003!
For a largeN, the right-hand side operator is the identi
times N in the subspace of the first, low-lying states in t
expansion andr21 annihilates the first state. Therefore, w
have a single simple harmonic oscillator algebra for th
states of the meron~pair!. Similarly, we can construct the
same algebra for the states at the other end of the expan

III. STATIC CORRELATIONS OF A MERON

We consider the construction~5! of two merons, where
one meron is at the center of the disk. The wave function
will use is

Cg~w!5)
i 51

N Fzi2w

gzi
G)

i , j
~zi2zj !, ~15!

where we introduced a~real! parameterg which we will set
to 1 at the end of calculation.

It is instructive to first do the calculation in the case o
single Laughlin quasihole, which is simply a hole at the fi
ing n51. In both the cases, we first calculate the norm of
excitation at pointw and then by the way of analytical con
tinuation to w̄→w̄15r and w→w25r exp$ix/r%, where r
5R, the radius of the system in the Laughlin case, anr
5R* in the meron case, find the correlator at distancex.15

The Laughlin quasihole can be written as

CL.qh.~w!5)
i 51

N

~zi2w!Cv , ~16!

where, in the case of filling factorn51,

Cv5)
i , j

~zi2zj ! ~17!

is the Vandermonde determinant. Its norm is easy to ca
late,

E E Cv* Cvdz1•••dzN

5(
s

E E uzs(1)u2(N21)
•••uzs(N)u0

5N! E E uz1u2(N21)uz2u2(N22)
•••uzNu0 ~18!

~where we, for simplicity, dropped the signs of differential!.
What we learned in this simple exercise is that only nonz
contribution to the integral comes from the equal powers
z* andz for a given coordinate. We may expand Eq.~16! as

CL.qh.~w!5$~2w!N1s1~2w!N21

1s2~2w!N221•••sN%Cv , ~19!

where$sn ;n51, . . . ,N% are elementary symmetric polyno
mials, i.e.,

sn5 (
^ i 1••• i n&

zi 1
•••zi n

, ~20!
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where sum goes over all possible multiplets ofn z’s. Then, to
calculate the norm, we may consider

snCv5S (
^ i 1 , . . . ,i n&

zi 1
•••zi nD

3S (
s

sgnszs(1)
N21zs(2)

N22
•••zs(N)

0 D , ~21!

which, after some insight, can be reduced to

snCv5(
s

sgnszs(1)
N zs(2)

N21
•••zs(n)

N2n11~1!zs(n11)
N2n21

•••zs(N)
0 .

~22!

~Here 1 stands for the empty orbitN2n.! Therefore, if we
consider norm

NL.qh.5E E CL.qh.* CL.qh.dz1•••dzN

5(
n,m

E E sn* smCv* Cvdz1•••dzN~2w!N2n

~2w!N2m

5(
n
E E usnu2uCvu2dz1•••dzNu2wu2(N2n) ~23!

and takeNm to denote

Nm5E Cm* ~z!Cm~z!dz, ~24!

where

Cm~z!5zme21/4uzu2, ~25!

we have that

NL.qh.; (
n50

N uwu2(N2n)

NN2n
5 (

n50

N
1

2N2n11p~N2n!!
uwu2(N2n).

~26!

~As a conclusion, in the thermodynamic limit,

NL.qh.;e1uwu2/2, ~27!

which is a well-known result.! In the finite-size system, we
may rewrite

NL.qh.;(
k50

N
1

k!2k
uwu2k, ~28!

and consider two points on the edge of the disk:w1* 5R, and
w25Reix/R, to which we can analytically continueuwu2 as
uwu2→w1* w2. Then, if we approximate that the most impo
tant contribution comes fromk;N, we have

k!;A2pkk11/2e2k;A2pNk11/2e2N. ~29!

On the other hand, the averaged square of distance is equ
2(m11). Therefore, square of the radius of the disk is p
1-4
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portional to 2N. All these things together give fo
f (x)—static one-particle correlator of a Laughlin quasiho
along the edge,

f ~x!;(
k50

N
1

k!2k
R2keik x/R'

1

A2pNe2N (
k5NL

N

eikx/R,

~30!

which is proportional to nothing, but the correlator of o
electron in the one-dimensional Fermi liquid theory with t
Fermi momentum is propotional toN2NL . When R/(N
2NL)!x!R,

f ~x!;
1

12eix/R
;

1

sinx/2R
;

1

x
. ~31!

On the other hand, to accomplish an analysis of the c
relations in the case of the meron excitation~15!, we might
consider, in the beginning, that

)
i 51

N

uzi2wu25)
i 51

N

~ uzi u22w* zi2wzi* 1uwu2! ~32!

can be symbollically expressed as a polynomial in the
lowing way:

(
a1b1c1d5N

N!

a!b!c!d!
$uzi u2%a$2w* zi%

b$2wzi* %c$uwu2%d.

~33!

Here each multiple comes from a different term~particle! i in
the product~32!. We learned from Eq.~23! that in the inte-
gration of

(
n,m

sn* smCv* Cv~2w* !n~2w!m, ~34!

effectively, we were calculating overlaps between the sa
permutations inCv* andCv . To introduce nonzero overlaps
terms underb and c in Eq. ~33! have to mix the permuta
tions, which are different, and, therefore, in the final calc
lation their contribution does not appear.

In the case of the excitation~15!, parallel to Eq.~32!, we
have

)
i 51

N

~ uzi2wu21g2uzu2!5)
i 51

N

~11g2!H uzi u22
w*

~11g2!
zi

2
w

~11g2!
zi* 1

uwu2

~11g2!
J . ~35!

Further on we will neglect (11g2) in front of the curly
brackets. Let us consider the expansion of the norm of
~15! in the powers ofuwu2. We consider the most importan
terms for the physics of the edge that are of the or
;uwu2N. The highest power contribution to the norm is

uwu2N

~11g2!N
T0

N0

NN
, ~36!
20532
r-

l-

e

-
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where

T05N! )
n51

N

Nn ~37!

~the norm of the Laughlin quasihole that resides in the cen
of the disk!. The contribution, Eq.~36!, when g50 is the
same as in the Laughlin case, and is the result of the m
plication of uwu2 in Eq. ~32!, or ~the term underd) in Eq.
~33!.

Now, let us consider the contribution of the order
uwu2N22. The contributing terms from Eq.~33! are of the
form uwu2N22uzi u2 where uzi u2, can be from the crosse
terms, underb andc, or solely from undera. The contribu-
tions that we get from the latter case are

N!
uwu2N22

~11g2!N21
NNNN22•••N05

uwu2N

~11g2!N21
T0

N0

NN21
,

~38!

which is equal to the contribution in the Laughlin case wh
g50, and

N!
uwu2N22

~11g2!N21 (
k50

N22

Nk11 )
i 50,Þk

N21

Ni

5
uwu2N22

~11g2!N21
T0

N0

NN
(
k50

N22 Nk11

Nk
, ~39!

which, in the Laughlin (g50) case, is canceled by the con
tribution that we get from the terms underb andc, crossed
terms in the Eq.~33!. ~This follows from the above analysi
of the Laughlin case.! Therefore, to orderuwu2N22, we have

T0

uwu2N22

~11g2!N

N0

NN
H 11

1

uwu2

3@~11g2!~2N12S!22S#1•••J , ~40!

where

S5 (
k51

N21

k5
~N21!~N22!

2
. ~41!

This contribution in the large-N limit has the following ex-
pression in the curly brackets of Eq.~40!:

11
g2N2

uwu2
1•••. ~42!

It is important to note in Eq.~40! that the contribution from
the crossed terms is of the order of (11g2) smaller ~for
largeg) than from the terms undera in Eq. ~33!.

Due to the complexity of the algebra, next we will on
consider contributions of the order of 1/(11g2)N22, g being
large, for the fixed (2N24)th power ofuwu. ~Here underly-
ing assumption is that the neglected terms are of the s
order inN as retained ones. We will address this question
1-5
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the neglected contributions below.! Similar to Eqs.~36! and
~38!, we have the contribution

uwu2N24

~11g2!N22
T0

N0

NN22
, ~43!

and, to that order also,

uwu2N24

~11g2!N22

1

2!
T0

N0

NN
(

l ,k50(lÞk)

N22 Nl 11

Nl

Nk11

Nk

1
uwu2N24

~11g2!N22

1

2!
T0

N0

NN21
(

m50

N23 Nm11

Nm
2!, ~44!

the terms that come solely from the multiplication ofuzi u2
undera in Eq. ~33!. In the large-N limit, the first term in Eq.
~44! is dominant with respect to the second term and the
in Eq. ~43!. After the limit, the expansion in Eq.~42!, with
this new contribution, becomes

11
g2N2

uwu2
1

1

2!

g4N4

uwu4
1•••, ~45!

where we approximated 11g2 with g2. Taking, further, only
dominant contributions inN, we can obtain a close expre
sion for Eq.~45!,

(
n50

N
1

n! S gN

uwu D
2n

, ~46!

which after the same analytical continuation as in the Lau
lin case and taking w̄→w̄15R* and w→w2
5R* exp$ix/R* %, whereR* 2'N, gives

(
n50

N
1

n!
@g2Ne2 ix/R* #n. ~47!

The question that arises is whether we can continue
result to other, smaller values ofg including g51. We be-
lieve that we can claim and substantiate the same with
following.

We consider again the contribution to the norm of t
excitation ~15! of the order of uwu2N24/(11g2)N22. The
contribution without the one in Eq.~43! ~the Laughlin case
only contribution wheng50) can be cast into the following
form:

uwu2N24

~11g2!N22
@~11g2!2r 2~11g2!p1q#, ~48!

where r ,p, andq are positive numbers. The term withr is
equal to the contribution given by Eq.~44!. The terms withp
andq come from the crossed terms in Eq.~33!, which con-
nect permutations with one and two exchanges, respectiv
~The minus sign in front ofp term stems from the overlap o
permutations that differ for one exchange.! As we already
emphasized, the contribution~48! should vanish asg ap-
proaches zero. We were able to check this by simply cou
20532
e

-

is

e

ly.

t-

ing the number of terms~single overlaps! that go intor ,p,
andq, proving that the numbers satisfy

Kr2Kp1Kq50 ~49!

in the large-N limit. The numbers we found are

Kr5S N

2 DN!, ~50!

Kp5S N

3 D S 3

2D 2~N21!!, ~51!

and

Kq5S N

4 D S 4

2D 2~N24!! ~N21!~N23!, ~52!

which in the largeN-limit give

lim
N→`

Kr

Kp
5 lim

N→`

Kq

Kp
5

1

2
. ~53!

Therefore we may conclude that in the same limit,p52r ,
q5r , and the Eq.~48! becomes

uwu2N24

~11g2!N22
~g2!2r , ~54!

which supports our conjecture, to the given order, that
expansion for an arbitraryg can be brought to the form in
Eq. ~45! or ~46!.

Similar to the Eq.~30! ~in the Laughlin case! the sum in
Eq. ~47! can be approximated, and, as a result, we get
the static correlator along the radiusR* , of the excitation in
Eq. ~15! is propotional to

;
1

12g2eix/R* . ~55!

This implies, approximately, that in the meron case,g51,
the correlator behaves as

f m~x!;
1

x
~56!

~in the long-wavelength limit!. It is interesting to note tha
the main contribution to the correlator was coming from t
angular momentum states near the center where the o
meron is placed. This is quite opposite to the case of
Laughlin quasihole@Eqs.~28! and~30!#, and points out to the
strong entanglement of the two merons.

IV. DISCUSSION AND CONCLUSIONS

To conclude, in order to understand and construct po
tional coherent states of the topological excitations aw
from the central region of then51 large quantum Hall drop-
let ~at least in the case of zero Zeeman coupling!, we studied
the meron coherent state, given by Eq.~3!, when one meron
in the pair (w1 ,w2) is kept at the center. It turned out that th
1-6
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state may serve as a generator of states of high rotati
symmetry, which can be classified by positive integers~ei-
genvalues of the symmetry generators! just like the states in
the expansion of a Laughlin quasihole with orbital angu
momentum eigenvalues. Then we considered an effec
~approximative! expansion of the meron pair, where ea
term was modeled as an orbital momentum eigenstate
its mean orbital angular momentum as eigenvalue. Th
fore, we effectively introduced mean radii around which t
meron states are spread. In this way we found the maxim
radius of the farthest meron state,R* , at a distance consid
erably less than the radius of the system. Remarkably,
distance marks the usual edge behavior characterized
power-law decay of the single-quasiparticle, meron sta
correlator.

The exponent of the decay does not correspond to the
equal to1

4 , of the correlator in the case of one Abelian qu
siparticle, associated with the half of the unit of charge a
the half of the unit of flux. We do not think that we have
case for the non-Abelian statistics,16 rather we may note tha
there is a strong entanglement between merons in the
and also, the status of the quasiparticles in the finite sys
is far from being clear. Nevertheless, as with the correla
the radiusR* might mark an unusual behavior for the tu
neling into the bulk of the system at zero Zeeman coupli
The existence of the radius away from the real edge, in
effective quasiparticle picture, might also suggest that to
logical excitations do not contribute to the transport alo
the edge, and the transfer of charge and quantization of
Hall current in the edge region are ensured by the Laug
~quasi! holes only.
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APPENDIX A

The exciton superposition,

S1
†5(

m
Am11cm11,↓

† cm,↑ , ~A1!

with all well defined~commuting! quantum numbers,11 and
obviously edge excitation because of the weight;Am11
~which grows as we are approaching the edge!, can be used
to describe a BCS condensate:

uC tex~d!&5 (
n50

N22
dn

n!
~S1

†!nuCN&, ~A2!

whereuCN& is the incompressible condensate~the filled low-
est Landau level! at n51.

The fact that Eq.~A2! leads to Eq.~8! can be proved by
taking the thermodynamic limit (N→`) when
20532
al
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ve

th
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m
r,

.
e
-

g
he
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-
I

uC tex~d!&5exp$dS1
†%uCN&

5)
j 50

`

exp$dAj 11cj 11,↓
† cj ,↑%uCN&

5)
j 50

`

$11dAj 11cj 11,↓
† cj ,↑%uCN&

5)
j 50

`

$cj ,↑
† 1dAj 11cj 11,↓

† %u0&, ~A3!

where u0& is vacuum. In the spinor language, we have t
following Slater determinant of single-particle states:

F F j

dAj 11F j 11
G5F F j

d

A2
zF j

G5F 1

d

A2
zGF j , ~A4!

where

F j5
zj

A2 j 11p j !
~A5!

is a single-particle, normalized wave function in the lowe
Landau level. Therefore, we can prove that the BCS sup
position of particle-hole pairs leads to the edge spin-text
~8!.

APPENDIX B

In this Appendix we review known constructions of th
excited states, made in the form of Slater determinants
single-particle states, from a unifying point of view.

As a way of relieving of, for example, the double occ
pancy of electrons at the center of the disk~in the case of the
Laughlin quasiparticle excitation! we might consider the fol-
lowing superpositions of the single-electron states:

~cm↑
† 1acm11↓

† ! ~B1!

for eachm. In the single-particle spinor language, we hav

S Fm

aFm11
D . ~B2!

Here Fm’s are defined in Eq.~A5! and a is an arbitrary
complex number. Now we take the Hartree-Fock ansatz,
ensuring that the final state can be cast into the Slater de
minant of single-particle states. We have as a possibility
Eq. ~B2! in the form

S Fm

a
z

A~m11!2
Fm

D , ~B3!

where we chosea;A(m11 to get an edge~hole! excitation,
or

S A2

A~m11!
]zFm11

aFm11

D , ~B4!
1-7
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where we chosea;1/Am11 to get a bulk~particle- skyr-
mion! excitation ~in the center of the disk!. Taking another
superposition,

~cm↑
† 1bcm21↓

† !, ~B5!

for m.0, similarly we can get an edge~particle! excitation
ys

.

.

o

20532
and a bulk~hole, antiskyrmion! excitation ~in the center of
the disk! @Eq. ~1!#.

The excitations that we found are rotationally symmet
and reside either in the center of the disk or on the e
uniformly extended. The question arises what~coherent!
quasiparticle state, beside Laughlin quasihole, we have
between, or away from the central region.
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