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We study quasiparticle states in a finite 1 spin(as an additional degree of freedpquantum Hall system.
The skyrmion(topologica) quasiparticle states are well established in the infinite system, but in finite systems,
in the effective mean-field pictures that we have, as a rule, they are not eigenstates of hamiltonian and some
other generators of the system symmetries. We present a class of states, which are eigenstates of certain
combinations of the generators and are similar in structure to the orbital angular momentum eigenstates of the
Laughlin quasihole in the same system. We refer to the states as states of a meron. They have an upper limit
on the mean orbital angular momentum, and the limit defines an effective edge, at a distance less than the
system radius, in an effective quasiparticle description of the meron. Remarkably, the merdassithgeusual
quasihole edgeis characterized by a power-law decay of the single-particle, static correlator defined between
positional coherent states of the meron.
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[. INTRODUCTION stituent in Eq.(3) carry half of the unit of charge and can be
ascribed to half of the unit flux.
Merons appear in the description o£1 (Ref. 1) spin(as At this stage, we may ask whether the meron representa-

an additional degree of freedgorandv=1 (Refs. 2,3 bilayer  tion [Eq. (3)] is in any sense superfluous for the effective
(pseudospipquantum Hall effectQHE). In the former case, quasiparticle description of the system. Indeed arskyr-
they are the constituents in the form of a meron pair of themion (variationa) wave function’ studied in the infinite sys-
elementary skyrmion excitation. As soon as we have a skyrtem, can be, similar to the single skyrmion case above, trans-
mion excitation, there are two merons that can be recognizetbrmed by the application of the same @Ytransformation

by a SU?2) transformatior(see belowon the skyrmion wave [Eg. (2)] into a 2n meron wave function

function. In the bilayer case the merons also come in the

form of bound pairs, distorted and less entangled than inthe ¥ _(wq, ... W,;vq,...0,)
SU(2) casé° which can be released at some finite tempera-
ture of the Kosterlitz-Thouless transitién. | @ TW) - (Z—wy)
A skyrmion (variationa) wave function in the spin QHE _iﬂl (zi—vy)---(z—vp) LII (zi—7), )

can be modeledas
N with appropriatew and v variables, and vice versa. If the
Zi—Ww constructions are relevant and appropriate in the finite sys-
WS(W):LL N .EIJ (zi—7), (1) tem, we can claim the same equivalence there. Nevertheless,
we will argue that in the finite system, with no Zeeman cou-
wherew and\ are complex parameters, the filling factor is pling, some of the states of the form given in E8) can be
v=1, and{z;;i=1, ... N} denote electron two-dimensional interpreted, approximately, as characteristic quasiparticle
(2D) coordinates. For simplicity, we suppressed the Gaussiafiates of the system, and that their representation is most
factors. The center of the skyrmion iswt and\ is a pa- transparent and convenient. We will call the associated qua-
rameter that determines the size of the skyrmion, the distanc@iparticles as merons, although due to the strong entangle-
when S, component of the electron spin starts to point upment inside the pair in the state, H§), it is hard to apply a
rather than dowr(as it does if we are at smaller distance, particle picture with definite charge and finite extent of the

near the centérA SU(2) transformation of the form excitation.

Thus, we will be considering coherent states, states that
171 1 describe quasiparticles of the system localized or centered

—[ } 2 around a single point, which we usually denote by the letter
V2[1 -1 w. These may be hamiltonian eigenstates in the infinite sys-

. . . tem like the Laughlin construction of the Laughlin quasihole

can be done on each spinor to obtain the following wavey, he ;,—1/m, m odd case, but usually, almost as a rule, in
function: the finite system these are not. In the Laughlin case, in the
N [y I@nlite ro;g;ti?nally Isymmetric ;system, thetret are thte qéjasiﬁ_arr-]

B i~ W1 icle orbital angular momentum eigenstates instead, whic

\sz(w)_iﬂl Z—W> ,1;[, (zi=7) @ are simultaneouslyor very nearly hamiltonian eigenstates.

In the case of the spin QHE and the underlying skyrmion
that describes two merons at positiomg andw,. Namely,  quasiparticle, this description in the finite system has not
asw;—w, we get a Laughlin quasihole, so that each con-been achieved. Although the skyrmion excitations are firmly,
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experimentally and theoreticall®°established in the bulk larger then, the closer to the edge the hole is. The electronic
of the large thermodynamic systems; in the theoretical studwave function, in which the Laughlin part is multiplied with
ies of large but finite systems, we only approximately modelkhe symmetric polynomial of degreg describes the eigen-
quasiparticle statecoherent or otherbecause they are not state of this hole.
the eigenstates of hamiltonian and some other generators of In the case of the wave function given in Ef), we have
the system symmetriéd!?

A classification of the elementary particle-hole eigenstates N
in the case of the spin quantum Hall droplet was done in Ref. U (W)= [ H
11, where a connectiofsee Appendix Abetween these and i=1
some of the coherent states was established. The coherent
states reside in the center and have the skyrmion interpreta-
tion. In Appendix B, we classify all rotationally symmetric
states(found in Ref. 1} on the droplet which are made by
the same procedure as the skyrmion coherent states. Some-gie first term is of the form of the so-called edge spin tex-
them are encircling the edge with yet no clear quasiparticlqure,
interpretation. The question we raise is what are the coherent
states away from the central region? In other words we want

M =z

+ b

—W
Z;

VA
O“Hlj (z-7). @

to address the question how topological excitations, which N 1

are firmly established in the infinite system or in the bulk of P _ 5 .

large systems, are describéat least in mean field, effec- tex(9) iﬂl —z II;[J (z-2), ®
tively) as they near the boundary. In Sec. Il we propose the V2

case for the meron states to be appropriate, candidate quasi-

particle states for the edge region. In the same section, wiwund in Ref. 11, see also Ref. 14, whaetea complex pa-
establish a characteristic distance from the center of theameter, is equal té=— \/2(1Av) in our case. In Appendix
droplet at which, in fact, further onto the edge, even theA we show! that Eq.(8) is a mean-fieldBCS) construction
merons, described effectively as quasiparticles, do not exisbf the condensation of the system eigenstates, particle-hole
We may consider this distance as a definition for a merorexciton pairs of opposite spin. In Appendix B we classify
edge(just as the radius of the system defines the edge of thell rotationally symmetric(excited states of the Laughlin
Laughlin quasiholg In Sec. Ill using the ansatz wave func- disk, made by the Hartree-Fock ansatz, and find the state in
tion, Eqg.(3), we calculate, analytically, static correlations of Eq. (8) on the edge, and the skyrmion coherent states at the
a single meron along the newly defined edgeeping the center of the disk. Only the latter have clear topological qua-
other at the center of the systgnSection IV is devoted to  siparticle interpretation.

discussion and conclusions. Thus an edge stafé&qg. (8)] (centered not in a point but
around the edgeenters the description of a coherent state of
II. MERON AND THE EDGE EXCITATIONS the meron with coordinate in Eq. (5). As |w|— R* —radius

) ) characteristic for the excitatiai®) in the expansiol(7), to be
Let us consider the construction, EG), of two merons,  cjculated below—the meron description reduces, in the first
where we place one meron with a coordinatein the center approximation, to the edge state with a complex boundary

of the disk fv,=0) and denotev, asw, spin structure and bulk polarization that approaches the one
N (5w of the ground statéall spins up.
_ i . In the case of a single Laughlin quasihdlEq. (6)],
vw) |H1 z .1;[1 (z=2). ® the largest radius that the quasihole takes in the expan-

sion is given by the radius of the state with the largest angu-

We want to decompose the excitation into a series similar O momentum; "I, The radius isrg= 2(N+1)%\/m
the well-known decomposition of the Laughlin quasihole, ~R—radius of Othe system. In the OLaughIin case. we can

generat® edge excitationgin the form of multiples of sym-

N
‘I’L(W)=H ' H (z-2) metric polynom!aI&; by _placmg and expanding coherent
= 0 Ji states of Laughlin quasiholes near the edge. The states are
—w N N z {—W N—1
= +>, N oT(zi—wy)- - (Z— W)
H 0] =loflo viwy, =TT T T @,
i=1 i<j

7 Zy 9

: wheren (number of quasiholes= 1,2, ..., andw;|—R,
in the completely polarized cas&The coefficients of’s in i=1,...,n. By an analogy, for the present system, besides

the series are the elementary symmetric polynomials, and thtaese constructionénultiplication by symmetric polynomi-
decomposition, Eq(6), can be considered as the one overals), we would expect that nontrivial edge constructions can
eigenstatesy”, of the hole orbital angular momentum. The be expressed through coherent states of merons,
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N T(zi—wyp)- - (Z—W,) with a well-defined particle. Nevertheless, we want to see
W(wg, ... ,wm)=H m 1l (z—z), what as a description comes out, if we approximate and
=1 Zi <] model the expansion in the forfisimilar to the Laughlin
(10 guasihole expansio(®6)]
which define various sectors of tijedge theory for fixed W (W) ~ m(k)
positive integersn. (The reason we select these states is also (w) ; W (20, - 2w, (1

because their polarization in the centdwulk) is of the , i ) i

ground state. The question immediately raised is whether in Where W,’s are electronic wave functionghat include the

this case alsow;|~R,i=1 m. because merons are ex- description of spin (Therefore, we enforce a particle inter-
| b y =y L

tended objects and the notion that they are right at the systeff€tation) Each term in the expansion approximates a state
boundary is not well defined. Indeed, we should look mord" the expansiori7) by a state of meron mean angular mo-
carefully into the singlépain meron caséEgs.(5) and(7)].  mentumm(k) (given above in th&=0 casg, and an elec-
We can view Eq(7) as an expansion over unnormalized ronic wave function that does not depend wnA way to
states of a merofwhich by themselves are superpositions of °btain the function in th&=0 case will be shown below and
the orbital angular momentum eigenstat@srepresentation Other functions can be obtained similarly. _
of the absolute square of a normalized meron state solely in e model¥y_, as the edge spin texture in E@) with
the variablew can be obtained by tracing omtvariables in ~Parametec= 2/ (which is not a variable such ag) de-
the absolute square of the corresponding state in the expafanding that the mean value & (or the orbital angular
sion, and dividing by the trace iw and z variables of the ~Mmomentum in the state of Eq(7) corresponding t&=0 is
same square. Similarly we can get the averagedan or-  €dual to the spirfor orbital angular momentuin a state
bital angular momentum for the state in the expansion byvhich we get from the same state by substituting variable
sandwichingvd/dw by the same state, tracing out batand ~ With the constane. In this way we find thatS,)[,—o=0 and
w variables, performing the sum, and dividing the sandwich¢|>=N=(R*)? (for a largeN). We should not be surprised
by the same trace and the sum of the squardy) of the by the zero of spin; in our work we do not introduce Zeeman
state. In this way we can get that for the first state in theenergy as a cutoff for the extent of possible excitations.
expansion, the mean orbital angular momentunN/g, so Similarly, we can get other functionsl’,’s, and corre-
the effective radius of the meron R ~ \N~R/2. Thisis  Spondingm(k)'s in the expansiori11). For the second term
a considerable distance away from the usually defined edgé the expansiom(k=1)=N/3 (for a largeN) and the cor-
region. Therefore, we have a different type of edge of differTesponding mean radius &/ /3. Therefore we are getting a
ent radius for the single excitation meron. Thus we shouldliscrete serieRR(1/y2,14/3, . . .), for themean radii of the
have cautiously called the first term in the expansion,(Fy. wave functions in the expansidi) [or Eq.(11)]. We should
the edge state, although indeed it has the féand underly- not take the discrete mean radi@nd angular momentum
ing constructiop of the state[Eq. (8)] so called in the series too seriously because the mean values are far from
referencée! being sharply defined, and the distribution in questiover
The states in the expansion, H), orthogonal with re- the angular momentum stajefor example, for the first state
spect to the scalar product defined above, are not eigenstatissuniform. Nevertheless, the beginning of the series marks
of the hamiltonian; they are the eigenstates of the combinedn unusual behavior for a quasiparticle correlator in the bulk
symmetry generators,L;=M+mS—(m/2)N, (m=1) as we will see in the following section.

whereM is the orbital angular momentum argi is the z We may easily construct operators that act on the first
projection of the spin of the system. The eigenvalues aréstate in the expansiad(7) and give the states further on in the
M,+k, k=0,1,2 ..., whereM, is the(orbital) angular mo-  €xpansion. These are multiplets of

mentum of ther=1 polarized ground state. It is easy to N

generalize these considerations ro=+1,+2,... cases, = 01 (12)
where we also consider antimergsee Appendix B con- P1 =110 oOf

structions, and it is interesting to note that similar combina- o )

tions of the generators as symmetries are characteristic fénd its inverse operator is

skyrmion costructions on a sphéfeand in the center of a

droplet[see Eq.1) with w=0]. The high symmetry of the w w

states singles them and corresponding coherent states

(generator$Eq. (10)]) out as, maybe, the most we can get in p-1= E

the search for an effective, mean-field quasiparticle picture 1

of the system near the boundary. Zi
At this point, we want to emphasize our line of reasoning..l_heir commutator is

We begin with a reasonable meron coherent dite (5)],

and then expand it mimicking the Laughlin quasihole expan-

sion [Eq. (6)]. Explicitly, we see that it is not an expansion

over the orbital momentum eigenstates of a single free par- [p-1.p1]=, Zi|. (14)

ticle in the lowest Landau level. Therefore, we do not deal ' 0 1

. (13

P4
|
[y
|
N
|
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For a largeN, the right-hand side operator is the identity where sum goes over all possible multipletsxafs. Then, to

times N in the subspace of the first, low-lying states in thecalculate the norm, we may consider

expansion angh_, annihilates the first state. Therefore, we

have a single simple harmonic oscillator algebra for these _
. S sy, =

states of the merofpair). Similarly, we can construct the

same algebra for the states at the other end of the expansion.

X

N—1_N-2 0
2 SgQNOZ, (1yZy05 2 , (21)
IIl. STATIC CORRELATIONS OF A MERON - o(1)%e(2) "(N))

We consider the constructiof) of two merons, where Which, after some insight, can be reduced to
one meron is at the center of the disk. The wave function we

will use is W, = 2 SINTZy1)Z50)  Zo) (D2 e Zogn -
N
Z—w (22
V(W)= zZ,—z), 15 . )
AW) .1;[1 074 .1;[, (z=2) (19 (Here 1 stands for the empty orbt—n.) Therefore, if we

. . . consider norm
where we introduced &eal parametery which we will set

to 1 at the end of calculation. .
It is instructive to first do the calculation in the case of aNL.qh.:J J Wi ghVigndz---dzy
single Laughlin quasihole, which is simply a hole at the fill-
ing v=1. In both the cases, we first calculate the norm of the _ % % . N-n
excitation at pointv and then by the way of analytical con- _gn SnSm¥, W, dzy- - dzy(=w)

tinuation to w—w;=r and w—w,=r explix/r}, wherer

N,
=R, the radius of the system in the Laughlin case, and (—w)" ™
=R* in the meron case, find the correlator at distarce
The Laughlin quasihole can be written as => J J ISh?|W,|2dz;- - -dzy| —w[?N"™ (23
n
N
and tak to denote
Vg w=11 G-w,, 16 Sl
where, in the case of filling factar=1, Nm:f V(D) (2)dz, (24
where
‘I’U=i1:[ (z—2) (17)
2
J V(2) = 2"~ 142", (25)
is the Vandermonde determinant. Its norm is easy to calcu-
late, we have that
N — N
|W|2(N n) 1
* N ~ B — wl2(N—n).
f f VP, dz - dzy Lan ™ 2, N 2 PR " |w]
(26)
22;4 f f |er(l)|2(N71)' ’ '|er(N)|0 (As a conclusion, in the thermodynamic limit,
N, ~e+|w\2/2, 27
e B R U B ENCICE -
which is a well-known resulx.In the finite-size system, we
(where we, for simplicity, dropped the signs of differentials may rewrite
What we learned in this simple exercise is that only nonzero N
contribution to the integral comes from the equal powers of N~ Z WES 29)
z* andz for a given coordinate. We may expand Ef6) as Lah "= ok '
W gh (W) ={(—w)N+s(—w)N 1 and consider two points on the edge of the disk=R, and
_ pdx/R ; ; ; 2
AN-2 w,=Re*'R, to which we can analytically continuev|® as
FS(—W)T s (19 |w|?—w7w,. Then, if we approximate that the most impor-
where{s,;n=1, ... N} are elementary symmetric polyno- tant contribution comes frork~N, we have
mials, i.e.,
ki ~2mkkT ek~ 27Nk 120N, (29
Sy = Z -z, (200  Onthe other hand, the averaged square of distance is equal to
(i) 1 " 2(m+1). Therefore, square of the radius of the disk is pro-
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portional to N. All these things together give for where
f(x)—static one-particle correlator of a Laughlin quasihole

N
along the edge,
9 9 To=N!'TT N, (37)
N 1 N n
f(x)~ 2 ﬁRZkeik R~ ﬁ 2 ek, (the norm of the Laughlin quasihole that resides in the center
k=0 kI2 2mNe ™ k=N, of the disk. The contribution, Eq(36), when y=0 is the

(30) same as in the Laughlin case, and is the result of the multi-
which is proportional to nothing, but the correlator of one plication of |w|? in Eq. (32), or (the term unded) in Eq.
electron in the one-dimensional Fermi liquid theory with the(33).

Fermi momentum is propotional tbl—N, . When R/(N Now, let us consider the contribution of the order of
—N,)<x<R, |w|2N~2, The contributing terms from Eq33) are of the
form |w|2N"2|z|? where |z|?, can be from the crossed
1 1 1 terms, undeb andc, or solely from undea. The contribu-
f(x)~ _oR SR X’ (31 tions that we get from the latter case are
. . |W|2N—2 |W|2N N,

On the other hand, to accomplish an analysis of the cor- I NNy - No= To 0
relations in the case of the meron excitatid®), we might (1+ 2N (1+ N1 " Ny-1 '
consider, in the beginning, that (38

N N which is equal to the contribution in the Laughlin case when
Il lz—w=]Il (|z/-w*z—-wz +|w/*> (32 »=0,and
=1 =1
I . I . ) |W|2N72 N-2 N—1
lcan' be symbolllcally expressed as a polynomial in the fol- NI —— 2 Nipr H N
owing way: (1+v9) k=0 i=0,#k

. N-2
|w|?N~2 No Nt 1

N! 21a * b *1C 2 d
a1zl - wr z P - wz o w] 2} :W 0-/\7N & N

a+b+§c;rd=N alb!cld!
(33

Here each multiple comes from a different tefparticle i in
the product(32). We learned from Eq(23) that in the inte-

(39

which, in the Laughlin ¢=0) case, is canceled by the con-
tribution that we get from the terms underand c, crossed
terms in the Eq(33). (This follows from the above analysis

gration of of the Laughlin cas¢ Therefore, to ordejw|?N~2, we have
> shspWrW,(—wh)(—w)", (34) WiPN"2 NG 1
n,m T a4 A .
YA+ AN M7 w2

effectively, we were calculating overlaps between the same
permutations in?; and¥, . To introduce nonzero overlaps,
terms undeb and c in Eq. (33) have to mix the permuta-

><[(1+72)(2N+22)—22]+-~], (40)
tions, which are different, and, therefore, in the final calcu-

lation their contribution does not appear. where
In the case of the excitatiof15), parallel to Eq.(32), we N-1
N—1)(N—-2
have 5= S k:( )( ). 41
k=1 2
N N "
20 2512y _ 2 2 w : S - .
IT (z—wi2+ 32> =11 (1++2{|z|*- 52 This contribution in the larg®t limit has the following ex-
=1 =1 (1+7%) pression in the curly brackets of E@t0):
w |w]|? 2N 2
- Z+ . (35 YN
1+ (a+ 72)] 39 1+ we (42)

E?ar(t:klgcsorll_ev'zliswclzltlmns?gtla?ctthé}e?( )ag]si:)rr?r:)tf (t):](;hneor?rl:rz E It is important to note in Eq(40) that the contribution from
' P e crossed terms is of the order of4%?) smaller (for

. 5 i :
(19 n e powes ol ie conider e s impeant g ran o th s uncarn €3 G5,
~|w|2N. The highest power contribution to the norm is Due to the complexity of the algebra, next we will only
' 9 P consider contributions of the order of 1Kk?)N "2, y being
oN large, for the fixed (RI—4)th power ofjw|. (Here underly-
L & (36) ing assumption is that the neglected terms are of the same
(14 y?)N ONN order inN as retained ones. We will address this question of
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the neglected contributions belgvBimilar to Egs.(36) and  ing the number of termgsingle overlapsthat go intor,p,

(38), we have the contribution andq, proving that the numbers satisfy
|w|2N—4 N, K= Ko+ Kq=0 (49
(1+ yZ)N*ZTONN,z’ “3 in the largeN limit. The numbers we found are
and, to that order also, N
K= NI, (50
|w[2N=4 iT & s M1 N1
HN-2 21 ON kBleg N N, N\ /3
(1+v9) N 0(1#k) [ k o= 2(N=1)!, (51)
w24 1 N N73N P13/\2
w
T IN=Z D1 o — 2 2L, (44 and
(1+y9) 2! P Ny-1@=o Np
the terms that come solely from the multiplication |af|? ICq=(N) (4)2(N—4)!(N—1)(N—3), (52)
underain Eq. (33). In the largeN limit, the first term in Eq. 4)12
(44) is dominant with respect to the second term and the ong ... ., - laraeN-limit ai
in Eq. (43). After the limit, the expansion in Eq42), with fihich in the arget-imit give
this new contribution, becomes K K.oo1
. r . q
Im—=Iim-—==. (53
,yZNZ 1 ,y4N4 N—»ocKp N—»OCICp 2

T (45)

+ . -
lwj2 2! |w|* Therefore we may conclude that in the same lirpit 2r,

) ) ) g=r, and the Eq(48) becomes
where we approximated-dy? with 2. Taking, further, only

dominant contributions iMN, we can obtain a close expres- |w|2N—4 -
sion for Eq.(45), — r, 54)
q.(45 (1+y2)N—2(7) (
N
1[(yN|2" which supports our conjecture, to the given order, that the
> ] (46) . : :
i=on!\|w expansion for an arbitrary can be brought to the form in

_ _ L _ Eq. (45 or (46).
which after the same analytical continuation as in the Laugh- simijlar to the Eq(30) (in the Laughlin casethe sum in

lin case and taking w—>v71=R* and w—w, Eq. (47) can be approximated, and, as a result, we get that

=R*exp{ix/R*}, whereR* 2~ N, gives the static correlator along the radiBs, of the excitation in
N Eq. (15) is propotional to
1 R
Z m[,)/2Ne—|x/R ]n. (47) 1
T Y2eXIR (55

The question that arises is whether we can continue this . .
result to other, smaller values of including y=1. We be-  This implies, approximately, that in the meron cage; 1,
lieve that we can claim and substantiate the same with ththe correlator behaves as

following.
We consider again the contribution to the norm of the f (x)~1 (56)
excitation (15) of the order of|w|2N"%/(1+ y?)N"2. The " X

contribution without the one in Eq43) (the Laughlin case

-~ ) . in the long-wavelength limjt It is interesting to note that
only contribution wheny=0) can be cast into the following ( g 9 ) 9

the main contribution to the correlator was coming from the

form: angular momentum states near the center where the other
| 2N meron is placed. This is quite opposite to the case of the
—— 1+ ¥2)%r —(1+ 42 p+q]. (48) Laughlin quasihol¢Eqgs.(28) and(30)], and points out to the
(1+y9) strong entanglement of the two merons.

wherer,p, andq are positive numbers. The term withis
equal to the contribution given by E@4). The terms withp
andq come from the crossed terms in E§3), which con- To conclude, in order to understand and construct posi-
nect permutations with one and two exchanges, respectivelyional coherent states of the topological excitations away
(The minus sign in front op term stems from the overlap of from the central region of the=1 large quantum Hall drop-
permutations that differ for one exchangés we already let (at least in the case of zero Zeeman couplinge studied
emphasized, the contributiof#8) should vanish asy ap- the meron coherent state, given by E8), when one meron
proaches zero. We were able to check this by simply countin the pair (v;,w,) is kept at the center. It turned out that the

IV. DISCUSSION AND CONCLUSIONS
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state may serve as a generator of states of high rotational |W ol 5))=exp{52}}|CN)

symmetry, which can be classified by positive integeis

genvalues of the symmetry generajdisst like the states in - i s

the expansion of a Laughlin quasihole with orbital angular :HO exp{oVj+1¢j,1,¢),1}Cn)
momentum eigenvalues. Then we considered an effective :
(approximativé expansion of the meron pair, where each
term was modeled as an orbital momentum eigenstate with
its mean orbital angular momentum as eigenvalue. There-
fore, we effectively introduced mean radii around which the *

meron states are spread. In this way we found the maximum =11 {C;T-I— SVj+ 1c;r+l’l}|0), (A3)
radius of the farthest meron staf®?, at a distance consid- =0

erably less than the radius of the system. Remarkably, thighere|0) is vacuum. In the spinor language, we have the
distance marks the usual edge behavior characterized byfallowing Slater determinant of single-particle states:
power-law decay of the single-quasiparticle, meron static

j1:[0 {1+6Vi+1c], ¢ 1HCh)

correlator. P P; 1

The exponent of the decay does not correspond to the one, { ! }: S =l 5 |, (A4
equal toz, of the correlator in the case of one Abelian qua- ONj+1d 4, —=29P; —z| !
siparticle, associated with the half of the unit of charge and V2 V2
the half of the unit of flux. We do not think that we have a where
case for the non-Abelian statistitsrather we may note that ,
there is a strong entanglement between merons in the pair, P — Z (A5)
and also, the status of the quasiparticles in the finite system NP R

is far from being clear. Nevertheless, as with the correlator, ) . _ L
the radiusR* might mark an unusual behavior for the tun- IS @ single-particle, normalized wave function in the lowest
neling into the bulk of the system at zero Zeeman couplingl""‘nd"j‘u level. Therefore, we can prove that the BCS super-

The existence of the radius away from the real edge, in th. osition of particle-hole pairs leads to the edge spin-texture

effective quasiparticle picture, might also suggest that topo-8)'
logical excitations do not contribute to the transport along APPENDIX B
the edge, and the transfer of charge and quantization of the
Hall current in the edge region are ensured by the Laughlin In this Appendix we review known constructions of the
(quas) holes only. excited states, made in the form of Slater determinants of
single-particle states, from a unifying point of view.
As a way of relieving of, for example, the double occu-
ACKNOWLEDGMENTS pancy of electrons at the center of the diskthe case of the
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bian Ministry of Science, Technology, and Development. 1!0Wing superpositions of the single-electron states:

thank K. Mullen and Z. Radovifor conversations and sug- T T
gestions. ’ (Comy + @Cma)) (B1)
for eachm. In the single-particle spinor language, we have
APPENDIX A b,
: . : (B2)
The exciton superposition, a®p. g

Here @, ’s are defined in Eq(A5) and « is an arbitrary
- — % complex number. Now we take the Hartree-Fock ansatz, by
2= % M+ 1Cm.1,Cm. (A1) ensuring that the final state can be cast into the Slater deter-
minant of single-particle states. We have as a possibility of

with all well defined(commuting quantum number¥,and  EQ. (B2) in the form

obviously edge excitation because of the weigh{m+ 1 o
(which grows as we are approaching the edgan be used m
to describe a BCS condensate: Z o | (B3)
—
N2 Jm+12 "
|V e 8))= >, 5—,(2{)”|CN>, (A2)  where we chose~+/(m+1 to get an edgénole) excitation,
n=0 N: or
where|Cy) is the incompressible condensdtiee filled low- \/E
est Landau levelat v=1. ) 9;Pm1 (B4)
The fact that Eq(A2) leads to Eq(8) can be proved by '
taking the thermodynamic limit—cc) when a®m g
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where we chosex~1/ym+1 to get a bulk(particle- skyr-
mion) excitation(in the center of the digk Taking another
superposition,

(C:rm+,BCI1—1L)1 (B5)

for m>0, similarly we can get an eddgparticle excitation

PHYSICAL REVIEW B 67, 205321 (2003

and a bulk(hole, antiskyrmioh excitation(in the center of
the disk [Eqg. (2)].

The excitations that we found are rotationally symmetric
and reside either in the center of the disk or on the edge
uniformly extended. The question arises whabherenk
quasiparticle state, beside Laughlin quasihole, we have in
between, or away from the central region.
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