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Abstract
We analyze the nonabelian extension of Born–Infeld lagrangian for SU(2)
group. In the class of spherically symmetric solutions of finite energy, be-
sides the Gal’tsov–Kerner glueballs we find only the analytic dyon solutions.

1. Action and field equations

The initial point of our analysis is the following nonabelian Born–Infeld
[1, 2] (NBI) action in Minkowski space:

S =
1
4π

∫
d4x(1−R) , R =

√
1 +

1
2
F a

µνF
µνa − 1

16
F a

µνF
∗µνa . (1)

The equations of motion which follow from the NBI action (1) are

Dµ
Fµν −GF ∗µν

R = 0 . (2)

Here F ∗ denotes the Hodge-dual, F ∗µν = 1
2 εµνρσFρσ, Dµ is covariant

derivative, a is the index of the gauge group and G = 1
4 F a

µνF
∗µνa. The

equations of motion (2) can be complemented with the Bianchi identities,
DµF ∗µν = 0.

In [2], spherically-symmetric configurations of finite energy for the ac-
tion (1) were found. The ansatz for the gauge potentials was the monopole
ansatz and it describes purely magnetic configurations. The usual splitting
of the field strengths F a

µν into “electric” and “magnetic” parts is:

Ea
i = F a

i0 , Ba
i =

1
2

εijkF
a
jk . (3)

We will generalize the monopole ansatz – in fact, we will consider the
general spherically symmetric static potential for the SU(2) group (the so-
called Witten’s ansatz, [3]). It is given by three real functions a0(r), a1(r),
w(r) of the radial coordinate r. The components of the gauge potential
read:

Aa
0 = a0(r)

xa

r
, Aa

i = a1(r)
xaxi

r2
+ εaik

1− w(r)
r

xk

r
. (4)
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Here xa, xi and xk are the Cartesian coordinates. The field strengths for
this ansatz are

Ea
i = a′0

xixa

r2
− a0w

r

xixa − δiar
2

r2
,

Ba
i = −2δia

1− w

r2
+

(1− w)2

r2

xixa

r2
+

(1− w

r2

)′ xixa − δiar
2

r
+

a1w

r2
εiakxk ,

where prime denotes the derivative d
dr . The square root R from (1) is

R =

√
1 +

(1− w2)2

r4
+ 2

w′2

r2
+ 2

a2
1w

2

r2
− 2

a2
0w

2

r2
− a′0

2 − [a0(1− w2)]′2

r4
.

We can now consider the condition of extremality of the action. Af-
ter the integration of angular variables, the action is proportional to the
lagrangian L,

L =
∫ ∞

0
r2(R− 1)dr . (5)

Varying the unknown functions a0, a1 and w, we obtain the set of equations:

w2a1 = 0 , (6)

(1− w2)
(

[a0(1− w2)]′

r2R
)′

=
2w2a0

R −
(

r2a′0
R

)′
, (7)

wa0

(
[a0(1− w2)]′

r2R
)′

= −2w(1− w2)
r2R −

(2w′

R
)′
− wa2

0

R +
wa2

1

R . (8)

2. NBI dyons

The system of equations (6–8) is a complicated nonlinear system. We
will search for particular solutions of this system with finite energy. The
energy of the static configurations is equal to the negative value of the
lagrangian, M = −L. The convergence of this integral on both boundaries
imposes restrictions on the asymptotic behavior of the functions a0, a1 and
w. We will discuss these restrictions later.

The simplest equation (6) implies essentially that a1(r) = 0. Therefore,
we will always assume this and denote a0(r) = a(r) in the following.

The solutions with a(r) = 0 were analyzed in [2] in detail. The simplest
solution in this case is w(r) = ±1 and it represents the pure gauge. w(r) = 0
is also a solution: this is the embedded U(1) monopole. Its energy is finite:

Me =
π3/2

3Γ(3/4)2
≈ 1.2360 . (9)
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There is also an infinite discrete set of finite energy solutions wn(r) with the
index n ∈ N. These solutions can be found numerically using the condition
that the function w(r) with the allowed asymptotic forms at r → 0 and
r →∞ match in the intermediate region. They are called Gal’tsov–Kerner
glueballs.

The other simple possibility, w(r) = 0, a(r) 6= 0, is also nontrivial. The
equations of motion in this case reduce to

( a′

r2R
)′

= −
(r2a′

R
)′

, R =

√
(1 + r4)(1− a′2)

r4
. (10)

This equation can be solved explicitly and its solution is a two-parameter
family

a(r; C, α) = C ±
∫ √

α− 1
α + r4

dr , (11)

where C and α are the integration constants and α > 1. The explicit form
of the solution is given in terms of the elliptic integral. In accordance with
the conditions of finiteness of energy and invariance of the equations under
the change a(r) → −a(r), we will take C = 0 and the + sign in front
of the square root. The function a(r) for different values of α is shown
in the Figure 1. The limiting value of the parameter, α = 1, gives a(r) =
const, a configuration which is gauge equivalent to the embedded monopole
w(r) = 0, a(r) = 0. The energy of the solution (11) is

M(α) =
π3/2

Γ(3/4)2
1

2α1/4

(
1− α

3

)
. (12)

The energy is unbounded below and its maximum is Me at α = 1. We
observe that the existence of the electric field decreases the total energy.

We will call the solution (11) dyon [4], as in the asymptotic region
r →∞ the behavior of the electric and magnetic fields is given by

Ea
i ∼

√
α− 1

xixa

r4
, Ba

i ∼ −xixa

r4
, (13)

and describes the field strenghts of point-like sources. The “electric charge”
of the source is proportional to

√
α− 1, while the “magnetic charge” is 1.

3. Conclusions

The condition of finiteness of energy in the general case of spheri-
cally symmetric NBI configurations restricts the possible behavior of the
functions w(r) and a(r). Along with the cases discussed above, there is
one interesting solution which behaves as ’t Hooft-Polyakov monopole (i.e.
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Figure 1: Dyon solutions
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Figure 2: Would-be NBI monopole

a(r) → const and w(r) → 0 for r → ∞). It can be obtained by numer-
ical integration starting from r = 0 for some values of initial parameters
denoted as w2 and a1. The outcome of the integration for w2 = −10 and
a1 = 0.5 with the integration step h = 10−5 is shown in the Figure 2.
However, this solution is numerically unstable: if we keep the same values
for the parameters w2 and a1, but decrease the integration step h, we see
that the oscillations of w(r) increase to the larger region of r and that the
asymptotic value of a(r) at infinity increases. We conclude that the so-
lutions of this type are probably nonanalytic. The analysis of the energy
confirms this conclusion, too: the values of energy differ for orders of mag-
nitude for different integration steps. We see that in the NBI case, as in the
pure Yang–Mills theory, w(r) = 0 and w(r) = 1 are separated by infinite
energy barrier and it is impossible to find the solution of finite energy which
interpolates between them.

Further numerical analysis of the other allowed asymptotics strongly
indicates that, besides Gal’tsov–Kerner glueballs and analytic dyons, there
are no finite energy solutions.
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