
Introduction
Gaussian halving

Recursive approach
Concluding remarks

Speeding up the Convergence
of Path Integral Monte Carlo

Antun Balaž
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General properties of path integral formalism (1)

Functional formalism in quantum theories allows:
easy treatment of symmetries (including gauge symmetries)
derivation of non-perturbative results (solitons, instantons)
establishing of connections between different theories, or
different sectors of the same theory (bosonisation, duality)
quantization (including generalizations to systems with
classical analogues)

Rich cross-fertilization of ideas from high energy physics
and condensed matter / statistical mechanics
Applications to all fields of physics, chemistry, material
science, even quantitative finance and economics
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General properties of path integral formalism (2)

In path integral formalism it is very easy to derive:
semiclassical expansion
perturbative expansion
various variational methods

However, mathematical properties of path integrals are far
from being completely understood
Many important models and theories, or their interesting
sectors, still require numerical treatment

Path Integral Monte Carlo (PIMC) is one of the most
applicable methods
Very popular M(RT)2 (Metropolis) algorithm ensures
optimal efficiency which, unfortunately, may be insufficient
for some applications
The lack of the knowledge on path integrals directly
translates into the inefficiency of our numerical algorithms
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General properties of path integral formalism (3)

Basic ideas on path integral formalism can be found in: P.
A. M. Dirac, Physikalische Zeitschrift der Sowietunion 3,
64 (1933) - Lagrangian formulation of quantum mechanics
Richard Feynman developed the formalism we use today
[R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948)]
Contrary to the classical physics, where (usually) there is
only one trajectory of the system for a given set of initial
(boundary) conditions, in path integral formalism of the
quantum theory we have to take into account all possible
evolutions
Each of possible trajectories contributes to the transition
amplitude through the additive factor exp( i~S), where
S =

∫
Ldt is the action corresponding to the given

trajectory
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Formulation of the path integral formalism (1)

Path integrals originally introduced in quantum mechanics,
where the amplitude for transition from some initial state
|α〉 to some final state |β〉 during a time interval T can be
written as

A(α, β;T ) = 〈β|e i~ ĤT |α〉
The same approach can be used in statistical physics, where
partition function Z can be written in a similar fashion
Path integrals in statistical physics / condensed matter are
usually called imaginary-time path integrals, since they can
be formally obtained from quantum-mechanical expressions
through the formal replacement

i

~
T → −βt =

1
kBTt

where Tt is the (thermodynamic) temperature of the system
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Formulation of the path integral formalism (2)

For technical reasons, usually we use imaginary time even
in quantum mechanical problems ( i~T → − 1

~T )
The standard derivation of the formalism starts from the
identity

A(α, β;T ) =
∫
dq1 · · · dqN−1A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

which is obtained by dividing the evolution into N steps of
the lenght ε = T/N , and by insertion of N − 1 resolutions
of the identity operator between short-time evolution
operators. This expression is exact.
Next step is approximate calculation of short-time
amplitudes up to the first order in ε, and we get (~ = 1)

AN (α, β;T ) =
1

(2πε)N/2

∫
dq1 · · · dqN−1 e

−SN
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Illustration of the discretization of trajectories
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Formulation of the path integral formalism (3)

Continual amplitude A(α, β;T ) is obtained in the limit
N →∞ of the discretized amplitude AN (α, β;T ),

A(α, β;T ) = lim
N→∞

AN (α, β;T )

Discretized amplitude AN is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action
For a theory defined by the Lagrangian L = 1

2 q̇
2 + V (q),

(naive) discretized action is given by

SN =
N−1∑

n=0

(
δ2
n

2ε
+ εV (q̄n)

)
,

where δn = qn+1 − qn, q̄n = qn+1+qn
2 .
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Basics of Monte Carlo (1)

Monte Carlo (MC) can be defined as a method for solving
mathematical problems by using (pseudo-)random numbers
If implemented properly, MC is guaranteed to converge to
the exact value being calculated
MC allows estimation of errors for calculated quantities,
with clear statistical interpretation
Calculation of integrals is the most common mathematical
problem solved using MC method
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Basics of Monte Carlo (2)

MC calculates integrals using the following identity

I =
∫ β

α
f(x) dx =

∫ β

α

f(x)
p(x)

p(x) dx =
〈
f

p

〉

p

,

where p is any given probability distribution function
(PDF), satisfying

p ≥ 0 ,
∫ β

α
p(x) dx = 1

In the MC approach, integral I is calculated by estimating
the above average value over some statistical sample

I =
〈
f

p

〉

p

≈ INMC
=

1
NMC

NMC∑

i=1

f(xi)
p(xi)
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Basics of Monte Carlo (3)

Numbers {xi | i = 1, . . . NMC} have to be generated from a
chosen PDF p(x)
Now the error of MC estimate for I can be defined as a
standard deviation for the above average

∆INMC
=

√√√√√ 1
NMC



〈(

f

p

)2
〉

p

−
〈
f

p

〉2

p




Central limit theorem guarantees that, for an ensemble of
samples, each of the same size NMC , the obtained
estimates INMC

would be distributed according to the
Gaussian distribution, centered at I, with the standard
deviation given by ∆INMC

Statistical interpretation of errors now easy (σ-intervals)
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Basics of Monte Carlo (4)

MC error can be always reduced by increasing the size of
the sample NMC , since it scales as 1/

√
NMC

In other methods (trapezoid rule, Simpson’s formula,
Bode’s formula etc.), typically ∆I ∼ ∆xk, where ∆x is the
size of the integration step
In d dimensions, time of calculation for such algorithms is
TCPU ∼ (1/∆x)d ∼ ∆I−d/k, or, in other words,

∆I ∼ T−k/dCPU

In MC approach we have TCPU ∼ NMC , so

∆IMC ∼ T−1/2
CPU

Now it is obvious why for high dimensional integrals MC
dominates over all other methods, since k/d becomes much
smaller than 1/2 as d increases, whatever the value of k
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Basics of Monte Carlo (5)

Main challenges
optimal choice of PDF p(x)
efficient generation of random numbers from a chosen PDF

It can be shown that the optimal PDF is actually just the
normalized function f ; BUT the normalization is exactly
what we want to calculate, so this does not help
However, this means that PDF should look as much as
possible like the function f ; usually we decompose the
system into exactly solvable part and small perturbation,
so exactly solvable part is ideal choice for p
M(RT)2 (Metropolis) algorithm is a general solution to the
second challenge

problem of correlations must be carefully dealt with
efficiency must be tuned
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Numerical approach to the calculation of path
integrals (1)

Path integral formalism is ideally suited for numerical
approach, with physical quantities defined by discretized
expressions as multiple integrals of the form

∫
dq1 · · · dqN−1 e

−S
N

Monte Carlo (MC) is the method of choice for calculation
of such intergals
However, although multiple integrals can be calculated
very accurately and efficiently by MC, there still remains
the difficult N →∞ limit
This is what makes the outlined constructive definition of
path integrals difficult to use in practical applications
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Numerical approach to the calculation of path
integrals (2)

Discretization used in the definition of path integrals is not
unique; in fact, the choice of the discretization is of
essential importance
Naive discretized action (in the mid-point prescription)
gives discretized amplitudes converging to the continuum
as slow as 1/N
Using special tricks we can get better convergence (e.g. left
prescription gives 1/N2 convergence when partition
function is calculated)
However, this cannot be done in a systematic way, nor it
can be used in all cases (e.g. left prescription cannot be
used for systems with ordering ambiguities)
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Typical 1/N convergence of naively discretized
path integrals
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Discretized effective actions (1)

Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum
values
It is possible to introduce different discretized actions
which contain some additional terms compared to the naive
discretized action
These additional terms must vanish in the N →∞ limit,
and should not change continuum values of amplitudes, e.g.

N−1∑

n=0

ε3V ′(q̄n)→ ε2
∫ T

0
dt V ′(q(t))→ 0

Additional terms in discretized actions are chosen so that
they speed up the convergence of path integrals
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Discretized effective actions (2)

Improved discretized actions have been earlier constructed
through several approaches, including

generalizations of the Trotter-Suzuki formula
improvements in the short-time propagation
expansion of the propagator by the number of derivatives

This improved the convergence of general path integrals for
partition functions from 1/N to 1/N4

Li-Broughton effective potential

V LB = V +
1
24
ε2 V ′2 .

in the left prescription gives 1/N4 convergence
Derivation of the above expression from the generalized
Trotter formula makes use of the cyclic property of the
trace, hence 1/N4 convergence is obtained for partition
functions only
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Improving effective actions: Gaussian halving

We present here an approach enabling a substantial
speedup in the convergence of path integrals through
studying the connection between different discretizations of
the same theory
Using this approach we have derived the integral equation
connecting discretized effective actions of different
coarseness and allows their systematic derivation. This
leads to improved 1/Np convergence of path integrals for
sone-particle systems in d = 1
The equivalent approaches enabling generalization of
obtained results to many-body systems were also
developed.
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Ideal discretization (1)

Ideal discretized action S∗ is defined as the action giving
exact continual amplitudes AN = A for any discretization
N

For massless free particle, naive discretized action is ideal
From the completeness relation

A(α, β;T ) =
∫
dq1 · · · dqN−1 A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

it follows that the ideal discretized action S∗n for the
propagation time ε is given by

A(qn, qn+1; ε) = (2πε)−
1
2 e−S

∗
n

Ideal discretized action S∗ is the sum of terms S∗n
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Ideal discretization (2)

In general case, the ideal discretized action can be written
as

S∗n =
δ2
n

2ε
+ εWn ,

where W is the effective potential which contains V (q̄n)
and corrections
From the definition of the ideal discretized action it follows

Wn = W (δn, q̄n; ε)

From the reality of imaginary-time amplitudes, i.e. from
the hermiticity of real-time amplitudes we obtain

W (δn, q̄n; ε) = W (−δn, q̄n; ε)
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Relation between different discretizations (1)
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Relation between different discretizations (2)
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Relation between different discretizations (3)

If we integrate out all odd-numbered coordinates, for a
given discretized 2N -action we get the effective N -action

e−
eSN =

(
2
πεN

)N
2
∫
dx1 · · · dxN e−S2N

However, if we use the ideal discretized action, then we get

e−S
∗
N =

(
2
πεN

)N
2
∫
dx1 · · · dxN e−S

∗
2N
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Integral equation for the effective action

From previous relation we obtain integral equation for the
effective potential in the form

e−εNW (δn,q̄n;εN ) =
(

2
πεN

) 1
2
∫ +∞

−∞
dy e

− 2
εN

y2 ×

G
(
q̄n + y; qn, qn+1,

εN
2

)
,

where function G is defined as

− 2
εN

lnG(x; qn, qn+1, εN ) =

W

(
qn+1 − x,

qn+1 + x

2
; εN

)
+W

(
x− qn,

x+ qn
2

; εN

)
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Euler’s summation formula (1)

For ordinary integrals Euler’s summation formula reads

I[f ] =
∫ T

0
f(t)dt =

N∑

n=1

f(tn)εN −
εN
2

N∑

n=1

f ′(tn)εN +

ε2N
6

N∑

n=1

f ′′(tn)εN + . . .

It allows the integral I[f ] to be written as a series in time
step εN ,

I[f ] = IN [f (p)] +O(εpN ) ,

where f (p) is the corresponding initial part of the ideal
discretized function f∗.
Using the obtained integral equation for W , we will derive
Euler’s summation formula for path integrals
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Euler’s summation formula (2)

When we expand function G in a series in the first
argument around q̄n, we get the following equation for W

W (δn, q̄n; εN ) = − 1
εN

ln

[ ∞∑

k=0

G(2k)
(
q̄n; qn, qn+1,

εN
2

)

(2k)!!

(εN
4

)k
]

Further application of asymptotic expansion makes use of
the expansion of the ideal effective potential in a series

W (δn, q̄n; εN ) =
∞∑

k=0

δ2k
n gk(q̄n; εN )

From the equation for W we get a system of differential
equations for functions gk
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Euler’s summation formula (3)

If we expand functions gk into series in the time step ε

gk(q̄n; εN ) =
p−k−1∑

m=0

εmN gkm(q̄n) (k = 0, . . . , p− 1)

we obtain a system of equations that is easily decoupled
and can be solved in functions gk
Note that in the above expression the sum is limited
according to the consistency condition which follows from
the diffusion relation δ2 ∝ ε
Boundary condition for the above system is g00 = V ,
obtained from limits δ2

n → 0 and εN → 0, in which W
reduces to

W (0, q̄n; 0) = V (q̄n)
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Euler’s summation formula (4)

To level p = 3 we get

g0(q̄n; εN ) = V (q̄n) + εN
V ′′(q̄n)

12
+ ε2N

[
−V

′(q̄n)2

24
+
V (4)(q̄n)

240

]

g1(q̄n; εN ) =
V ′′(q̄n)

24
+ εN

V (4)(q̄n)
480

g2(q̄n; εN ) =
V (4)(q̄n)

1920
Ideal effective action on the convergence level p is given as

S
(p)
N =

N−1∑

n=0

[
δ2
n

2εN
+ εN

p−1∑

k=0

δ2k
n gk(q̄n; εN )

]

This ensures the improved convergence
A

(p)
N (α, β;T ) = A(α, β;T ) +O(εpN )
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Expectation values and estimators

To obtain expectation values of physical quantities in the
path integral formalism, we calculate average values of
estimators - functions of discretized coordinates qn
representing physical quantities. The average is taken over
exp(−SN ).
Naive expressions for estimators must be also improved,
consistently to improvements made to the discretized action
For instance, on the level p = 2 virial estimator for the
energy is given by

E
(p=2)
V =

1
N

N−1∑

n=0

[
Vn +

q̄n
2
V ′n +

εN
6
V ′′n +

δ2
n

12
V ′′n +

q̄nεN
24

V ′′′n +
q̄nδ

2
n

48
V ′′′n

]
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Numerical results (1)

To verify the derived speedup in the convergence of path
integrals, we perform a series of PIMC simulations for the
amplitudes of anharmonic oscillator V1(q) = 1

2q
2 + λ

4!q
4 and

modified Pöschl-Teller potential V2(q) = − 1
2
a2b(b−1)

cosh2 aq

Numerical simulations were done using our SPEEDUP
PIMC code for various values of parameters λ, a, b, as well
as for various boundary conditions
Continuum amplitudes A(p) are estimated by fitting of
discretized values of amplitudes A(p)

N to polynomials in 1/N

A
(p)
N = A(p) +

B(p)

Np
+

C(p)

Np+1
+ . . .
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PIMC: Convergence to the continuum
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PIMC: Deviations from the continuum
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PIMC: Convergence of expectation values
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PIMC: Deviations from the continuum
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Numerical results (2)

From the partition function it is possible to find energy
spectra of the system if we use Z(T ) =

∑∞
n=0 dne

−TEn

Free energy of the system, F (T ) = − 1
T lnZ(T ), tends to

the ground-state energy E0 for large propagation time T
If we intoduce auxiliary functions

F (n)(T ) = − 1
T

ln
Z(T )−∑n−1

i=0 di e
−TEi

dn

they can be fitted for large propagation time to

f (n)(T ) = En −
1
T

ln(1 + ae−Tb)

and they tend to corresponding energy levels En
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PIMC: Convergence of the free energy
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PIMC: Calculation of energy spectra
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PIMC: Lower energy levels of the anharmonic
oscillator

λ E0 E1 E2 E3

0 0.49993(2) 1.502(2) 2.48(6) 3.6(5)
0.1 0.50301(2) 1.516(1) 2.54(5) 3.5(2)

1 0.52765(2) 1.6295(8) 2.85(2) 3.98(7)
10 0.67335(2) 2.230(1) 4.12(2)

100 1.16247(4) 4.058(6)
1000 2.3578(2)

Lower energy levels of a quartic anharmonic oscillator V1,
calculated with NMC = 107, p = 9 effective action and N = 256.
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Introduction
Gaussian halving

Recursive approach
Concluding remarks

Integral equation for the effective action
Euler’s summation formula
Expectation values and estimators
Numerical results

PIMC: Lower energy levels of the modified
Pöschl-Teller potential

a b E0 Eexact0 E1 Eexact1

0.25 5.5 -0.6329(2) -0.63281 -0.3819(7) -0.38281
0.25 15.5 -6.5704(6) -6.57031 -5.694(9) -5.69531
0.5 5.5 -2.5313(3) -2.53125 -1.530(3) -1.53125
0.5 15.5 -26.281(1) -26.2813 -22.80(3) -22.7813

a b E2 Eexact2 E3 Eexact3

0.25 5.5 -0.18(2) -0.19531 -0.09(3) -0.07031
0.25 15.5 -4.92(2) -4.88281 -3.8(4) -4.13281
0.5 5.5 -0.80(2) -0.78125 -0.31(6) -0.28125
0.5 15.5 -19.6(5) -19.5313 -16.9(9) -16.5313

Lower energy levels of the modified Pöschl-Teller potential,
calculated with N = 256, p = 9, NMC = 107.
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Improving effective actions: Recursive approach

Gaussian halving is developed and applicable for
single-particle one-dimensional systems only
For many-body systems in arbitrary dimensions we have
developed two equivalent approaches
First is based on direct calculation of ε-expansion of
short-time amplitudes, expressed as expectation values of
the corresponding free theory
Here we present second approach, based on solving
recursive relations for the discretized action. These
relations are derived from Schrödinger’s equation for
amplitudes.
This approach is by far the most efficient, both for
many-body and one-body systems.
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Schrödinger’s equation

We start from Schrödinger’s equation for the amplitude
A(q, q′; ε) for a system of M non-relativistic particles in d
spatial dimensions

[
∂

∂ε
− 1

2

M∑

i=1

4i + V (q)

]
A(q, q′; ε) = 0

[
∂

∂ε
− 1

2

M∑

i=1

4′i + V (q′)

]
A(q, q′; ε) = 0

Here 4i and 4′i are d-dimensional Laplacians over initial
and final coordinates of the particle i, while q and q′ are
d×M dimensional vectors representing positions of all
particles at the initial and final time.
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Equation for the ideal effective potential

If we express short-time amplitude A(q, q′; ε) by the ideal
discretized effective potential W

A(q, q′; ε) =
1

(2πε)dM/2
exp

[
−δ

2

2ε
− εW

]

we obtain equation for the effective potential in terms of
x = δ/2, x̄ = (q + q′)/2, V± = V (x̄± x)

W + x · ∂ W + ε
∂W

∂ε
− 1

8
ε∂̄2W − 1

8
ε∂2W +

1
8
ε2(∂̄W )2+

+
1
8
ε2(∂W )2 =

V+ + V−
2
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Recursive relations (1)

As before, the effective potential is given as a series

W (x, x̄; ε) =
∞∑

m=0

m∑

k=0

Wm,k(x, x̄) εm−k

where
Wm,k(x, x̄) = xi1xi2 · · ·xi2kci1,...,i2km,k (x̄)

Coefficients Wm,k are obtained from recursive relations

8 (m+ k + 1)Wm,k = ∂̄2Wm−1,k + ∂2Wm,k+1−

−
m−2∑

l=0

∑

r

(∂̄Wl,r) · (∂̄Wm−l−2,k−r)−

−
m−2∑

l=1

∑

r

(∂Wl,r) · (∂Wm−l−1,k−r+1)
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Recursive relations (2)

Diagonal coefficients are easily obtained from recursive
relations

Wm,m =
1

(2m+ 1)!
(x · ∂̄)2m V

Off-diagonal coefficients are obtained by applying recursive
relations in the following order

0

1

2

3

...

m

0 1 2 3 . . . k
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Effective actions for many-body systems

To level p = 3, effective action is given by

W0,0 = V

W1,1 =
1
6

(x · ∂̄)2V

W1,0 =
1
12
∂̄2V

W2,2 =
1

120
(x · ∂̄)4V

W2,1 =
1

120
(x · ∂̄)2 ∂̄2V

W2,0 =
1

240
∂̄4V − 1

24
(∂̄V ) · (∂̄V )
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Diagrammatic form of effective actions (1)

Derived recursive relations can be represented in a
diagrammatic form if we introduce

δij = i j , xi = i .

. . .

∂̄i1 ∂̄i2 · · · ∂̄il
V =

i1
i2

il

, . . .}

Wm,k =

2k

m, k
.

Diagrammatic form of diagonal coefficients

. . .} }. . .
Wm,m = = 1

(2m+1)!

2m2m

m, m
.
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Introduction
Gaussian halving

Recursive approach
Concluding remarks

Effective actions for many-body systems
Diagrammatic form of effective actions
Recursive relations for estimators
Numerical results

Diagrammatic form of effective actions (2)

Diagrammatic form of recursive relations

. . .

. . . . . .

. . .

. . . . . .

. . .}
} }

}
} }

}

8(m + k + 1)

2k2k2k

m, k
=

m− 1, k
+ (2k + 2)(2k + 1)

m, k + 1 −

−
m−2∑

l=0

∑

r

l, rl, r

2r

m− l − 2, k − r

2k − 2r

−
m−2∑

l=1

∑

r

2r(2k − 2r + 2)

2r − 1 2k − 2r + 1

m− l − 1, k − r + 1
.

Solutions to level p = 3
W0,0 = ,

W1,1 = 1
6

= 1
6 (1)2 ,

W1,0 = 1
12 = 1

12 (11) ,

W2,2 = 1
120 = 1

120 (1)4 ,

W2,1 = 1
120 = 1

120 (1)2(11) ,

W2,0 = 1
240 − 1

24

= 1
240 (11)2 − 1

24 (12) ,

W3,3 = 1
5040 = 1

5040 (1)6 ,

W3,2 = 1
3360 = 1

3360 (1)4(11) ,
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Recursive relations for estimators

For many-body estimators for expectation values we also
derive recursive relations using the recursive relations for
the effective action
If we write action and virial estimator for the energy in the
form

S∗N = S
(p=1)
N +

∞∑

p=2

N−1∑

n=0

σ(p)
n , E∗V = E

(p=1)
V +

∞∑

p=2

N−1∑

n=0

e
(p)
V,n

then the corresponding recursive relation to level p reads

e
(p)
V,n =

1
T

(
p+

1
2
q̄n,i ∂i

)
σ(p)
n
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Numerical results (1)

To verify the derived speedup in the convergence of path
integrals, we perform a series of PIMC simulations for
amplitudes of a two-particle system in two dimensions in
the potential

V (~r1, ~r2) =
1
2

(~r1 − ~r2)2 +
g1

24
(~r1 − ~r2)4 +

g2

2
(~r1 + ~r2)2

Numerical simulations are done using our SPEEDUP
PIMC code for various values of parameters g1 and g2, as
well as for various boundary conditions
Continuum amplitudes A(p) are estimated by fitting of
discretized values of amplitudes A(p)

N to polynomials in 1/N

A
(p)
N = A(p) +

B(p)

Np
+

C(p)

Np+1
+ . . .
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PIMC: Convergence to the continuum
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Amplitude for a quartic anharmonic oscillator with large
anharmonicity g1 = 10, g2 = 0, T = 1, NMC = 106 for
α = (0, 0; 0.2, 0.5), β = (1, 1; 0.3, 0.6).
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PIMC: Deviations from the continuum
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Deviations of amplitudes from the continuum for a quartic
anharmonic oscillator with large anharmonicity g1 = 10, g2 = 0,
T = 1, NMC = 106 (p = 1), 107 (p = 2), 109 (p = 3), 1010

(p = 4), for α = (0, 0; 0.2, 0.5), β = (1, 1; 0.3, 0.6).
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PIMC: Convergence of expectation values
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Convergence of discretized thermal expectation values of energy
to continuum as a function of N for a system of two particles in
two dimensions in a quartic potential with g1 = 1, g2 = 1/9,
T = 1, NMC = 107.
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PIMC: Deviations from expectation values
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Numerical results (2)

From the partition function it is possible to find energy
spectra of the system if we use Z(T ) =

∑∞
n=0 dne

−TEn

Free energy of the system, F (T ) = − 1
T lnZ(T ), tends to

the ground-state energy E0 for large propagation time T
If we intoduce auxiliary functions

F (n)(T ) = − 1
T

ln
Z(T )−∑n−1

i=0 di e
−TEi

dn

they can be fitted for large propagation time to

f (n)(T ) = En −
1
T

ln(1 + ae−Tb)

and they tend to corresponding energy levels En
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PIMC: Convergence of the free energy
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Convergence of the discretized free energy to continuum as a
function of N for a system of two particles in two dimensions in
a quartic potential with g1 = 1, g2 = 1, T = 1, NMC = 107.
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PIMC: Calculation of energy spectra
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Time dependence of the free energy and auxiliary functions f (1)

and f (2) for a system of two particles in two dimensions in a
quartic potential with g1 = 1/10, g2 = 1/9, NMC = 109, using
p = 5 effective action and N = 64.
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PIMC: Lower energy levels of anharmonic
oscillator (dM=4)

g1 E0 Epert0 E1 E2 E3

0.0 1.8857(1) 1.88562 2.3571(6) 2.83(1) 3.3(2)
0.1 1.9019(2) 1.90187 2.374(2) 2.82(1) —
1.0 2.0228(2) 2.03384 2.497(3) 2.94(3) —
10 2.6327(6) — 3.098(4) 3.57(3) —

Lower energy levels for a system of two particles in two
dimensions in a quartic potential with g2 = 1/9, calculated
using NMC = 109, p = 5 effective action and N = 64. Obtained
degeneracies of calculated energy levels are d0 = 1, d1 = 2,
d2 = 3, d3 = 6.
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Conclusions (1)

We introduced path integral formalism in quantum
mechanics
Monte Carlo method is presented, and its application to
the calculation of path integrals (PIMC)
We also presented a new method for numerical calculation
of path integrals and expectation values for a general
non-relativistic many-body quantum theory
We derived discretized effective actions which allow deeper
analytical understanding of the path integral formalism

Gaussian halving
ε-expansion of the short-time propagator
recursive approach

In numerical approach, discretized effective actions of level
p provide substantial speedup of Monte Carlo algorithm
from 1/N to 1/Np
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Conclusions (2)

For single-particle one-dimensional theories we have derived
discretized actions up to level p = 35, while for a general
non-relativistic many-body theory up to level p = 10
For special cases of potentials we have derived effective
actions to higher levels (p = 140 for a quartic anharmonic
oscillator in d = 1, p = 67 in d = 2, p = 37 for modified
Pöschl-Teller potential)
We have developed MC codes that implement the newly
introduce approached and performed extensive numerical
study through which the derived analytical results are
verified
We have derived Mathematica codes for automation of
symbolic derivation of discretized effective actions for
higher values of level p
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Current and future applications

Calculation of properties of Bose-Einstein condensates in
fast-rotating magneto-optical traps
Efficient calculation of ground state of various quantum
systems, including the description of Bose-Einstein
condensate by Gross-Pitaevskii (mean field) equation
Quantum gases with disorder (Anderson localization)
Improved estimators for expectations values (heat capacity,
magnetization etc.)
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Effective discretized p=4 action

S(p=4)
N

=
∑{

ε

(
1
2
δiδi
ε2

+ V

)

+
ε2

12
∂2

k,kV +
εδiδj
24

∂2
i,jV

− ε3

24
∂iV ∂iV +

ε3

240
∂4

i,i,j,jV +
ε2δiδj
480

∂4
i,j,k,kV +

εδiδjδkδl
1920

∂4
i,j,k,lV

+
ε4

6720
∂6

i,i,j,j,k,kV −
ε4

120
∂iV ∂

3
i,k,kV −

ε4

360
∂2

i,jV ∂
2
i,jV

− ε3δiδj
480

∂kV ∂
3
k,i,jV +

ε3δiδj
13440

∂6
i,j,k,k,l,lV −

ε3δiδj
1440

∂2
i,kV ∂

2
k,jV

+
ε2δiδjδkδl

53760
∂6

i,j,k,l,m,mV +
εδiδjδkδlδmδn

322560
∂6

i,j,k,l,m,nV

}
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