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Institute for Theoretical Physics, JKU, Linz, 7 September 2009A. Balaž: Properties of Quantum Systems via Num. Diagonalization of the Evolution Operator



Effective actions
Diagonalization

Application to BECs
Concluding remarks

Introduction
Gaussian halving
Euler’s summation formula
Recursive approach: many-body systems

Formulation of the path integral formalism (1)

Amplitudes for transition from an initial state |α〉 to a final
state |β〉 in time T can be written as

A(α, β;T ) = 〈β|e− i
~ ĤT |α〉

For technical reasons, usually we use imaginary time
The standard derivation starts from the identity

A(α, β;T ) =
∫
dq1 · · · dqN−1A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

dividing the evolution into N steps of the length
ε = T/N .This expression is exact.
Next step is approximate calculation of short-time
amplitudes up to the first order in ε, and we get (~ = 1)

AN (α, β;T ) =
1

(2πε)N/2

∫
dq1 · · · dqN−1 e

−SN
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Illustration of the discretization of trajectories
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Formulation of the path integral formalism (2)

Continual amplitude A(α, β;T ) is obtained in the limit
N →∞ of the discretized amplitude AN (α, β;T ),

A(α, β;T ) = lim
N→∞

AN (α, β;T )

Discretized amplitude AN is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action
For a theory defined by the Lagrangian L = 1

2 q̇
2 + V (q),

(naive) discretized action is given by

SN =
N−1∑

n=0

(
δ2
n

2ε
+ εV (q̄n)

)
,

where δn = qn+1 − qn, q̄n = qn+1+qn
2 .
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Numerical approach to the calculation of path
integrals (1)

Path integral formalism is ideally suited for numerical
approach, with physical quantities defined by discretized
expressions as multiple integrals of the form

∫
dq1 · · · dqN−1 e

−S
N

Monte Carlo (MC) is the method of choice for calculation
of such intergals
However, although multiple integrals can be calculated
very accurately and efficiently by MC, there still remains
the difficult N →∞ limit
This is what makes the outlined constructive definition of
path integrals difficult to use in practical applications
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Numerical approach to the calculation of path
integrals (2)

Discretization used in the definition of path integrals is not
unique; in fact, the choice of the discretization is of
essential importance
Naive discretized action (in the mid-point prescription)
gives discretized amplitudes converging to the continuum
as slow as 1/N
Using special tricks we can get better convergence (e.g. left
prescription gives 1/N2 convergence when partition
function is calculated)
However, this cannot be done in a systematic way, nor it
can be used in all cases (e.g. left prescription cannot be
used for systems with ordering ambiguities)
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Typical 1/N convergence of naively discretized
path integrals
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Discretized effective actions (1)

Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum
values
It is possible to introduce different discretized actions
which contain some additional terms compared to the naive
discretized action
These additional terms must vanish in the N →∞ limit,
and should not change continuum values of amplitudes, e.g.

N−1∑

n=0

ε3V ′(q̄n)→ ε2
∫ T

0
dt V ′(q(t))→ 0

Additional terms in discretized actions are chosen so that
they speed up the convergence of path integrals
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Discretized effective actions (2)

Improved discretized actions have been earlier constructed
through several approaches, including

generalizations of the Trotter-Suzuki formula
improvements in the short-time propagation
expansion of the propagator by the number of derivatives

This improved the convergence of general path integrals for
partition functions from 1/N to 1/N4

Li-Broughton effective potential

V LB = V +
1
24
ε2 V ′2 .

in the left prescription gives 1/N4 convergence
Derivation of the above expression makes use of the cyclic
property of the trace - the improvement is valid for
partition functions only
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Improving effective actions

We present an approach enabling a substantial speedup in
the convergence of path integrals through studying the
relation between different discretizations
Using this approach we have derived the integral equation
connecting discretized effective actions of different
coarseness, which allows their systematic derivation. This
leads to improved 1/Np convergence of path integrals for
one-particle systems in d = 1 - Gaussian halving
We also present the generalization to many-body systems,
based on solving the recursive relations for discretized
effective action, derived from equations for short-time
amplitudes - recursive approach
The presented results are highly related to recently
developed systematic approach by Chin and collaborators
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Ideal discretization (1)

Ideal discretized action S∗ is defined as the action giving
exact continual amplitudes AN = A for any discretization
N

For the free particle, the naive discretized action is ideal
From the completeness relation

A(α, β;T ) =
∫
dq1 · · · dqN−1 A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

it follows that the ideal discretized action S∗n for the
propagation time ε is given by

A(qn, qn+1; ε) = (2πε)−
1
2 e−S

∗
n

Ideal discretized action S∗ is the sum of terms S∗n
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Ideal discretization (2)

In general case, the ideal discretized action can be written
as

S∗n =
δ2
n

2ε
+ εWn ,

where W is the effective potential which contains V (q̄n)
and corrections
From the definition of the ideal discretized action it follows

Wn = W (δn, q̄n; ε)

From the reality of imaginary-time amplitudes, i.e. from
the hermiticity of real-time amplitudes we obtain

W (δn, q̄n; ε) = W (−δn, q̄n; ε)
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Relation between different discretizations (1)
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Relation between different discretizations (2)
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Relation between different discretizations (3)

If we integrate out all odd-numbered coordinates, for a
given discretized 2N -action we get the effective N -action

e−
eSN =

(
2
πεN

)N
2
∫
dx1 · · · dxN e−S2N

However, if we use the ideal discretized action, then we get

e−S
∗
N =

(
2
πεN

)N
2
∫
dx1 · · · dxN e−S

∗
2N
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Integral equation for the effective action

From previous relation we obtain integral equation for the
effective potential in the form

e−εNW (δn,q̄n;εN ) =
(

2
πεN

) 1
2
∫ +∞

−∞
dy e

− 2
εN

y2

×

G
(
q̄n + y; qn, qn+1,

εN
2

)
,

where function G is defined as

− 2
εN

lnG(x; qn, qn+1, εN ) =

W

(
qn+1 − x,

qn+1 + x

2
; εN

)
+W

(
x− qn,

x+ qn
2

; εN

)
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Euler’s summation formula (1)

For ordinary integrals Euler’s summation formula reads

I[f ] =
∫ T

0
f(t)dt =

N∑

n=1

f(tn)εN −
εN
2

N∑

n=1

f ′(tn)εN +

ε2N
6

N∑

n=1

f ′′(tn)εN + . . .

I[f ] is now written as a series in time step εN ,

I[f ] = IN [f (p)] +O(εpN ) ,

where f (p) is the corresponding initial part of the ideal f∗

Using W , we will derive Euler’s summation formula for
path integrals
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Euler’s summation formula (2)

When we expand function G in a series in the first
argument around q̄n, we get the following equation for W

W (δn, q̄n; εN ) = − 1
εN

ln

[ ∞∑

k=0

G(2k)
(
q̄n; qn, qn+1,

εN
2

)

(2k)!!

(εN
4

)k
]

Further application of asymptotic expansion makes use of
the expansion of the ideal effective potential in a series

W (δn, q̄n; εN ) =
∞∑

k=0

δ2k
n gk(q̄n; εN )

From the equation for W we get a system of differential
equations for functions gk
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Euler’s summation formula (3)

If we expand functions gk into series in the time step ε

gk(q̄n; εN ) =
p−k−1∑

m=0

εmN gkm(q̄n) (k = 0, . . . , p− 1)

we obtain a system of equations that is easily decoupled
and can be solved in functions gk
Note that in the above expression the sum is limited
according to the consistency condition which follows from
the diffusion relation δ2 ∝ ε
Boundary condition for the above system is g00 = V ,
obtained from limits δ2

n → 0 and εN → 0, in which W
reduces to

W (0, q̄n; 0) = V (q̄n)
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Euler’s summation formula (4)

To level p = 3 we get

g0(q̄n; εN ) = V (q̄n) + εN
V ′′(q̄n)

12
+ ε2N

[
−V

′(q̄n)2

24
+
V (4)(q̄n)

240

]

g1(q̄n; εN ) =
V ′′(q̄n)

24
+ εN

V (4)(q̄n)
480

g2(q̄n; εN ) =
V (4)(q̄n)

1920
Ideal effective action on the convergence level p is given as

S
(p)
N =

N−1∑

n=0

[
δ2
n

2εN
+ εN

p−1∑

k=0

δ2k
n gk(q̄n; εN )

]

This ensures the improved convergence
A

(p)
N (α, β;T ) = A(α, β;T ) +O(εpN )
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Recursive approach

Gaussian halving is developed and applicable for
one-particle one-dimensional systems only
For many-body systems in arbitrary dimensions we have
developed two equivalent approaches
First is based on direct calculation of ε-expansion of
short-time amplitudes, expressed as expectation values of
the corresponding free theory

following the original idea from the book by H. Kleinert

Here we present second approach, based on solving
recursive relations for the discretized action, derived from
Schrödinger’s equation for amplitudes.
This approach is by far the most efficient, both for
many-body and one-body systems.

Institute for Theoretical Physics, JKU, Linz, 7 September 2009A. Balaž: Properties of Quantum Systems via Num. Diagonalization of the Evolution Operator



Effective actions
Diagonalization

Application to BECs
Concluding remarks

Introduction
Gaussian halving
Euler’s summation formula
Recursive approach: many-body systems

Effective actions for many-body systems

We start from Schrödinger’s equation for the amplitude
A(q, q′; ε) for a system of M non-relativistic particles in d
spatial dimensions

[
∂

∂ε
− 1

2

M∑

i=1

4i + V (q)

]
A(q, q′; ε) = 0

[
∂

∂ε
− 1

2

M∑

i=1

4′i + V (q′)

]
A(q, q′; ε) = 0

Here 4i and 4′i are d-dimensional Laplacians over initial
and final coordinates of the particle i, while q and q′ are
d×M dimensional vectors representing positions of all
particles at the initial and final time.
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Equation for the ideal effective potential

If we express short-time amplitude A(q, q′; ε) by the ideal
discretized effective potential W

A(q, q′; ε) =
1

(2πε)dM/2
exp

[
−δ

2

2ε
− εW

]

we obtain equation for the effective potential in terms of
x = δ/2, x̄ = (q + q′)/2, V± = V (x̄± x)

W + x · ∂ W + ε
∂W

∂ε
− 1

8
ε∂̄2W − 1

8
ε∂2W +

1
8
ε2(∂̄W )2+

+
1
8
ε2(∂W )2 =

V+ + V−
2
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Recursive relations (1)

As before, the effective potential is given as a series

W (x, x̄; ε) =
∞∑

m=0

m∑

k=0

Wm,k(x, x̄) εm−k

where
Wm,k(x, x̄) = xi1xi2 · · ·xi2kci1,...,i2km,k (x̄)

Coefficients Wm,k are obtained from recursive relations

8 (m+ k + 1)Wm,k = ∂̄2Wm−1,k + ∂2Wm,k+1−

−
m−2∑

l=0

∑

r

(∂̄Wl,r) · (∂̄Wm−l−2,k−r)−

−
m−2∑

l=1

∑

r

(∂Wl,r) · (∂Wm−l−1,k−r+1)
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Recursive relations (2)

Diagonal coefficients are easily obtained from recursive
relations

Wm,m =
1

(2m+ 1)!
(x · ∂̄)2m V

Off-diagonal coefficients are obtained by applying recursive
relations in the following order

0

1

2

3

...

m

0 1 2 3 . . . k
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Effective actions for many-body systems

To level p = 3, effective action is given by

W0,0 = V

W1,1 =
1
6

(x · ∂̄)2V

W1,0 =
1
12
∂̄2V

W2,2 =
1

120
(x · ∂̄)4V

W2,1 =
1

120
(x · ∂̄)2 ∂̄2V

W2,0 =
1

240
∂̄4V − 1

24
(∂̄V ) · (∂̄V )
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Effective discretized p=4 action

S(p=4)
N

=
∑{

ε

(
1
2
δiδi
ε2

+ V

)

+
ε2

12
∂2

k,kV +
εδiδj
24

∂2
i,jV

− ε3

24
∂iV ∂iV +

ε3

240
∂4

i,i,j,jV +
ε2δiδj
480

∂4
i,j,k,kV +

εδiδjδkδl
1920

∂4
i,j,k,lV

+
ε4

6720
∂6

i,i,j,j,k,kV −
ε4

120
∂iV ∂

3
i,k,kV −

ε4

360
∂2

i,jV ∂
2
i,jV

− ε3δiδj
480

∂kV ∂
3
k,i,jV +

ε3δiδj
13440

∂6
i,j,k,k,l,lV −

ε3δiδj
1440

∂2
i,kV ∂

2
k,jV

+
ε2δiδjδkδl

53760
∂6

i,j,k,l,m,mV +
εδiδjδkδlδmδn

322560
∂6

i,j,k,l,m,nV

}
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Diagrammatic form of effective actions (1)

Derived recursive relations can be represented in a
diagrammatic form if we introduce

δij = i j , xi = i .

. . .

∂̄i1 ∂̄i2 · · · ∂̄il
V =

i1
i2

il

, . . .}

Wm,k =

2k

m, k
.

Diagrammatic form of diagonal coefficients

. . .} }. . .
Wm,m = = 1

(2m+1)!

2m2m

m, m
.
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Diagrammatic form of effective actions (2)

Diagrammatic form of recursive relations

. . .

. . . . . .

. . .

. . . . . .

. . .}
} }

}
} }

}

8(m + k + 1)

2k2k2k

m, k
=

m− 1, k
+ (2k + 2)(2k + 1)

m, k + 1 −

−
m−2∑

l=0

∑

r

l, rl, r

2r

m− l − 2, k − r

2k − 2r

−
m−2∑

l=1

∑

r

2r(2k − 2r + 2)

2r − 1 2k − 2r + 1

m− l − 1, k − r + 1
.

Solutions to level p = 3
W0,0 = ,

W1,1 = 1
6

= 1
6 (1)2 ,

W1,0 = 1
12 = 1

12 (11) ,

W2,2 = 1
120 = 1

120 (1)4 ,

W2,1 = 1
120 = 1

120 (1)2(11) ,

W2,0 = 1
240 − 1

24

= 1
240 (11)2 − 1

24 (12) ,

W3,3 = 1
5040 = 1

5040 (1)6 ,

W3,2 = 1
3360 = 1

3360 (1)4(11) ,
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Space-discretized Hamiltonian (1)

Coordinate representation of the time-independent
Schrödinger’s equation

∫
dy 〈x|Ĥ|y〉 〈y|ψ〉 = E 〈x|ψ〉

Numerical implementation of the exact diagonalization:
continuous coordinates x replaced by a discrete space grid
xn = n∆
To represent this on a computer, we still have to restrict
the integers n to a finite range, which is equivalent to
introducing a space cutoff L, or putting the system in a
infinitely high potential box
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Space-discretized Hamiltonian (2)

For example, the rectangular quadrature rule leads to the
following space-discretized Schrödinger equation

N−1∑

m=−N
Hnm〈m∆|ψ〉 = E(∆, L) 〈n∆|ψ〉 ,

where Hnm = ∆ · 〈n∆|Ĥ|m∆〉, N = [L/∆]
As a result, we have obtained a 2N × 2N matrix that
represents the Hamiltonian of the system
The eigenvalues of this matrix depend on the two
parameters introduced in the above discretization process:
cutoff L and discretization step ∆
Continuous physical quantities are recovered in the limit
L→∞ and ∆→ 0
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Space-discretized Hamiltonian (3)

The two approximations (∆, L) involved in the
discretization procedure are common steps in solving
eigenproblems of Hamiltonians
The system is effectively surrounded by an infinitely high
wall, and as the cutoff L tends to infinity, we approach the
exact energy levels always from above, which is a typical
variational behavior
The effects of the discretization step ∆ are much more
complex, and follow from the fact that the kinetic energy
operator cannot be exactly represented on finite real-space
grids
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Space-discretized Hamiltonian (4)

A typical naive discretization of the kinetic energy operator
(corresponding to a tight-binding model if V = 0)

Hnm =





1/∆2 + V (n∆) if n = m
−1/(2∆2) if |n−m| = 1
0 otherwise.

This leads to numerical results for eigenvalues which
converge with ∆2

The errors associated with this approach have
non-variational behavior, i.e. the obtained results are not
always upper bounds of the exact energy levels
The state-of-the-art in this approach is a set of
systematically improved prescriptions for discretization of
the kinetic energy operator, which speeds up convergence
to the continuum limit to higher powers of ∆2
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Space-discretized evolution operator

Here we instead use the approach of diagonalization of the
space-discretized evolution operator, introduced first by
Sethia et al. [J. Chem. Phys. 93 (1990) 7268]

N−1∑

m=−N
Anm(t) 〈m∆|ψ〉 = e−t E(∆,L,t) 〈n∆|ψ〉 ,

where Anm(t) = ∆ ·A(n∆,m∆; t) = ∆ · 〈n∆|e−tĤ |m∆〉
In this approach the time of evolution t plays the role of an
auxiliary parameter which is not related to the
discretization, but numerically calculated eigenvalues and
eigenstates will necessarily depend on it
We also carefully study the errors associated with the
discretization and numerical diagonalization
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Errors due to the spacing ∆ (1)

The free-particle transition amplitude satisfies∫
dxA(x, y; t) = 1, which gives conservation of probability

In the space-discretized analogue of this model the
transition amplitude is Anm(t) = ∆A(n∆,m∆; t)
Using the Poisson summation formula we find that the
space discretized free-particle amplitude satisfies

∑

n∈Z
Anm(t) =

∑

n∈Z
e−

2π2

∆2 n
2t ≈ 1 + 2 exp

(
−2π2

∆2
t

)

Conservation of probability is thus obtained only in the
continuum limit ∆→ 0
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Errors due to the spacing ∆ (2)

Note that the effect of discretization is non-perturbative in
discretization step ∆, i.e. it is smaller than any power of ∆
The effect of discretization is also universal – it holds for
all models, since the free particle transition amplitude is
the dominant term in the short time expansion of the
transition amplitude of a general theory
This leads to discretization errors for energy eigenvalues

Ek(∆, L, t)− Ek ∼ −
1
t

exp
(
−2π2

∆2
t

)
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Errors due to the spacing ∆ (3)
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Errors due to the spacing ∆ (4)
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Errors due to the spacing ∆ (5)
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Errors due to the spacing ∆ (6)
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Errors due to the spacing ∆ (7)
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Errors due to the space-cutoff L (1)

The effects of space cutoffs are known for continuous-space
theories. The shift in energy level Ek(L)− Ek is found to
be positive

Ek(L)− Ek = Ck(a)
(∫ L

a

dx
|ψk(x)|2

)−1

,

where a is larger than and well away from the largest zero
of ψk(x), but smaller than and well away from the space
cutoff L
The constant Ck(a) depends on the normalization of
eigenfunction and the choice of parameter a. For the
ground state we can always choose a = 0, so that

C0(0) =
(∫ L

−L
dx |ψ0(x)|2

)−1
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Errors due to the space-cutoff L (2)

When we use diagonalization of the discretized amplitudes,
the errors in energy level will necessarily also depend on
the parameter t and other discretization parameters
A simple estimate of ground energy errors follows from the
spectral decomposition of diagonal amplitudes
For large t we have A(x, x; t) ≈ |ψ0(x)|2e−E0t. Integrating
this we find an approximate result for E0 for a system with
cutoff L

E0(L, t) ≈ −1
t

ln
∫ L

−L
dxA(x, x; t)

In the L→∞ limit we recover the exact ground energy, so
that a simple estimate of finite size effects on E0 is given by

E0(L, t)− E0 ≈
1
t

∫

|x|>L
dx |ψ0(x)|2
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Errors due to the space-cutoff L (3)
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Evolution-time errors (1)

The precise calculation of transition amplitudes is essential
for applications of this method
In original and subsequent papers by Sethia et al. all
calculations are based on the naive approximation for
amplitudes

A(1)(x, y; t) ≈ 1
(2πt)d/2

e−
(x−y)2

2t
−tV (x+y

2 )

correct only to order O(t).
If one uses the naive approximation for transition
amplitudes, time t must be very short for errors to be small
enough
Such errors are usually much larger than errors due to
discretization, which significantly limits the applicability
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Evolution-time errors (2)

We will use the effective action approach, which gives
closed-form analytic expressions A(p)(x, y; t) for short-time
transition amplitudes, converging much faster

A(p)(x, y; t) = A(x, y; t) +O(tp)

If p is high enough, it is sufficient that the time of
evolution is less than the radius of convergence of the
above series (t < τc ∼ 1) and errors in calculated values of
transition amplitudes will be negligible
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Evolution-time errors (3)
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Evolution-time errors (4)
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Energy eigenvalues and eigenstates in d = 1 (1)
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The quartic anharmonic potential, its energy eigenvalues
(horizontal lines) and eigenfunctions ψk(x) for k = 0, 9, 15, 20,
with the parameters p = 21, M = ω = 1, g = 48, L = 8,
∆ = 9.76 · 10−4, t = 0.02.
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Energy eigenvalues and eigenstates in d = 1 (2)
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The double-well potential, its energy eigenvalues (horizontal
lines) and eigenfunctions ψk(x) for k = 0, 1, 2, 3, 4, 5, 6, 7, with
the parameters M = −10, ω = 1, g = 12, L = 10,
∆ = 1.22 · 10−3, t = 0.1.
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Energy eigenvalues and eigenstates in d = 1 (3)
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The modified Pöschl-Teller potential, its energy eigenvalues
(horizontal lines) and eigenfunctions ψk(x) for k = 0, 1, 3, 6, 9,
with the parameters α = 0.5, λ = 15.5, p = 21, L = 8,
∆ = 9.76 · 10−4, t = 10−3.
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Energy eigenvalues and eigenstates in d = 1 (4)
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Ideal Bose gases (1)

Good approximation for weakly-interacting dilute gases
Bose-Einstein condensates usually realized in harmonic
magneto-optical traps
Fast-rotating Bose-Einstein condensates extensively studied
- one of the hallmarks of a superfluid is its response to
rotation
Paris group (J. Dalibard) has recently realized critically
rotating BEC of 3 · 105 atoms of 87Rb in an axially
symmetric trap - we model this experiment
The small quartic anharmonicity in x− y plane was used to
keep the condensate trapped even at the critical rotation
frequency [PRL 92, 050403 (2004)]
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Ideal Bose gases (2)

We apply the developed discretized effective approach to
the study of properties of such (fast-rotating)
Bose-Einstein condensates
We calculate large number of energy eigenvalues and
eigenvectors of one-particle states
We numerically study global properties of the condensate

Tc as a function of rotation frequency Ω
ground state occupancy N0/N as a function of temperature

We calculate density profile of the condensate and
time-of-flight absorption graphs
VBEC = M

2 (ω2
⊥ − Ω2)r2

⊥ + M
2 ω

2
zz

2 + k
4r

4
⊥, ω⊥ = 2π × 64.8

Hz, ωz = 2π × 11.0 Hz, k = 2.6× 10−11 Jm−4
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Calculation of global properties (1)

Within the grand-canonical ensemble, the partition
function of the ideal Bose gas is

Z =
∑

ν

e−β(Eν−µNν) =
∏

k

1
1− e−β(Ek−µ)

The free energy is given by

F = − 1
β

lnZ =
1
β

∑

k

ln(1−e−β(Ek−µ)) = − 1
β

∞∑

m=1

emβµ

m
Z1(mβ)

where Z1(mβ) is a single-particle partition function
The number of particles is given as

N = −∂F
∂µ

=
∞∑

m=1

(emβµZ1(mβ)− 1)
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Calculation of global properties (2)

The usual approach to BEC is to treat the ground state
separately, and fix µ below the condensation temperature
µ = E0

Below the condensation temperature we have

N = N0 +
∞∑

m=1

(emβE0Z1(mβ)− 1)

The condensation temperature Tc is thus defined by the
condition:

N0 = N −
∞∑

m=1

(emβcE0Z1(mβc)− 1) = 0

Institute for Theoretical Physics, JKU, Linz, 7 September 2009A. Balaž: Properties of Quantum Systems via Num. Diagonalization of the Evolution Operator



Effective actions
Diagonalization

Application to BECs
Concluding remarks

Calculation of global properties
Density profiles
Time-of-flight graphs

Calculation of the condensation temperature (1)
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m=1(emβE0Z1(mβ)− 1) as a function of M for
critical rotation, obtained with p = 18 effective action.
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Calculation of the condensation temperature (2)
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Calculation of the ground-state occupancy
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Details on the calculation of global properties

En can be obtained by the direct diagonalization of the
space-discretized propagator, and single-particle partition
functions Z1(mβ) can be the calculated as

Z1(mβ) =
∑

n

e−mβEn

This is suitable for low temperatures, when higher energy
levels (not accessible in the diagonalziation) are negligibe
For mid-range temperatures, Z1 can be numerically
calculated as a sum of diagonal amplitudes, and then E0

may be extracted from the free energy
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Density profiles of Bose-Einstein condensates (1)

Density profile is given in terms of the two-point
propagator ρ(~r1, ~r2) = 〈Ψ̂†(~r1)Ψ̂(~r2)〉 as a diagonal element,
n(~r) = ρ(~r, ~r)
For the ideal Bose gas, the density profile can be written as

n(~r) = N0|ψ0(~r)|2 +
∑

n≥1

Nn|ψn(~r)|2

where the second term represents thermal density profile
Vectors ψn represent single-particle eigenstates, while
occupancies Nn are given by the Bose-Einstein distribution
for n ≥ 1,

Nn =
1

eβ(En−E0) − 1
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Density profiles of Bose-Einstein condensates (2)

Using the cumulant expansion of occupancies and spectral
decomposition of amplitudes, the density profile can be
also written as

n(~r) = N0|ψ0(~r)|2 +
∑

m≥1

[
emβE0A(~r, 0;~r,mβ~)− |ψ0(~r)|2

]

where A(~r, 0;~r,mβ~) represents the (imaginary-time)
amplitude for one-particle transition from the position ~r in
t = 0 to the position ~r in t = mβ~
Both definitions are mathematically equivalent
The first one is more suitable for low temperatures, while
the second one is suitable for mid-range temperatures
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Density profiles of Bose-Einstein condensates (3)
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Density profile in x− y plane for the condensate at
under-critical rotation Ω/ω⊥ = 0.9, T = 10 nK < Tc = 76.8 nK.
The linear size of the profile is 54 µm.
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Density profiles of Bose-Einstein condensates (4)
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Density profile in x− y plane for the condensate at critical
rotation Ω/ω⊥ = 1, T = 10 nK < Tc = 63.3 nK. The linear size
of the profile is 54 µm.
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Density profiles of Bose-Einstein condensates (5)
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Density profile in x− y plane for the condensate at over-critical
rotation Ω/ω⊥ = 1.05, T = 10 nK < Tc = 55.3 nK. The linear
size of the profile is 54 µm.
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Density profiles of Bose-Einstein condensates (6)
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Density profile in x− y plane for the condensate at over-critical
rotation Ω/ω⊥ = 1.2, T = 10 nK < Tc = 49.1 nK. The linear
size of the profile is 108 µm.
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Time-of-flight graphs for BECs (1)

In typical BEC experiments, a trapping potential is
switched off and gas is allowed to expand freely during a
short time of flight t (of the order of 10 ms)
The absorption picture is then taken, and it maps the
density profile to the plane perpendicular to the laser beam
For the ideal Bose condensate, the density profile after time
t is given by

n(~r, t) = N0|ψ0(~r, t)|2 +
∑

n≥1

Nn|ψn(~r, t)|2

where

ψn(~r, t) =
∫

d3~k d3 ~R

(2π)3
e−iω~kt+i

~k·~r−i~k·~R ψn(~R)
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Time-of-flight graphs for BECs (2)

For mid-range temperatures we can use mathematically
equivalent definition of the density profile

n(~r, t) = N0|ψ0(~r, t)|2 +
∑

m≥1

[
emβE0

∫
d3~k1 d3~k2 d3 ~R1 d3 ~R2

(2π)6
×

e
−i(ω~k1

−ω~k2
)t+i(~k1−~k2)·~r−i~k1·~R1+i~k2·~R2 A(~R1, 0; ~R2,mβ~)− |ψ0(~r, t)|2

]

In both approaches it is first necessary to calculate E0 and
ψ0(~r) using direct diagonalization or some other method
FFT is ideally suitable for numerical calculations of
time-of-flight graphs
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Time-of-flight graphs for BECs (3)

(Loading diag-d025-L400-r09eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at under-critical rotation Ω/ω⊥ = 0.9, T = 10
nK < Tc = 76.8 nK. The linear size of the profile is 54 µm.
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Time-of-flight graphs for BECs (4)

(Loading diag-d025-L400-r10eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at critical rotation Ω/ω⊥ = 1, T = 10 nK
< Tc = 63.3 nK. The linear size of the profile is 54 µm.
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Time-of-flight graphs for BECs (5)

(Loading diag-d025-L400-r105eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at over-critical rotation Ω/ω⊥ = 1.05, T = 10
nK < Tc = 55.3 nK. The linear size of the profile is 54 µm.
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Time-of-flight graphs for BECs (6)

(Loading diag-d05-L400-r12eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at over-critical rotation Ω/ω⊥ = 1.2, T = 10 nK
< Tc = 49.1 nK. The linear size of the profile is 108 µm.
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Time evolution of the density at the origin
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Time evolution [s] of the condensate density at the origin of
x− y plane for the condensate at various rotation frequencies
(r = Ω/ω⊥) for T = 10 nK < Tc.
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Conclusions (1)

We have presented a new method for numerical calculation
of path integrals for a general non-relativistic many-body
quantum theory
We have derived discretized effective actions which allow
deeper analytical understanding of the path integral
formalism
In the numerical approach, discretized effective actions of
level p provide substantial speedup of Monte Carlo
algorithm from 1/N to 1/Np

For single-particle one-dimensional theories we have derived
discretized actions up to level p = 35, while for a general
non-relativistic many-body theory up to level p = 10
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Conclusions (2)

For special cases of potentials we have derived effective
actions to higher levels (p = 140 for a quartic anharmonic
oscillator in d = 1, p = 67 in d = 2, p = 37 for modified
Pöschl-Teller potential)
We have developed MC codes that implement the newly
introduced approaches, as well as Mathematica codes for
automation of symbolic derivation of discretized effective
actions
The derived results used to study properties of quantum
systems by numerical diagonalization of the space-
discretized evolution operator
Numerical study of properties of (fast-rotating) ideal
Bose-Einstein condensates

Condensation temperature and ground-state occupancy
Density profiles and time-of-flight graphs
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Further applications

Properties of interacting Bose-Einstein condensates
Effective actions for time-dependent potentials
Gross-Pitaevskii (mean field) equation

Ground states of low-dimensional quantum systems
Quantum gases with disorder (Anderson localization)
Improved estimators for expectations values (heat capacity,
magnetization etc.)
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