Fast Converging Path Integrals for Time-Dependent Potentials*

A. Balaž ${ }^{1}$, I. Vidanović ${ }^{1}$, A. Bogojević ${ }^{1}$, A. Pelster ${ }^{2,3}$

${ }^{1}$ Scientific Computing Laboratory, Institute of Physics Belgrade Pregrevica 118, 11080 Belgrade, Serbia http://www.scl.rs/
${ }^{2}$ Fachbereich Physik, Universität Duisburg-Essen
Lotharstrasse 1, 47048 Duisburg, Germany
${ }^{3}$ Institut für Physik und Astronomie, Universität Potsdam, Campus Golm Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
*Supported by the Serbian-German bilateral research project PI-BEC, Serbian Ministry of Science research project No. OI141035, and EU CX-CMCS Centre of Excellence grant. $\overline{\underline{\Sigma}}$

Overview

－Introduction
－Path integral formalism
－Discretized effective actions
－Results for time－independent potentials
－Recursive approach
－Schrödinger＇s equation
－Recursive relations
－Numerical results
－Forced harmonic oscillator
－Time－dependent harmonic oscillator
－Time－dependent pure quartic oscilator
－Conclusions and outlook

Path integral formalism (1)

- Amplitudes for transition from an initial state $\left|\mathbf{a}, t_{a}\right\rangle$ to a final state $\left|\mathbf{b}, t_{b}\right\rangle$ in imaginary time $T=t_{b}-t_{a}$:

$$
A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)=\left\langle\mathbf{b}, t_{b}\right| \hat{T} \exp \left\{-\int_{t_{a}}^{t_{b}} d t \hat{H}(\hat{\mathbf{p}}, \hat{\mathbf{q}}, t)\right\}\left|\mathbf{a}, t_{a}\right\rangle
$$

- Dividing the evolution into N time steps $\epsilon=T / N$, we get

$$
A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)=\int d q_{1} \cdots d q_{N-1} A\left(\alpha, q_{1} ; \epsilon\right) \cdots A\left(q_{N-1}, \beta ; \epsilon\right)
$$

- Approximate calculation of short-time amplitudes leads to

$$
A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)=\frac{1}{(2 \pi \epsilon)^{M d N / 2}} \int d q_{1} \cdots d q_{N-1} e^{-S_{N}}
$$

- Hagen Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, $5{ }^{\text {th }}$ edition, World Scientific, Singapore, 2009.

Path integral formalism（2）

－Continual amplitude $A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)$ is obtained in the limit $N \rightarrow \infty$ of the discretized amplitude $A_{N}\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)$ ，

$$
A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)=\lim _{N \rightarrow \infty} A_{N}\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)
$$

－Discretized amplitude A_{N} is expressed as a multiple integral of the function $e^{-S_{N}}$ ，where S_{N} is called discretized action
－For a theory defined by the Hamiltonian operator $H(\mathbf{p}, \mathbf{q}, t)=\frac{1}{2} \mathbf{p}^{2}+V(\mathbf{q}, t)$ ，（naive）discretized action is

$$
S_{N}=\sum_{n=0}^{N-1}\left(\frac{\boldsymbol{\delta}_{n}^{2}}{2 \epsilon}+\epsilon V\left(\mathbf{x}_{n}, \tau_{n}\right)\right)
$$

where $\boldsymbol{\delta}_{n}=\mathbf{q}_{n+1}-\mathbf{q}_{n}, \mathbf{x}_{n}=\frac{\mathbf{q}_{n+1}+\mathbf{q}_{n}}{2}, \tau_{n}=\frac{t_{n}+t_{n+1}}{2}$ ．

Discretized effective actions

- Discretized actions can be classified according to the speed of convergence of discretized path integrals
- Improved discretized actions have been earlier constructed, mainly tailored for calculation of partition functions
- split-operator techniques
- multi-product expansion
- Sixth order expansion: Goldstein and Baye, PRE 70, 056703 (2004)
- This cannot be easily extended to higher orders, nor such an approach was developed for general transition amplitudes
- We introduce the ideal short-time discretized action

$$
S^{*}(\mathbf{x}, \boldsymbol{\delta} ; \varepsilon, \tau)=\frac{\boldsymbol{\delta}^{2}}{2 \varepsilon}+\varepsilon W(\mathbf{x}, \boldsymbol{\delta} ; \varepsilon, \tau)
$$

Results for time-independent potentials

- For time-independent potentials, we have developed a recursive formalism that allows calculation of the short-time expansion for W to arbitrary order in the time of propagation ε [PRE 79, 036701 (2009)]
- Applied for accurate calculation of energy eigenstates and eigenvalues using the numerical diagonalization of the space-discretized matrix of the evolution operator [PRE 80, 066705 (2009), PRE 80, 066706 (2009)]
- One-time-step approximation to the path integral applied to the numerical study of properties of fast-rotating Bose-Einstein condensates, using the (very) high order effective potential [PLA 374, 1539 (2010)]

Schrödinger's equation (1)

- We start from Schrödinger's equation for the short-time amplitude $A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)$

$$
\begin{aligned}
& {\left[\partial_{\varepsilon}+\frac{1}{2}\left(\hat{H}_{a}+\hat{H}_{b}\right)\right] A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)=0} \\
& {\left[\partial_{\tau}+\left(\hat{H}_{b}-\hat{H}_{a}\right)\right] A\left(\mathbf{a}, t_{a} ; \mathbf{b}, t_{b}\right)=0}
\end{aligned}
$$

where $\hat{H}_{a}=H\left(-i \boldsymbol{\partial}_{\mathbf{a}}, \mathbf{a}, t_{a}\right), \varepsilon=t_{b}-t_{a}, \tau=\left(t_{a}+t b\right) / 2$

- If we change the variables \mathbf{a}, \mathbf{b} to \mathbf{x} and $\overline{\mathbf{x}}=\boldsymbol{\delta} / 2$, and write the amplitude as

$$
A(\mathbf{x}, \overline{\mathbf{x}} ; \varepsilon, \tau)=\frac{1}{(2 \pi \varepsilon)^{M d / 2}} e^{-\frac{2}{\varepsilon} \overline{\mathbf{x}}^{2}-\varepsilon W(\mathbf{x}, \overline{\mathbf{x}} ; \varepsilon, \tau)}
$$

we can obtain the equation for the effective potential W.

Schrödinger＇s equation（2）

－The equation for W ：
where $V_{ \pm}=V(\mathbf{x} \pm \overline{\mathbf{x}}, \tau \pm \varepsilon / 2)$
－In order to solve it，we use short－time expansion of W in a form of double power series

$$
W(\mathbf{x}, \overline{\mathbf{x}} ; \varepsilon, \tau)=\sum_{m=0}^{\infty} \sum_{k=0}^{m}\left\{W_{m, k}(\mathbf{x}, \overline{\mathbf{x}} ; \tau) \varepsilon^{m-k}+W_{m+1 / 2, k}(\mathbf{x}, \overline{\mathbf{x}} ; \tau) \varepsilon^{m-k}\right\}
$$

$$
W_{m, k}(\mathbf{x}, \overline{\mathbf{x}} ; \tau)=\bar{x}_{i_{1}} \cdots \bar{x}_{i_{2 k}} c_{m, k}^{i_{1}, \ldots i_{2 k}}(\mathbf{x} ; \tau)
$$

$$
W_{m+1 / 2, k}(\mathbf{x}, \overline{\mathbf{x}} ; \tau)=\bar{x}_{i_{1}} \cdots \bar{x}_{i_{2 k+1}} c_{m+1 / 2, k}^{i_{1}, \ldots i_{2 k+1}}(\mathbf{x} ; \tau),
$$

$$
\begin{aligned}
& W+\overline{\mathbf{x}} \cdot \bar{\partial} W+\varepsilon \partial_{\varepsilon} W-\frac{1}{8} \varepsilon \partial^{2} W-\frac{1}{8} \varepsilon \bar{\partial}^{2} W \\
& +\frac{1}{8} \varepsilon^{2}(\boldsymbol{\partial} W)^{2}+\frac{1}{8} \varepsilon^{2}(\overline{\boldsymbol{\partial}} W)^{2}=\frac{1}{2}\left(V_{+}+V_{-}\right) .
\end{aligned}
$$

ScIENTIFIC CロMPபTINE

Recursive relations (1)

- After inserting the expansion, we obtain two recursion relations for W coefficients:

$$
\begin{aligned}
& 8(m+k+1) W_{m, k}=8 \frac{\Pi(m, k)(\overline{\mathbf{x}} \cdot \boldsymbol{\partial})^{2 k} \stackrel{(m-k)}{V}}{(2 k)!(m-k)!2^{m-k}}+\bar{\partial}^{2} W_{m, k+1}+\partial^{2} W_{m-1, k} \\
& \quad-\sum_{l, r}\left\{\boldsymbol{\partial} W_{l, r} \cdot \boldsymbol{\partial} W_{m-l-2, k-r}+\boldsymbol{\partial} W_{l+1 / 2, r} \cdot \boldsymbol{\partial} W_{m-l-5 / 2, k-r-1}\right. \\
& \left.\quad+\bar{\partial} W_{l, r} \cdot \overline{\boldsymbol{\partial}} W_{m-l-1, k-r+1}+\overline{\boldsymbol{\partial}} W_{l+1 / 2, r} \cdot \overline{\boldsymbol{\partial}} W_{m-l-3 / 2, k-r}\right\} \\
& 8(m+k+2) W_{m+1 / 2, k}=8 \frac{(1-\Pi(m, k))(\overline{\mathbf{x}} \cdot \boldsymbol{\partial})^{2 k+1} \stackrel{(m-k)}{V}}{(2 k+1)!(m-k)!2^{m-k}}+\bar{\partial}^{2} W_{m+1 / 2, k+1} \\
& \quad+\partial^{2} W_{m-1 / 2, k}-\sum_{l, r}\left\{\boldsymbol{\partial} W_{l, r} \cdot \boldsymbol{\partial} W_{m-l-3 / 2, k-r}+\boldsymbol{\partial} W_{l+1 / 2, r} \cdot \boldsymbol{\partial} W_{m-l-2, k-r}\right. \\
& \left.\quad+\overline{\boldsymbol{\partial}} W_{l+1 / 2, r} \cdot \overline{\boldsymbol{\partial}} W_{m-l-1, k-r+1}+\overline{\boldsymbol{\partial}} W_{l, r} \cdot \overline{\boldsymbol{\partial}} W_{m-l-1 / 2, k-r+1}\right\} .
\end{aligned}
$$

Recursive relations（2）

－Diagonal coefficients can be directly calculated

$$
\begin{aligned}
W_{m, m} & =\frac{1}{(2 m+1)!}(\overline{\mathbf{x}} \cdot \boldsymbol{\partial})^{2 m} V \\
W_{m+1 / 2, m} & =0
\end{aligned}
$$

－Off－diagonal coefficients are obtained from recursions using the scheme

ScIENTIFIC CロMPபTINE LABロRATロRY

Forced harmonic oscillator

Convergence of discretized amplitudes for the forced harmonic oscillator $V_{\mathrm{FHO}}(x, t)=\frac{1}{2} \omega^{2} x^{2}-x \sin \Omega t$ ，with $\omega=\Omega=1$ and $p=1,2,4,6,8,10,12,14,16,18,20$ from top to bottom on the left，and for long time of propagation using MC simulation with $N_{\mathrm{MC}}=2 \cdot 10^{9}$ on the right．

ScIENTIFIC CロMPபTINE LABロRATロRY

Introduction

Time－dependent harmonic oscillator

Convergence of discretized amplitudes for the time－dependent harmonic oscillator $V_{\mathrm{G}, \mathrm{HO}}(x, t)=\frac{\omega^{2} x^{2}}{2\left(1+t^{2}\right)^{2}}$ ，with $\omega=1$ and $p=2,4,6,8,10,12,14,16,18,20$ from top to bottom on the left， and for long time of propagation using MC simulation with $N_{\mathrm{MC}}=2 \cdot 10^{9}$ on the right．

Time-dependent pure quartic oscillator

Convergence of discretized amplitudes for the time-dependent pure quartic oscillator $V_{\mathrm{G}, \mathrm{PQ}}(x, t)=\frac{g x^{4}}{24\left(1+t^{2}\right)^{3}}$, with $g=0.1$ and $p=1,2,3,7$ from top to bottom on the left, and for long time of propagation using MC simulation with $N_{\mathrm{MC}}=1.6 \cdot 10^{13}$ on the right.

Conclusions and outlook

- New method for analytic and numerical calculation of path integrals for a general time-dependent non-relativistic many-body quantum theory
- In the numerical approach, discretized effective actions of level p provide substantial speedup of Monte Carlo algorithm from $1 / N$ to $1 / N^{p}$
- If the time of propagation/inverse temperature is small, analytic one-time-step approximation can be used: path integrals without integrals
- We plan to use this approach to study quantum dynamics
- Evolution in real and imaginary time
- Solving of Gross-Pitaevskii-type equations
- AB, I. Vidanović, A. Bogojević, A. Pelster, arXiv:0912.2743

