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Path integral formalism (1)

Amplitudes for transition from an initial state |a, ta〉 to a
final state |b, tb〉 in imaginary time T = tb − ta:

A(a, ta; b, tb) = 〈b, tb|T̂ exp
{
−
∫ tb

ta

dt Ĥ(p̂, q̂, t)
}
|a, ta〉

Dividing the evolution into N time steps ε = T/N , we get

A(a, ta; b, tb) =
∫
dq1 · · · dqN−1A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

Approximate calculation of short-time amplitudes leads to

A(a, ta; b, tb) =
1

(2πε)MdN/2

∫
dq1 · · · dqN−1 e

−SN

Hagen Kleinert, Path Integrals in Quantum Mechanics,
Statistics, Polymer Physics, and Financial Markets, 5th

edition, World Scientific, Singapore, 2009.
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Path integral formalism (2)

Continual amplitude A(a, ta; b, tb) is obtained in the limit
N →∞ of the discretized amplitude AN (a, ta; b, tb),

A(a, ta; b, tb) = lim
N→∞

AN (a, ta; b, tb)

Discretized amplitude AN is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action
For a theory defined by the Hamiltonian operator
H(p,q, t) = 1

2 p2 + V (q, t), (naive) discretized action is

SN =
N−1∑
n=0

(
δ2
n

2ε
+ εV (xn, τn)

)
,

where δn = qn+1 − qn, xn = qn+1+qn

2 , τn = tn+tn+1

2 .
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Discretized effective actions

Discretized actions can be classified according to the speed
of convergence of discretized path integrals
Improved discretized actions have been earlier constructed,
mainly tailored for calculation of partition functions

split-operator techniques
multi-product expansion

Sixth order expansion: Goldstein and Baye, PRE 70,
056703 (2004)
This cannot be easily extended to higher orders, nor such
an approach was developed for general transition
amplitudes
We introduce the ideal short-time discretized action

S∗(x, δ; ε, τ) =
δ2

2ε
+ εW (x, δ; ε, τ)
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Results for time-independent potentials

For time-independent potentials, we have developed a
recursive formalism that allows calculation of the
short-time expansion for W to arbitrary order in the time
of propagation ε [PRE 79, 036701 (2009)]
Applied for accurate calculation of energy eigenstates and
eigenvalues using the numerical diagonalization of the
space-discretized matrix of the evolution operator [PRE
80, 066705 (2009), PRE 80, 066706 (2009)]
One-time-step approximation to the path integral applied
to the numerical study of properties of fast-rotating
Bose-Einstein condensates, using the (very) high order
effective potential [PLA 374, 1539 (2010)]
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Schrödinger’s equation (1)

We start from Schrödinger’s equation for the short-time
amplitude A(a, ta; b, tb)[

∂ε +
1
2

(Ĥa + Ĥb)
]
A(a, ta; b, tb) = 0 ,[

∂τ + (Ĥb − Ĥa)
]
A(a, ta; b, tb) = 0 ,

where Ĥa = H(−i∂a,a, ta), ε = tb − ta, τ = (ta + tb)/2
If we change the variables a, b to x and x̄ = δ/2, and write
the amplitude as

A(x, x̄; ε, τ) =
1

(2πε)Md/2
e−

2
ε
x̄2−εW (x,x̄;ε,τ) ,

we can obtain the equation for the effective potential W .
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Schrödinger’s equation (2)

The equation for W :

W + x̄ · ∂̄W + ε∂εW −
1
8
ε∂2W − 1

8
ε∂̄2W

+
1
8
ε2(∂W )2 +

1
8
ε2(∂̄W )2 =

1
2

(V+ + V−) .

where V± = V (x± x̄, τ ± ε/2)
In order to solve it, we use short-time expansion of W in a
form of double power series

W (x, x̄; ε, τ) =
∞∑

m=0

m∑
k=0

{
Wm,k(x, x̄; τ) εm−k +Wm+1/2,k(x, x̄; τ) εm−k

}
,

Wm,k(x, x̄; τ) = x̄i1 · · · x̄i2k
ci1,...i2k

m,k (x; τ) ,

Wm+1/2,k(x, x̄; τ) = x̄i1 · · · x̄i2k+1 c
i1,...i2k+1

m+1/2,k (x; τ) ,
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Recursive relations (1)

After inserting the expansion, we obtain two recursion
relations for W coefficients:

8(m+ k + 1)Wm,k = 8
Π(m, k) (x̄ · ∂)2k

(m−k)

V

(2k)! (m− k)! 2m−k
+ ∂̄2Wm,k+1 + ∂2Wm−1,k

−
∑
l,r

{
∂Wl,r · ∂Wm−l−2,k−r + ∂Wl+1/2,r · ∂Wm−l−5/2,k−r−1

+∂̄Wl,r · ∂̄Wm−l−1,k−r+1 + ∂̄Wl+1/2,r · ∂̄Wm−l−3/2,k−r

}
,

8(m+ k + 2)Wm+1/2,k = 8
(1−Π(m, k)) (x̄ · ∂)2k+1

(m−k)

V

(2k + 1)! (m− k)! 2m−k
+ ∂̄2Wm+1/2,k+1

+∂2Wm−1/2,k −
∑
l,r

{
∂Wl,r · ∂Wm−l−3/2,k−r + ∂Wl+1/2,r · ∂Wm−l−2,k−r

+∂̄Wl+1/2,r · ∂̄Wm−l−1,k−r+1 + ∂̄Wl,r · ∂̄Wm−l−1/2,k−r+1

}
.
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Recursive relations (2)

Diagonal coefficients can be directly calculated

Wm,m =
1

(2m+ 1)!
(x̄ · ∂)2m V ,

Wm+1/2,m = 0 .

Off-diagonal coefficients are obtained from recursions using
the scheme

0

1

2

3

...

m

0 1 2 3 . . . k
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Forced harmonic oscillator
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p = 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 from top to bottom on the
left, and for long time of propagation using MC simulation with
NMC = 2 · 109 on the right.
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Time-dependent harmonic oscillator
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harmonic oscillator VG,HO(x, t) = ω2x2
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, with ω = 1 and

p = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 from top to bottom on the left,
and for long time of propagation using MC simulation with
NMC = 2 · 109 on the right.
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Time-dependent pure quartic oscillator

 10-13

 10-12

 10-11

 10-10

 10-9

 10-8

 10-7

 10-6

 10-5

 10-3

 1  10  100

|A
p(

0,
 0

; 0
.5

, 1
) 

- 
A

(0
, 0

; 0
.5

, 1
)|

N

p = 1
p = 2
p = 3
p = 7

 0.35185

 0.35190

 0.35195

 0.3520

 0.35205

 0.35210

 0.35215

 1  10  100

A
p(

0,
 0

; 0
.5

, 1
)

N

p = 1
p = 2
p = 3

Convergence of discretized amplitudes for the time-dependent
pure quartic oscillator VG,PQ(x, t) = gx4
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, with g = 0.1 and

p = 1, 2, 3, 7 from top to bottom on the left, and for long time of
propagation using MC simulation with NMC = 1.6 · 1013 on the
right.

DPG10 Spring Meeting, Regensburg, 22-26 March 2010DY 1.3: Fast Converging Path Integrals for Time-Dependent Potentials DPG10, Regensburg



Introduction
Recursive approach

Numerical results
Conclusions and outlook

Conclusions and outlook

New method for analytic and numerical calculation of path
integrals for a general time-dependent non-relativistic
many-body quantum theory
In the numerical approach, discretized effective actions of
level p provide substantial speedup of Monte Carlo
algorithm from 1/N to 1/Np

If the time of propagation/inverse temperature is small,
analytic one-time-step approximation can be used: path
integrals without integrals
We plan to use this approach to study quantum dynamics

Evolution in real and imaginary time
Solving of Gross-Pitaevskii-type equations

AB, I. Vidanović, A. Bogojević, A. Pelster, arXiv:0912.2743

DPG10 Spring Meeting, Regensburg, 22-26 March 2010DY 1.3: Fast Converging Path Integrals for Time-Dependent Potentials DPG10, Regensburg


	Introduction
	Path integral formalism
	Discretized effective actions
	Results for time-independent potentials

	Recursive approach
	Schrödinger's equation
	Recursive relations

	Numerical results
	Forced harmonic oscillator
	Time-dependent harmonic oscillator
	Time-dependent pure quartic oscillator

	Conclusions and outlook

