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Abstract

We define and investigate the properties of the jaggedness of path integral trajectories. The new quantity is shown to be scale
invariant and to satisfy a self-averaging property. Jaggedness allows for a classification of path integral trajectories according
to their relevance. We show that in the continuum limit the only paths that are not of measure zero are those with jaggedness
1/2, i.e. belonging to the same equivalence class as random walks. The set of relevant trajectories is thus narrowed down to
specific subset of non-differentiable paths. For numerical calculations, we show that jaggedness represents an important prac
tical criterion for assessing the quality of trajectory generating algorithms. We illustrate the obtained results with Monte Carlo
simulations of several different models.
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1. Introduction as representative of the whole set as possible. For this
reason it is necessary to broaden the amount of ana-

The set of all the trajectories that one integrates lytical information regarding the subset of trajectories
over in a path integral is huge (cardinality). In order that give dominant contributions to path integrals. This
to have successful numerical simulations it is impor- subset is much smaller than the set of all trajectories.
tant to generate a finite number of trajectories that are Investigation of its properties is of great importance.

Ultimately we would like to find ways to generate only
— o ) ) these relevant trajectories.

Supported by the Ministry of Science and Environmental Pro- - ¢|asification of trajectories according to their rel-
tection of the Republic of Serbia through projects Nos. 1486 and . . . .
1899, evance is just as important for analytical calculations

of continuum limit amplitudes. As a result of the con-
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Zero, i.e. give no contribution to path integrals. For ex- a genericN-fold discretized theory through the ex-
ample, it is well known that differentiable trajectories plicit construction of a set of effective actio§” for

are of measure zero. This has been a severe impedi-p =1, 2, 3,.... These effective actions are equivalent
ment to the development of path integration theory as to the starting action (in the sense that they lead to the

most of mathematics (and practically all of our intu-
ition) is firmly based on smooth, differentiable func-
tions. In fact, the principle reason that we have made
any analytical progress with path integrals lies in the
fact that, although of measure zero, some differen-
tiable functions (e.g. classical solutions) turn out to
be important markers of “nearby” non-differentiable
paths that do give important contributions.

We are in a precarious position in which we know
very little about the paths we need to work with. In ad-
dition, most of our knowledge is negative, i.e. tells us
which trajectories are not important rather than which
are. This is a substantial problem in the analytical ap-
proach. In numerical simulations, on the other hand,
we work with discrete trajectories about whose classi-
fication we know even less. Therefore, the implement-
ing of a systematic classification of the relevance of
path integral trajectories (both in the discretized and
continuum theories) is a crucial starting point in the
quest for more efficient calculation schemes.

One of the few positive statements concerning path
integral trajectories is that they are stochastically self-
similar[1,2]. An exhaustive review of various aspects
of the path integral method can be found3j. A di-
rect consequence of self-similarity is that relevant path
integral trajectories hav@d] fractal (Hausdorff) di-
mensiondy = 2. In this Letter we introduce a new
classification property—the jaggedness of a trajectory.
An analytical and numerical analysis of the properties

of jaggedness leads to a new classification of trajecto-

ries according to their relevance to path integrals.

2. Self-similarity of trajectories

The property of stochastic self-similarity of path in-

same continuum amplitudes), however, the path inte-
grals calculated using them converge to the continuum
limit ever faster. Discretized amplitudes calculated us-
ing the p level effective action tend to the contin-
uum limit as ¥ N?. Using the general procedure we
obtained explicit effective actions up j@=9. Self-
similarity played a crucial role in this procedure allow-
ing us to derive, and asymptotically solve, an integral
equation relating discretized theories viewed at differ-
ent coarseness. It was shoyifj that this approach is
in fact equivalent to the derivation of a generalization
of Euler’'s summation formula to path integrals.

Self-similarity has also been successfully utilized
in constructing efficient numerical algorithms for gen-
erating paths for Monte Carlo simulatiofi8,9]. In
particular the Lévy construction discussed in these
references generates self-similar paths through a sim-
ple iterative procedure. One begins with the fixed end
pointsa at timer = 0 andb at timer = T and samples
a bisecting point at time= T/2 from a Gaussian cen-
tered in the middle between andb and with width
o = /T/2. Having sampled the point at= T/2
one now bisects the two new intervdl3 7 /2] and
[T/2,T] in the same way generating new bisection
points atr = T/4 and: = 3T /4 with appropriately
centered Gaussians of width = /T/4. The pro-
cedure is continued recursively doubling the number
of sampled points at each level and using the width
o = ./€/2, wheree is the current time step. This
method exactly samples free particle trajectories, but
also works very well for interacting theories. The prin-
ciple benefit of the method is that computational effort
scales a®) (N), whereN is the coarseness of the dis-
cretization.

It is important to strengthen the relation between
these two types of approaches. For a deeper under-

tegral trajectories has important repercussions both onstanding of the role of self-similarity it is necessary
the dynamics as well as on the construction of efficient to classify trajectories according to their relative con-
numerical algorithms for generating paths. In a previ- tribution to the path integral. As we have already men-
ous set of paperb—7] we have used self-similarity  tioned, the first and most natural such classification of
to obtain analytical relations between discretizations paths was with respect to their fractal dimension. The
of different coarseness for the case of a general the- fractal dimensionly is calculated from the formula

ory. The newly developed analytical method system- dy-1
atically improves the convergence of path integrals of (L) x N |
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Fig. 1. (Left) A typical graph of the expectation value of the trajectory ler@thas a function of discretization coarsen@ssThe data fits to
(Ly=0.8VN,i.e. tody = 2. (Right) A detailed picture of how the fractal dimension approaches the value for a random walk in the continuum
limit fits to 2 — dy; = 0.04/+/N. Both plots correspond to propagation fram= 0 to » = 1 in time T = 1 for an anharmonic oscillator with

quartic couplingg = 1. The number of Monte Carlo samples used Wi = 9.2 x 106.

where (L) is the expectation value ofL
va:_ol lgi+1 — gil, the total trajectory length. It was
shown by Krogef4] that for theories with (Euclid-
ean) action of the form

s:/m(%q%rwq)), )

the only trajectories that contribute to the path integral
are those with fractal dimensiafyy, = 2. The reason
for this is that for short times of propagation the kinetic
term dominates over the potential and each model
looks like a random walk (which hat; = 2). This is
illustrated inFig. 1 on the example of an anharmonic
oscillator with quartic coupling/ (¢) = 3¢2 + 7 gq*.
Kroger has also shown that the addition of velocity de-
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Fig. 2. An example of a trajectory that goes frenfatr = 0) to b
(atr =T) in N = 14 discrete time steps.

pendent interactions changes the fractal dimension of Fig. 2 illustrates a typical path withv = 14 and

relevant paths. Let us now introduce another quantity
(complementary to the fractal dimension) which will
serve to further classify path integral trajectories ac-
cording to their relevance.

The N-fold discretized path frogg=a togy =b
is determined by theV — 1 intermediate positions
q1, 92, ..., qn—1. We define the jaggedness of a path
as

N—2

1 1
(1—sgn(8;8i+1)), )

J=—
N-1 = 2
wheres; = g;+1 — gi- From the above definition we
see that/ in fact counts the number of peaks (both
minima and maxima) divided by — 1 (the maximal
number peaks for awv-fold discretized trajectory).
Therefore, for all values ofv, we haveJ € [0, 1].

jaggednesd = i—g (intermediate points that are peaks
are depicted by black circles).

An important property of the jaggedness is that it is
scale invariant up to /IN terms. Namely, if we scale
the intermediate pointg; — ig; the only thing that
can change are the first and last term in the above
sum (since the end points need to remain fixed). This
brings about a change ihthatisO(1/N). Therefore,
we see that in the continuum limit is in fact scale
invariant. J is also scale invariant for finit¢/ when
a = b = 0. This behavior is quite different from that of
fractal dimension. From Ed1) we see that the frac-
tal dimension is not invariant under scaling with an
N-dependent.. For this reason the classification of
trajectories with respect té is independent of a clas-
sification with respect tdy.
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3. Analytical and numerical analysis of jaggedness

In the continuum limit all smooth and differen-
tiable trajectories havd = 0. This is not only true

of monotonic trajectories but also of those having a 0.1

finite number of extrema. Paths with= 0 are of mea-
sure zero. A classification of paths with non-vanishing

jaggedness is therefore a path integral motivated clas- 0.06

sification of non-differentiable paths.
From Eq.(3) we see that (up to/IV terms) the

jaggedness satisfies an averaging property, i.e. if we

split a trajectory with &/ discrete time steps into two
equal halves (with jaggedness and J,), the total
jaggedness equals

1
J = §(J1+J2)

1 1-sgnéy-16n) J1+J2 @
2N -1 2 2 '

As we can see, for finit&/ the averaging is broken by
a 1/N term. In the continuum limit, however, the av-
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Fig. 3. Relative contributions to the path integral of trajectories of
different jaggedness for different models. The histograms are practi-
cally indistinguishable for: anharmonic oscillators with quartic cou-
pling g = 1 (black) andg = 1000 (red) as well as particles in a

R with para-
ag

meterse = 0.5, 8 = 1.5 (green) and = 0.5, B = 2 (dashed black).

The data is forN =512,7=1,a=0,b =1, Nyc = 9.2 x 10°

and fits to a Gaussian centered & @ith width 0.022. The num-

eraging of jaggedness is exact. Cutting up a trajectory ber of bins is 100. (For interpretation of the references to color in

into k equal pieces we get = 1 Zle J;. Stochastic
self-similarity now implies that all the;'s are equal

this figure legend, the reader is referred to the web version of this
article.)

to each other, and in fact that they are equal to the

jaggedness of the whole path. We denote this prop- tribution is practically indistinguishable for different
erty of jaggedness as self-averaging. The jaggednessmodels and widely varying parameters. Detailed nu-
of the whole trajectory (corresponding to a motion for merical investigations show that for all models studied
time T) is thus equal to the jaggedness of even the deviations from a Gaussian distribution (e.g. skew and

smallest piece of that trajectory (corresponding to the kurtosis) go to zero a& — oo. In agreement with our

propagation for a much shorter time).
It is well known that for short times of propaga-
tion the dynamics of any model is well approximated

previous analytical argument based on self-similarity
the center of the distribution i§8/) = % 4+ O(1/N).
The width of the distributiornr; vanishes asr; ~

by that of a random walk, i.e. does not depend on the 1/+/N as illustrated irFig. 4 The conclusion is that

potential. Therefore, self-similarity of trajectories im-

for models with action of the form of Eq2) the

plies that the jaggedness of the trajectories of a generalonly paths that are not of measure zero are those with

model with action of the form given in ER) is equal
to the jaggedness of trajectories for a random walk.

The expectation value of the jaggedness for a ran-

dom walk is quite easily calculated. For a random walk
8; and §;;,1 are not correlated and s@') = % We
therefore conclude that for all the models with action
of the form of Eq.(2) we have(J) = % Similarly, for
finite N we find that(J) deviates from the continuum
asO(1/N).

Fig. 3 gives the relative contributions to the path
integral of trajectories of different jaggedness for the
case ofN =512. As is shown in the figure, the dis-

J=1

Tﬁere are several important consequences of this
that we need to mention. The analytical consequence
of the above results is that they give us a much more
detailed understanding of which trajectories are rele-
vant and which are not. Not only are smooth, differ-
entiable trajectories of measure zero (i.e. those with
J = 0), but in fact most of the non-differentiable
trajectories also do not contribute to path integrals.
To understand path integrals better we need to fo-
cus on a much narrower class of non-differentiable
trajectories—those withi = % i.e. those belonging to
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Fig. 6. Comparison ofJ) and J calculated using two different
Fig. 4. Width of the distribution around) plotted as a function algorithms for the case of an anharmonic oscillator with quartic
of N. The data fits tar; = 0.5/+/N. The plot is for an anharmonic ~ coupling. The top curve was calculated using the Lévy bisection
oscillator with quartic coupling = 1, propagating fof = 1 from method. The data fits to the curyg/) — J| gvy = 0.051/N. The
a=0tob=1andNyc =9.2 x 10°. lower curve was calculated using the diagonalization method. The

data fits to|(J) — J|giag= 0.003/N.

constructionJ is completely independent of the dy-
namics. The reason why this method represents a good
algorithm (at least for largeV) is that J — % in the
continuum limit. This figure also indicates that a use-
ful measure of the qualit@ of an algorithm for gen-
erating trajectories is roughly the inverse|of) — J|.
We will use this measure of quality to compare the
Lévy construction with the diagonalization algorithm
in which trajectories are generated by a Gaussian dis-
tribution function using a semi-classical expansion.
The computing time of this algorithm scales@gN?2)
since it is necessary to diagonalize the quadratic form
Fig. 5. N-dependances df/) and ofJ. The fact that/ tends to the in the exponential of the distribution function.
same continuum value'as _the physical ex.pectation value indicates | Fig. 6we plot|(J) — J_| for these two algorithms.
that the Lévy construction is a good algorithm to use for lakge The top curve is for the Lévy construction, the bottom
Parameters are the same a§ig. 4. . L. ! .
for the diagonalization method. The latter algorithm
outperforms the former by an order of magnitude for

the same jaggedness equivalence class as the randorall values of N. As a result of this the Monte Carlo
walk. errors calculated using the two methods differ by an

The numerical consequence of the above results is order of magnitude. However, one should not forget
that for finite NV it is important to have algorithms that  that quality needs to be balanced by an assessment
generate trajectories that are distributed in a way that of cost (in computing time). Although it gives a rel-
mimics, as much as possible, the physical distribution atively lower quality, the computing time for the Lévy
of relative contributions to the path integral such as the method scales a¥. The diagonalization method out-
one shown irFFig. 3. The most important thing to focus  performs the Lévy method for a givewi, however its
on is the center of the distributions. computation time scales a$2. Both algorithms are

Fig. 5compares the physical averagg, which is good (since(J) — J| vanishes in the continuum limit).
algorithm independent, witli the average jaggedness A simple cost-benefit analysis tells us that Lévy con-
of the trajectories generated by the algorithm (in this struction is better for larg®’, while diagonalization is
case the Lévy construction). Note that for the Lévy better for smallewv.
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Fig. 7. (Left) Anharmonic oscillators with quartic coupligg=1,2,4,8,...,64 for N = 128 256 and 512. (Right) Modified Péschl-Teller
potential fore = 0.5 andg = 1.5,25,...,6.5 for N = 128 256 and 512. All the simulations were done fo=0,b5 =1, T =1 and

Npmc = 9.2 x 100,

Not all algorithms for generating paths are good,
however. For example, if we modify the Lévy con-
struction using uniform distributions (of appropriate
widths) instead of Gaussians we get an algorithm for
which J does not tend té. A signature of a bad algo-
rithm is that there exists a maximum qualiax that
cannot be passed irrespective of computational cost.

As we have mentioned, it is important to strengthen
the connection between the dynamical (calculation of
path integrals) and kinematical (generation of trajecto-
ries) aspects of self-similarity. The effective action ap-
proach[5—7] has brought about an immense speedup
in path integral calculations. The speedup is a direct
consequence of the fact that effective actions allow
us to work with much smaller values @f to obtain
the same precision. Using standard algorithms (which
have all been derived to be optimal for largd we

all quantities depend on the ratio of these two. On the
other hand, for a random walk we ha§&/e ~ 1, so
that the ratio is in fact V (¢.) whereg, is a character-
istic length. A rough value for the characteristic length
follows fromg.p ~ 1 (essentially Heisenberg’s uncer-
tainty relation ini = 1 units). We are using units in
whichm =1, sop =§/¢ ~ 1/./€. The last step fol-
lows from the basic random walk relatidd/e ~ 1.
Finally we find that everything should be expressed in
terms of the ratic:V (,/€). For example, for the an-
harmonic oscillator with quartic coupling this ratio is
€3¢. We have shown that/) differs from % by aterm
proportional to ¥N. From this it follows that for the
oscillator with quartic anharmonicityJ) — %| should

be proportional teg'/3/N. A similar back of the en-
velope calculation for a particle moving in a modified
Pdschl-Teller potential gives thgt/) — %| should be

have obtained a speedup of many orders of magnitude.proportional toa28(8 — 1)/N. Fig. 7 illustrates that

The important step that next needs to be taken is to de-

velop a path generating algorithm that is tailored for
smallN’s, i.e. for whichJ is near to{J) for coarse dis-
cretizations. Note that the diagonalization algorithm is
one such method, but that it is not computationally op-
timized. We are currently working on developing these
kinds of algorithms and tying them in to the effective
action approach.

At the very end we wish to make further contact

these simple calculations do in fact hold.

To conclude, we have identified and investigated
the properties of a quantity that we call the jagged-
ness and that is useful for obtaining a more detailed
classification of relevant path integral trajectories. For
discrete calculation, i.e. numerical simulations, the
properties of the jaggedness are useful for obtaining
more efficient algorithms for generating representa-
tive paths. Furthermore, we have shown that jagged-

between jaggedness and random walks. In order toness can be used as an important practical criterion

be near the random walk limit, the potential term in
the discretized actiomnV, wheree = T /N, must be
smaller than the kinetic terr2/2¢. One should ex-
pect that when we are near the random walk regime

of the quality of trajectory generating algorithms. In
the continuum limit (analytical calculations) we found
that only trajectories with jaggedness equa%toon-

tribute to the path integral. In this way we greatly
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