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Motivation

The main idea of this thesis is to construct an effective Hamiltonian for a bosonic

system on a square lattice, that will support FQHE at ν = 1
2 . The goal is to

realize the bosonic Laughlin state without any complex gauge fields or an ex-

ternal magnetic field. This realization should be accomplished through inner

site interactions. We are working in an anisotropic gauge to identify the key

elements responsible for the effect. The final model Hamiltonian would be an

anisotropic one resembling a wire construction scheme.1 We start with the LLL

wave functions on a torus in the Landau (anisotropic) gauge and use the basis

of Wu et al.2 to construct anisotropic magnetic Wannier functions and express

the density operator. Following this, the essential elements of the interaction

operator are extracted in a long wavelength approximation. A numerical study

of magnetic Wannier wave functions is presented as well as an analysis of inter-

action operator key elements responsible for the effect.
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Chapter 1

Introduction

1.1 Particle in a magnetic field

From quantum mechanics we know that the Hamiltonian for a free particle is:

Ĥ =
p2

2m

where p is the momentum operator, and m is the mass of a particle. When a

particle is subjected to a magnetic field in order to write the Hamiltonian for

that system we need to replace the free-particle momentum with gauge invariant

one, the procedure called minimal substitution.

p→ Π = p + eA(r) (1.1.1)

where A(r) is the vector potential of the given magnetic field B = ∇×A(r).

This new gauge invariant momentum is proportional to the particle velocity

which is a gauge invariant as a physical quantity. We see that vector potential

is not gauge invariant so neither is the momentum p. Using a property of a curl

we see that adding a gradient of an arbitrary function to the vector potential

will leave a magnetic field unchanged A(r)→ A(r) +∇f(r). From this we can

see, in order for Π to stay gauge invariant the momentum has to transform like

p → p − e∇f(r). The new Hamiltonian for a particle in a magnetic filed will

be:

ĤB =
(p + eA(r))2

2m
(1.1.2)

Further, we will only assume that the particle is bounded to a plane and can

only move in 2D.
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CHAPTER 1. INTRODUCTION

1.1.1 Gauge invariant momentum

In the last section we have introduced the gauge invariant momentum Π, let

us now find the commutation relations between the different components of the

momentum:

[Πx,Πy] = [px + eAx(r), py + eAy(r)] = e([px, Ay]− [py, Ax]) (1.1.3)

we can now use the relation [A, f(B)] = df
dB [A,B] to get

[Πx,Πy] = −ie~B = −i~
2

l2B
(1.1.4)

where we have introduced the magnetic length lB =
√

~
eB . This quantity is

gauge invariant as expected and we can also see that the components of gauge

invariant momentum are mutually conjugate so only one can be diagonalized at

the time. Now we want to diagonalize the Hamiltonian and find the energies of

a system. This can be done by introducing the ladder operators,3 similar as in

a treatment of a simple harmonic oscillator:

a =
1√
2

(
x

x0
− i p

p0
)

and a† that we get by complex conjugation of a. Here we have introduced some

normalization constants x0 =
√

~
mω and p0 =

√
~mω, where ω is oscillator

frequency. We can check the commutation relation for a and a† to see that

[a, a†] = 1 as it should be. In the case of a particle in magnetic field the ladder

operators will be:

a =
lB√
2~

(Πx − iΠy) (1.1.5)

and similarly a†. These relations can be inverted to express Π in terms of ladder

operators:

Πx =
~√
2lB

(a+ a†) (1.1.6)

Πy =
~√
2lB

(a† − a)

These new relations can help us diagonalize the Hamiltonian. The ladder oper-

ators obey similar rules as in a case of the harmonic oscillator when they act on

a state:

a |n〉 =
√
n |n− 1〉 (1.1.7)

a† |n〉 =
√
n+ 1 |n+ 1〉
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CHAPTER 1. INTRODUCTION

If a acts on a ground states it will produce zero a |0〉 = 0. We can build every

other state by an application of a† on a ground state:

|n〉 =
(a†)n√
n!
|0〉

1.1.2 Landau levels

Let us now rewrite the Hamiltonian in terms of newly introduced ladder oper-

ators:

ĤB =
1

2m
(Π2

x + Π2
y) =

~2

ml2B
(a†a+

1

2
) (1.1.8)

or if we introduce the cyclotron frequency ωc = ~
ml2B

we get:

Ĥ = ~ωc(a†a+
1

2
) (1.1.9)

Solving the Schrodinger equation

Ĥ |n〉 = En |n〉 (1.1.10)

so using the rules from the last section, we get that the energies of the system

are:

En = ~ωc(n+
1

2
) (1.1.11)

We see that the energy levels are labeled by the index n and these levels are

called Landau levels(LL). One thing that can be observed immediately is that

particle is characterized with only one pair of conjugate operators but in (1.1.2)

we can see that two pairs of conjugate operators describe the Hamiltonian. This

means that there is another degree of freedom that will make Landau levels

degenerate.

1.1.3 Wave function

Before we tackle the issue of LL degeneracy first, we need to find the wave

functions. For this purpose we will use Landau gauge A = B(−y, 0, 0). In this

gauge the Hamiltonian is:

ĤB =
(px − eBy)2

2m
+

p2
y

2m
(1.1.12)

We can see that [H, px] = 0 so the wave function can be put in a form Ψn,k =
eikx√
L
fn,k(y). If we let Hamiltonian act on this form of wave function we would

be left with a Hamiltonian:

ĤB =
p2
y

2m
+

1

2
mωc(y − y0)2 (1.1.13)
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CHAPTER 1. INTRODUCTION

where y0 = kl2B . This is precisely the harmonic oscillator Hamiltonian with

the displacement of oscillation centers by y0. The eigenfunctions are Hermite

polynomials:

fn,k(y) = Hn

(
y − y0

lB

)
e
− (y−y0)2

4l2
B (1.1.14)

The final wave function has the form:

Ψn,k =
eikx√
L
Hn

(
y − y0

lB

)
e
− (y−y0)2

4l2
B (1.1.15)

From this, we can see that in this particular gauge it looks like the function is

smeared over x coordinate while localized around y0 in y direction.

1.1.4 Degeneracy of Landau levels

Because of freedom in x direction, we will impose the periodic boundary con-

ditions so we can count the number of states. Boundary conditions lead to a

quantization of wave vector k = i 2π
L , where i = 1, 2, 3 . . .M . The gauge we have

chosen is suitable for rectangular geometries so let say that in y direction sample

has a width D. Two states are separated by distance ∆y = ∆kl2B and using

the quantization relation of wave vector ∆y =
2πl2B
L , so the one state occupies

the area of S = ∆yL = 2πl2B . The total number of possible states in one LL is,

therefore:

NB =
LD

S
=

LD

2πl2B
= nBLD (1.1.16)

where nB = 1
2πl2B

= eB
h is flux density which represents the magnetic field ex-

pressed in flux quantum h
e .

So the degeneracy of LL is equal to the number of flux quanta piercing

the surface area.
Another useful quantity to define is the ratio between the number of electrons

and the flux quanta, filling factor:

ν =
Nel
NB

=
nel
nB

=
hnel
eB

(1.1.17)

1.1.5 Symmetric gauge

In the previous sections we have derived the eigenfunction in Landau gauge,

and here we will do the same procedure for the symmetric gauge as it will

be more useful in the later discussions of Laughlin wave function and FQHE.

The symmetric gauge is A = B
2 (−y, x, 0). In our discussion about the particle

in magnetic filed we have introduced the gauge invariant momentum, now in
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CHAPTER 1. INTRODUCTION

order to find the eigenfunctions in symmetric gauge we will introduce the new

”momentum”.

Π̃ = p− eA (1.1.18)

as it can be seen this quantity only differs from the previous momentum by the

sign, which makes it gauge variant and therefore not a physical quantity, so the

special care needs to be taken in dealing with it. The commutation relation

between different components is different up to the sign from the previous:

[Π̃x, Π̃y] = ie~B (1.1.19)

The sad thing is that the new momentum does not commute with the old one

and cannot be diagonalized at the same time:

[Πx, Π̃x] = 2ie~
∂Ax
∂x

(1.1.20)

[Πy, Π̃y] = 2ie~
∂Ay
∂y

[Πx, Π̃y] = [Πy, Π̃x] = ie~
(
∂Ax
∂y

+
∂Ay
∂x

)
However, the lucky coincidence is that in the symmetric gauge they do commute.

We can now define the new set of ladder operators:

b =
lB√
2~

(Π̃x + iΠ̃y)

b† =
lB√
2~

(Π̃x − iΠ̃y)

As discussed earlier the Landau levels are highly degenerate and beside the

quantum number n that labels the different levels, we need to have another

which will distinguish between the different states inside the same Landau level.

The complete state would then be characterized by two quantum numbers, n

and m:

|n,m〉 = |n〉 ⊗ |m〉 (1.1.21)

These new operators b and b† will precisely enumerate the degeneracy inside the

Landau levels:

b |n,m〉 =
√
m |n,m− 1〉 (1.1.22)

b† |n,m〉 =
√
m+ 1 |n,m+ 1〉

Now we can create any state with the application of right ladder operators:

|n,m〉 =
(a†)n√
n!

(b†)m√
m!
|0, 0〉 (1.1.23)

10



CHAPTER 1. INTRODUCTION

We are only interested in the LLL (n = 0) for which applies

a |0,m〉 = 0 (1.1.24)

In order to solve this, we need to convert it to the differential equation. Using

(1.1.5) and momentum operator in coordinate representation we can express the

a operator:

a = −i
√

2

(
lB
2

(∂x − i∂y) +
x+ iy

4lB

)
(1.1.25)

This can be put in more convenient form if we introduce the complex coordi-

nates. We can define z = x + iy, ∂ = 1
2 (∂x + i∂y) and ∂̄ = 1

2 (∂x − i∂y). Now

the differential equation reads:(
z

4lB
+ lB ∂̄

)
ψ0,m(z, z∗) = 0 (1.1.26)

This can be solved by

ψ0,m(z, z∗) = f(z)e
− |z|

2

4l2
B (1.1.27)

where f(z) is analytic function because ∂̄f(z) = 0. From here we can see that

there is another degree of freedom. We can choose any analytic function for f(z),

and that is connected to the second quantum number m mentioned earlier. To

further determine the wave function we need to express the b operators the same

as we did for a:

b = −i
√

2

(
z∗

4lB
+ lB∂

)
(1.1.28)

Same as we did with the a and LLL we can do with b and m = 0 to yield the

equation:

(z∗ + 4l2B∂)ψ′n,0(z, z∗) = 0 (1.1.29)

This equation can be solved by:

ψ′n,0(z, z∗) = g(z∗)e
− |z|

2

4l2
B (1.1.30)

where g(z∗) is the anti-analytic ∂g(z∗) = 0. So the wave function ψ0,0(z, z∗)

must have a prefactor that is analytic and anti-analytic at the same time, it is

a constant fixed by the normalization condition:

ψ0,0(z, z∗) =
1√

2πl2B
e
− |z|

2

4l2
B (1.1.31)

From this we can construct a state inside LLL with an arbitrary m by acting

with b† on the ψ0,0(z, z∗). So we get:

ψ0,m(z, z∗) =
im√

2πl2Bm!

(
z√
2lB

)m
e
− |z|

2

4l2
B (1.1.32)

11



CHAPTER 1. INTRODUCTION

alternatively said the LLL is spanned by the Gaussian multiplied by polynomial

basis zm, ψ0,m ∼ zme−
|z|2

4 , where we redefined z = x+iy
lB

and left out the

normalization factor.

We can also verify that in this gauge we get the same number for the

degeneracy of LL. This wave function is peaked at the radius r =
√

2mlB , for

some maximal mmax the area of state would be S = 2mmaxl
2
Bπ so the number

of states in sample area A is mmax = A
2πl2B

= nB ∗ A = NB same as before,

equal to the number of flux quanta threading the system.

1.2 Wannier functions

Usually, when considering periodic systems and independent particle approxi-

mation, we choose Bloch functions for the basis. However, these functions are

not the only solutions, for example, we can choose more localized Wannier func-

tions.4 Wannier functions can be seen as an LMO (localized molecular orbitals)

for solid-state physics.

1.2.1 Bloch and Wannier functions

For a periodic system, the one-particle effective Hamiltonian Ĥ commutes with

lattice-translation operator TR so that the eigenstate can be:

ψn,k = un,k(r)eik·r (1.2.1)

where un,k(r) is an arbitrary function with a periodicity of the Hamiltonian.

Using Bloch functions and superposing functions with different k we can build

a localized packet in real space. By Heisenberg uncertainty principle the broader

the range of k the more localization in real space. However, as we said at the

beginning, we are considering a periodic system, so the k lives in a periodic

Brillouin zone (BZ). We can now construct a Wannier function as an integral

over the first BZ:

ω0(r) =
V

(2π)3

∫
BZ

dkψn,k(r) (1.2.2)

where V is real-space primitive cell volume. This can be generalized if we apply

real space translation operator e−ik·R to the ω0(r) in order to generate a function

at the position R (real space lattice vector). The general form would be:

ωn,R(r) =
V

(2π)3

∫
BZ

dke−ik·Rψn,k(r) (1.2.3)

or in the more compact Dirac notation

|R, n〉 =
V

(2π)3

∫
BZ

dke−ik·R |ψn,k〉 (1.2.4)

12



CHAPTER 1. INTRODUCTION

These functions |R, n〉 form an orthonormal set which makes them perfect for

basis use. The inverse transformation, if we want to go from Wannier function

to Bloch states is:

|ψn,k〉 =
∑
R

eik·R |R, n〉 (1.2.5)

This means that as the bunch of spread Bloch functions can be used to make

a localized wave-packet, in the same way, the superposition of localized wave-

packets can be used to build up a spread Bloch state. What one should bear

in mind is that by gaining the localization of states we lose the eigenfunction

property of the Hamiltonian, as these functions are not the eigenstates of the

original Hamiltonian.

1.3 Hall effect

Let us look at the system in figure below

Figure 1.1: Hall system

It is a 2D system of electrons in a strong magnetic field perpendicular to

the plane of motion. Let us say that contacts 1 and 4 are on different potentials

and that current flows through them. With this kind of setup, we can measure

the longitudinal and transverse resistance. These two quantities can be easily

differentiated topologically. Draw a line from contacts 1 to 4 where the current

flows, now if the line connecting two contacts crosses this imaginary current line,

the resistance measured that way would be transverse, or longitudinal otherwise.

Transverse resistance is often called Hall resistance RH .

1.3.1 Classical Hall effect

Edwin Hall showed that transverse resistance of thin metallic plate subjected

to the perpendicular magnetic field B would be:

RH =
B

qnel

13



CHAPTER 1. INTRODUCTION

where the sign of the q depends on the nature of current carriers, and nel is

the electron density in the sample. The simple explanation would be that this

effect is a consequence of Lorentz force which affects the electron trajectory in

the sample. The slightly better explanation can be deduced from the Drude

model of diffusive transport in metals. This model has several assumptions:

• Metals is formed from a sea of positively charged ions and detached elec-

trons

• The long range interactions between electrons are neglected. Only in-

teraction the electron has with the rest of the system is through instant

collisions, separated on average by time τ

• After the collision the velocity of the electron only depends on the local

temperature distribution and is independent of the velocity before the

collision

These assumptions can be expressed as the equation:

dp

dt
= −e

(
E +

p

m
×B

)
− p

τ
(1.3.1)

we are assuming that the current carriers are electrons. We are looking for a

stationary solution so dp
dt = 0, the magnetic field is perpendicular to the plane

of motion B = Bêz:

eEx = −eB
m
py −

px
τ

(1.3.2)

eEy =
eB

m
px −

py
τ

We can rewrite these equations by introducing the Drude conductivity σ0 =
nele

2τ
m and cyclotron frequency:

σ0Ex = −enel
px
m
− enel

py
m

(ωcτ) (1.3.3)

σ0Ey = enel
px
m

(ωcτ)− enel
py
m

(1.3.4)

If we further introduce the current density:

j = −enel
p

m
(1.3.5)

in the matrix form of the Ohm law E = ρj we have for the resistivity tensor:

ρ = σ−1 = σ−1
0

(
1 ωcτ

−ωcτ 1

)
(1.3.6)

14
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From the resistivity tensor we can read the transverse (Hall) resistivity as

ρH =
ωcτ

σ0
=
eBτ

m

m

nele2τ
=

B

enel
(1.3.7)

The conductivity tensor could be found as an inverse of resistivity, and after a

simple algebra we will get:

σ =

(
σ0

(1+ω2
cτ

2) − σ0ωcτ
(1+ω2

cτ
2)

σ0ωcτ
(1+ω2

cτ
2)

σ0

(1+ω2
cτ

2)

)
(1.3.8)

It is interesting to notice that in the limit of a clean sample ωcτ →∞ (without

the impurity for electrons to bounce off) we see that the off-diagonal elements

entirely govern both resistivity and conductivity.

One may observe that at the beginning we were talking about the resistance,

but our calculations with the Drude model led us to the resistivity. Resistance

is the property of the sample and depends on the geometry and material that

sample is made of. Resistivity, on the other hand, is a property of the material

itself. These two quantities are related by R = ρLA , where L is the length of the

conductor, and A is its cross-section area. From a dimensional point of view, the

cross-section area of a d-dimensional conductor scales as Ld−1. So the resistance

will scale as R ∼ ρLd−2 which means that for 2D conductor the resistance and

resistivity are the same from the dimensional point of view. This argument

assumes a square sample which is not generally true. In the general case, the

resistance would depend on the ration L
W or some factor of it. However, in the

case of Hall resistance, the length of the sample itself is the cross-section, so the

factor is equal to one.
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CHAPTER 1. INTRODUCTION

1.3.2 Quantum Hall effect

By the end of the twentieth century, a more interesting and fascinating version

of this effect was experimentally discovered. The first one, integer quantum Hall

effect (IQHE), was observed in 1980. by v. Klitzing, Dorda, and Pepper for

which v. Klitzing won the Nobel price in 1985.

Figure 1.2: Experimental data for Hall and longitudinal resistivity5

They have discovered that Hall resistance exhibits strange plateau-like be-

havior and deviates from the linear dependence on B. These places where Hall

resistance would show plateau are precisely quantized like

RH =
1

n

h

e2
(1.3.9)

where n ∈ N. These plateaus were followed by and complete vanishing of lon-

gitudinal resistance. An interesting property is that this quantization does not

depend on the properties of a material, but it is universal. The vanishing of

longitudinal resistance indicates a connection with the limit of the impurity-free

Drude model and suggests the universality of the effect independent on the im-

purities in the sample. The even more interesting effect was discovered three

years after the IQHE by Tsui, Störmer and Gossard, fractional quantum Hall

effect (FQHE) for n = 1
3 . These two effects, even if exhibit the similar kind of

behavior, have very different physical explanations behind them. We will not

further discuss the IQHE but will focus our attention at FQHE. The origin of

FQHE is in the strong electronic correlations and Coulomb interaction between

the electrons. Laughlin showed6 that the origin of the observed FQHE at 1
3 is

16



CHAPTER 1. INTRODUCTION

due to the formation of correlated incompressible electron liquid. The incom-

pressible means that if we vary the filling factor, we will not pay the infinitesimal

amount of energy. This can be understood for the system with the fixed number

of particles, if we decrease the magnetic field then automatically the surface area

occupied by one state will shrink while the total area of the system remains the

same. An infinitesimal change in the energy cannot accommodate this increase

of the state surface because of the finite gap between LL.

1.3.3 Fractional quantum Hall effect (FQHE)

As derived earlier the wave function for LLL is:

ψm ∼ zme−
|z|2

4 (1.3.10)

If we are restricted to the LLL we can see that only one wave function with a

given m exists, and because of the analyticity m ≥ 0. Before we tackle the issue

of many particles let us solve the two particles problem. Consider arbitrary

central potential V (|r1 − r2|). We could try and follow the standard procedure

of writing the relative momentum part and using the conservation of angular

momentum and then solving for the radial part, or we can use the analytic

properties of the function. If we already have the angular part we automatically

have the radial from the analytic properties of LLL wave functions. We can use

this to write down the two body wave function with relative angular momentum

m and center of mass angular momentum M :

Ψm,M (z1, z2) ∼ (z1 + z2)M (z1 − z2)me−
|z1|

2+|z2|
2

4 (1.3.11)

If we are dealing with spinless fermions, m has to be odd because of the sym-

metric properties and if M ≥ 0 than we have just a Gaussian prefactor that is

nothing else than a linear combination of single-particle wave functions in the

LLL. What is remarkable about this function is (if we neglect LL mixing) that

this is the exact wave function for every central potential in LLL.

Laughlin wave function is a generalization of two body wave function for

N particles:7,6

ψLm(z, z∗) =
∏
k<l

(zk − zl)me
∑
j

|zj |
2

4 (1.3.12)

Immediately we can notice that there is no center of mass dependence, that is

because that would destroy the spatial symmetry and introduce the Goldstone

bosons and such system would be gapless.

Since this is the wave function of electrons the exponent m needs to be of

the form m = 2k+1 in order to satisfy the symmetry condition. We are going to
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show that the filling factor fixes this exponent m. From the Laughlin function

if we fix one particle, e.g., z1 we can see that the highest power is z
m(N−1)
1 and

from the earlier discussion in 1.1.5 we saw that the power of z is fixed by the

NB , or mN = NB for N � 1, or

m =
NB
N

=
1

ν
(1.3.13)

But because of the fermionic nature we know:

ν =
1

m
=

1

2k + 1
(1.3.14)

or that Laughlin wave function is a candidate for filling factors 1, 1
3 ,

1
5 , . . .

1.3.4 Fully filled non-interacting LL ν = 1

From the general form of the Laughlin wave function, it looks that it should also

describe ν = 1 case of fully filed non-interacting LL. We can check that because

we know how to build these functions, we should simply anti-symmetries over

all particles. Let us start with a simple situation and then generalize. In general

LL wave function has the form:7

ψ([z]) = f([z])e−
1
4

∑
j |zj |

2

(1.3.15)

where [z] represents all the particles. Consider now the case for two particles:

f([z]) =

∣∣∣∣∣(z1)0 (z2)0

(z1)1 (z2)1

∣∣∣∣∣ = (z1)0(z2)1 − (z2)0(z1)1 = z1 − z2 (1.3.16)

as this is the lowest order polynomial that is asymmetric. For the three particles

we have:

f([z]) =

∣∣∣∣∣∣∣∣
(z1)0 (z2)0 (z3)0

(z1)1 (z2)1 (z3)1

(z1)2 (z2)2 (z3)2

∣∣∣∣∣∣∣∣ = z2z
2
3 − z3z

2
2 − z1z

2
3 + z3z

2
1 + z1z

2
2 − z2z

2
1

= −(z1 − z2)(z1 − z3)(z2 − z3)

= −
3∏
i<j

(zi − zj) (1.3.17)

This can now easily be generalized for N particles:

fN ([z]) =

N∏
i<j

(zi − zj) (1.3.18)

which is the same as Laughlin wave function for m = 1. So far the Laughlin

proposal showed some interesting properties, but we did conclude that it truly

represents the ground state of FQHE. In the next several sections we will discuss

the energy properties and excitation states of this function.
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1.3.5 Haldane’s pseudo-potentials

Before we dive into energy characteristics of Laughlin state, let us return to the

two body case. As stated before two body wave function is the exact wave func-

tion for every central potential in LLL. We can decompose the given potential

into:7,3

vm =
〈m,M |V |m,M〉
〈m,M |m,M〉

(1.3.19)

The reason v does not depend on M is that we are considering a central

potential. The values vm obtained this way are called Haldane’s pseudo-

potentials. These energies determine the spectrum of two body state entirely

because the magnetic field quenches the kinetic energy and particles are trapped

inside the single LL. As we said earlier, that peak value of this wave function

is around r ∼
√

2mlB , that means Haldane’s pseudo-potentials represent the

approximate value of the original potential at that radius:

vm ∼ V (|z| =
√

2mlB) (1.3.20)

We have introduced these quantities because they can be useful in describing

the N particle spectrum. The general N particle interaction potential can be

decomposed as:

V =
∑
i<j

V (|zi − zj |) =
∑
i<j

∞∑
m′=0

vm′Pm′(i, j) (1.3.21)

where Pm′(i, j) is a projector of particle pair (i, j) to the subspace of a relative

angular momentum m′. If we now return to the Laughlin wave function, we can

see that from the polynomial part no particle is in the state m′ < m.

We can choose a model potential to be:

v′m =

1 for m < m′

0 for m ≥ m′
(1.3.22)

From this, we can see that Laughlin wave function is the exact eigenstate with

zero energy, V ψLm = 0. Because the model is entirely repulsive (all energies

must be E ≥ 0) this is also the exact ground state. We can see from this that

even the interaction is repulsive we have a discrete energy spectrum. This can

be explained by the fact that kinetic energy to which would the excessive energy

go if two particles would approach each other is now quenched by the magnetic

field and frozen to the one LL by the energy gap. Laughlin state is also the only

zero energy state.

We can easily see this if we keep the number of particles and flux fixed. Any

excited state has a different value of angular momentum from m. If the state
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has angular momentum m′ such that m′ < m automatically follows that it costs

energy. If on the other hand we have a state with angular momentum m′ > m,

the mean distance between the electrons will grow but because of the fixed

sample surface and filling factor, at least one pair of electrons will be in a state

with angular momentum m′ < m and that will cost energy. This means that

any excitation from the Laughlin state will require the finite amount of energy

vm′ , in other words, the Laughlin’s wave function represents an incompressible

state.

The model given above may seem too artificial and far from the reality,

but if we numerically compare the wave function from this model and one from

Coulomb potential decomposed in Haldane’s pseudo-potentials we would get an

overlap of more than 99%. This high level of overlap may be understood in a

way that decomposition of Coulomb potential in Haldane’s pseudo-potentials

is monotonically decreasing function. The value of v1 is much larger than v3

which means that all the subsequent terms can be treated by the perturbative

approach and the ground state is protected.

1.3.6 Laughlin state excitations

So far only the ground state properties of the Laughlin function were discussed,

but we also need to examine the excitations. There are two types of excitations,

collective neutral and charged. Collective neutral excitations exhibit similar

kind of phonon behavior as in a superfluid or solids.7 They are a charge-density-

wave excitations with magneto-roton minimum that is gapped at k = 0. We

will focus our attention at the charged excitations.

1.3.7 Charged excitations

Quasi-hole excitations

If we recall, the changes in filling factor will introduce excitations in our system.

From the definition of filling factor, this can be achieved in two ways, by chang-

ing the number of particles or changing the number of flux quanta. We know

that the number of flux is related to the number of zeros in Laughlin function

so that we can propose a function for an excited state:

ψqh
L,m =

N∏
j=1

(zj − z0)ψLm([z]) (1.3.23)

if we imagine the symmetric gauge and assume z0 = (0, 0) this means that we

have added an another zero at the center of the system. Let us now verify that
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proposed function is indeed an excited state. We can do that by expanding it

in a polynomial:

ψqh
L,m =

∑
mi

γm1,m2,...,mN z
m1+1
1 zm2+1

2 . . . zmN+1
N e−

1
4

∑
j |zj |

2

(1.3.24)

where γm1,m2,...,mN is an expansion coefficient. We can see that each of the

exponents was increased mi → mi + 1. This physically means that by adding

an excitation at the center of the system we have forced each electron to jump

to the next angular momentum state, and we are left with a state m = 0

empty. Because of the empty state, this is a quasi-hole excitation. We saw that

changing the number of flux NB → NB + 1 we have introduced a quasi-hole

excitation and lowered the filling by a small amount. However, if we keep the

filling factor fixed and change only the flux, we would need to introduce some

charge to compensate for this change. From the definition of filling factor, we

have m∆N = ∆NB which means:

∆N =
∆NB
m

(1.3.25)

If we introduce the change of flux by 1, in order to compensate that we would

need to add a fractional charge of e
m , so the quasi-hole has a fractional charge.

From the wave function, it follows that particles gain an additional phase of 2π

by making one circulation around the center of the system compared to the

original situation (vorticity):

ψqh
L,m ∝

N∏
j

e−iθjψLm (1.3.26)

This behavior is similar to the vortex type behavior in type-II superconductors.

Quasi-particle excitations

As we saw in the previous section one may wonder if there is a way to lower the

number of flux quanta and create quasi-particle excitations. Naturally, these

excitations should have opposite vorticity, so the first suggestions for the wave

function prefactor would be
∏N
j (z∗j −z∗0). However, there is a problem with this,

by introducing the complex conjugate we are breaking the condition of analicity

and introducing LL mixing. We can fix this problem by projecting this function

to the LLL:

ψqp
L,m = PLLL

N∏
j

(z∗j − z∗0)ψLm([z]) (1.3.27)
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1.3.8 LLL projection

Here we will examine in more details the projection into LLL.8 We have seen

the general form of LL wave functions (1.3.15), and we know that in the LLL

f([z]) need to be analytical. Let us consider the set Θ of entire functions of N

complex variables. As an example for N = 1, z2 is one such function but z∗ is

not. Now we will define the inner product on Θ:

(f, g) =

∫
dξ[z]f∗[z]g[z] (1.3.28)

where the measure is defined like:

dξ[z] =

N∏
i=1

1

2π
e−

1
2 |zi|

2

dxidyy (1.3.29)

also, we are only considering the functions with a finite norm (f, f) < ∞. By

defining the norm (1.3.29) we now have the inner product of two wave functions

to be: 〈
ψ
′L
m

∣∣∣ψLm〉 = (f ′, f) (1.3.30)

We can now work with f ’s which are analytical instead of ψ which in general

are not. Because of the analytical condition on f ’s the number of allowed

operations is very small. There are only three types that satisfy this condition,

(1) multiplication by a constant, (2) multiplication by a power of z and (3)

differentiation with respect to z. To analyze these operators, we will introduce

the orthonormal basis:

fn(z) =
zn√
2nn!

(1.3.31)

This basis has a certain properties:

zfm =
√

2(m+ 1)fm+1 (1.3.32)

dfm
dz

=

√
m

2
fm−1

from these, we see that we can introduce a ladder like operators that will move

between different fm

a† =
z√
2

(1.3.33)

a =
√

2
d

dz

In the previous section, we have encountered a projector to the LLL. This was

necessary in order to fit the function z∗ into LLL. For example consider an

arbitrary matrix element (fn, z
∗
kfm), we know that z∗fm is outside the Hilbert
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space, but the matrix element is well defined. From the definition of the inner

product we have:

(fn, z
∗
kfm) = (zkfn, fm) (1.3.34)

Combining the two equations from (1.3.33) we see that:

z∗k = 2
∂

∂zk
(1.3.35)

Now we have obtained the projection of z∗ to the LLL. These two operators are

not quite the same, as it can be seen they do not commute the same way with

zk. For z∗k we have:

(f, zkz
∗
kg) = (f, z∗kzkg) (1.3.36)

but for the ∂
∂zk

we have:(
f, zk2

∂

∂zk
, g

)
6=
(
f, 2

∂

∂zk
zk, g

)
(1.3.37)

so we need to differentiate between the Hermitian conjugate and the adjoint.
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Magnetic Wannier functions

2.1 Motivation

In the previous literature9 a similar problem was studied. Rashba et al. were

considering magnetic Wannier functions in a rationally symmetric gauge. A

Gaussian wave function was created on a lattice point and afterwards by the

magnetic translation operator moved to other lattice points. Because of the

non-trivial Chern number of the problem, no complete localization is possible.

The fastest way for localization would be an envelope function with a Thouless

critical exponent of r−2.

In an another paper10 by Panfilov et al. an effective lattice Hamiltonian

was constructed using the magnetic Wannier functions of Rashba et al. The

final Hamiltonian has the strong on site repulsion and a chiral interaction, rem-

iniscent of a magnetic field presence. The amplitude of the chiral interactions

depends on the nearest neighbor site densities. The chiral interaction explicitly

breaks the time reversal symmetry. The amplitudes for matrix elements con-

tained Bessel functions and as such might be a problem for an experimental

realization. Our goal is to circumvent these problems by working in a Landau

gauge, naturally asymmetric, and try to extract wire-like construction.1 The

effective Hamiltonian should be without a complicated amplitude expressions

and simple for an experimental realization.
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2.2 Introduction

We are considering a LLL in square geometry on a torus T = [0, Lx]× [0, Ly] ∼
[0, Nxex]× [0, Nyey]. Magnetic field is perpendicular to the system plane B =

Bez, and we are working in a Landau gauge A = (0, Bx, 0). The number of

flux quanta threading the system is NΦ =
LxLy
2πl2B

= NxNy. Model Hamiltonian

for which the Laughlin bosonic state is an exact zero energy state is:

Ĥ =

∫
dx1

∫
dx2V δ(x1 − x2)ψ†(x1)ψ†(x2)ψ(x2)ψ(x1) (2.2.1)

where ψ(x) =
∑
n φ

?
n(x)an and φn(x), n = 1, . . . , NΦ an arbitrary basis in LLL

in the coordinate representation. We take φn(x) to be magnetic Bloch states of

Wu et al.2

|φk〉 ≡ |k〉 =
1√
Nx

[Nx2 ]∑
m=−[Nx2 ]

ei2πmkx/Nx |j = mNy + ky〉 (2.2.2)

where |j〉 is the usual basis in a LLL on a torus:

〈x, y|j〉 =
1

(
√
πLylB)1/2

Z∑
n

exp

(
2π(j + nNΦ)

x+ iy

Ly
− πLx
NΦLy

(j + nNΦ)2

)
e
− x2

2l2
B

(2.2.3)

Bloch states |k〉 have a quasi-periodicity |kx +Nx, ky +Ny〉 = e−
2πikx
Nx |kx, ky〉.

Because of δ function in model Hamiltonian, we can take for two-body interac-

tion part, i.e., Hamiltonian:

Ĥ = V

∫
dqρqρ−q (*)

where ρq =
∫

drψ†(r)ψ(r)e−iq·r. To describe the interaction in a magnetic

Wannier basis i.e. over a lattice structure we take

ψ(r) =
∑
k

〈k|r〉 ak (2.2.4)

and

ak =
∑
m

eik·mam (2.2.5)

where m(mx,my) and mx = [−Nx2 ,
Nx
2 ] and my = [−Ny2 ,

Ny
2 ].
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2.3 Normalization of magnetic Bloch and Wan-

nier states

First, we need to check the normalization of magnetic Bloch states:

〈k|k′〉 =
1

Nx

1√
πlB

[Nx2 ]∑
m,m′=−[Nx2 ]

Z∑
n,n′

exp

(
2πi

Nx
(m′k′x −mkx)

)
exp

(
− πLx
NφLy

((m′Ny + k′y + n′Nφ)2 + (mNy + ky + nNφ)2)

)
∫ Lx

0

dx exp

(
2πx

Ly
(m′Ny + k′y + n′Nφ +mNy + ky + nNφ)− x2

l2B

)
δm′Ny+k′y+n′Nφ,mNy+ky+nNφ (2.3.1)

where we have used the definition of a δ function for the integration over y.

This delta condition can be written in the form:

m′Ny + k′y + n′Nφ = mNy + ky + nNφ

(m′ −m+ n′Nx − nNx)Ny + (k′y − ky) = 0

Because ky, k
′
y are from the I Brillouin zone, in order for this equation to be

true it must be k′y = ky, ie. δk′y,ky . Now we need to examine the behavior of

expression next to Ny. We have m ∈ [0, Nx − 1] only when the equation will

be true is m = m′ and n = n′, ie. finally we have the decomposition of a δ

function:

δm′Ny+k′y+n′Nφ,mNy+ky+nNφ = δk′y,kyδm′,mδnNφ,n′Nφ

Now we would like to do the summation of primed values in (2.3.1).

〈k|k′〉 =
1√
πlB

1

Nx

[Nx2 ]∑
m=−[Nx2 ]

exp

(
2πim

Nx
(k′x − kx)

)
δk′y,ky (2.3.2)

Z∑
n

∫ Lx

0

dx exp

(
−x

2

l2B
+

4πx

Ly
(mNy + ky + nNφ)− 4π2l2B

L2
y

(mNy + ky + nNφ)2

)
︸ ︷︷ ︸

I

We can isolate I and solve it separately. The goal is to write it in the form

of a Gaussian integral that in combination with an infinite sum will lead to
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integration limits from −∞ to ∞.

I =

Z∑
n

∫ Lx

0

dx exp

(
−x

2

l2B
+

4πx

Ly
(mNy + ky + nNφ)− 4π2l2B

L2
y

(mNy + ky + nNφ)2

)

=

Z∑
n

∫ Lx

0

dx exp

(
−(

x

lB
− 2π

Ly
(mNy + ky + nNφ))2

)
=

Z∑
n

∫ Lx
lB
− 2π
Ly

(mNy+ky+nNφ)

− 2π
Ly

(mNy+ky+nNφ)

dξ exp
(
−ξ2

)
lB =

∫ ∞
−∞

dξ exp
(
−ξ2

)
lB =

√
πlB

(2.3.3)

We can restore the value of I in (2.3.2) to obtain the final result as expected:

1

Nx

[Nx2 ]∑
m=−[Nx2 ]

exp

(
2πim

Nx
(k′x − kx)

)
δk′y,ky = δk′y,kyδk′x,kx = δk,k′ (2.3.4)

As described earlier we will construct a Wannier function using the prescription:

Φm(r) =
1√
Nφ

∑
k

Ψk(r) exp(−ik ·m)

Where Ψk(r) = 〈x, y|k〉. With the normalization condition obtained for Bloch

states (2.3.4) we ca easily check normalization of the newly constructed Wannier

states:

〈Φm|Φm′〉 =
1

Nφ

∑
k,k′

∫
dxdyΨk(r)†Ψk′(r)︸ ︷︷ ︸

δk,k′

exp(−i(k′ ·m′ − k ·m))

=
1

Nφ

(NxNy)

(2π)2

∫
dk exp(−ik(m′ −m)) = δ(m−m′) (2.3.5)

2.4 Examining the behavior of magnetic Wan-

nier functions

Arbitrary magnetic Wannier has the form:

Φm(z) =
1√
NΦ

∑
kx,ky

1√
Nx

[Nx2 ]∑
m′=−[Nx2 ]

exp

(
i2πm′

kx
Nx

)(
1√

πLylB

) 1
2

× (2.4.1)

Z∑
n

exp

(
2π(m′Ny + ky + nNΦ)

x+ iy

Ly
− πLx
NΦLy

(m′Ny + ky + nNΦ)2

)
exp

(
− x2

2l2B

)
exp(−ik ·m)
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where k = (kx, ky). We can further simplify this expression by noticing that kx

only appears in the exponential function and the sum can be simply calculated.

[Nx2 ]∑
kx=−[Nx2 ]

exp

(
i2π

kx
Nx

(m′ −mx)

)
= Nxδm′,m (2.4.2)

So the final expression is:

Φm(z) =
1

Ny

(
1

πl2B
√

2

) 1
2

exp

(
− x2

2l2B

) [
Ny
2 ]∑

ky=−[
Ny
2 ]

exp

(
−2πi

kymy

Ny

)
(2.4.3)

Z∑
n

exp

(
2π(mxNy + ky + nNΦ)

x+ iy

Ly
− πLx
NΦLy

(mxNy + ky + nNΦ)2

)
Without loss of generality but for the sake of simplicity we will examine the

function around the lattice point m = (0, 0). We can redefine the k vector like

kx → 2πkx/Nx and similarly with ky so the whole expression simplifies. We can

also set the cell unit length to a = 1 so that lB = 1√
2π

, doing this every length

will be expressed in units of unit-cell length:

Φ0,0(z) =
2

1
4π

1
4

Ny
e−πx

2
π∑

ky=−π

Z∑
n

exp

(
2π

(
ky
2π

+ nNx

)
z − π

(
ky
2π

+ nNx

)2
)

(2.4.4)

The sum in the previous expression is hard to evaluate. Because we are inter-

ested in a long wavelength approximation we can turn to the thermodynamic

limit (TD) and transform a sum into an integral over ky:

Ny
2π

π∑
ky=−π

2π

Ny
→ Ny

2π

∫ π

−π
dky (2.4.5)

With TD approximation and using the fact that Li = lB
√

2πNi we arrive at

the final expression for Wannier function around m = (0, 0):

Φ0,0(z) =
1

(2π)
3
4

e−πx
2

eπz
2

Z∑
n

∫ π

−π
dky exp

(
−
(

ky
2
√
π

+
√
πnNx − z

√
π

)2
)

(2.4.6)

We can plot these functions in 2D contour plot and as line plot by slicing through

x or y.
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Figure 2.1: the exact function x = 0 (blue) and y = 0 (red) slice of the wave

function

|̀ 2

Figure 2.2: Contour plot of the exact wave function square moduo
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|̀ 2

Figure 2.3: Contour plot of the exact wave function square moduo

We can see that the obtained wave function is indeed anisotropic as we

expected. As can be seen from the figure 2.1, the function has a faster decay in

x direction which can be expected from the Gaussian-like term in the original

function. We are also expecting oscillations in y direction, a reminiscent of a

plane-wave solution in Landau gauge. This behavior can be better seen in the

graph below. In both images the used magnetic field was B = 5T, and unit cell

size a = 28.8nm.
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Figure 2.4: Detailed cross section in both direction, Y slice (x = 0) is in blue

and X slice (y = 0) is in red
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Figure 2.5: Comparison of TD limit and an exact function for X slice (y = 0)

and Y slice (x = 0)

As we can see, the thermodynamic limit does not deviate much from the

exact wave function.

31



Chapter 3

Interaction operator

In the previous chapter, we have constructed and examined the behavior of

magnetic Wannier functions. Now we can use them to form the density operator

and interaction operator afterwards.

3.1 Density operator

We will start by writing the density operator in Bloch basis and then transform-

ing to magnetic Wannier:

ρ(q) =

∫
drψ†(r)ψ(r)e−iq·r (3.1.1)

where ψ(r) = 1√
NΦ

∑
k ψkbk. On further expansion we have:

ρ(q) =
1

NΦ

∑
k1,k2

b†k1
bk2

∫
drψ†k1

(r)ψk2
(r) exp

(
−i 2π
Lx

qxx− i
2π

Ly
qyy

)
︸ ︷︷ ︸

I

(3.1.2)

The integral I can be separately evaluated:

I =
1

Nx
(
√
πLylB)−1

[Nx2 ]∑
m,m′=−[Nx2 ]

exp

(
i2π

Nx
(m′k2x −mk1x)

)
(3.1.3)

Z∑
n,n′

∫
dr exp

(
−x

2

l2B
+

2πx

Ly
(mNy + k1y + nNΦ +m′Ny + k2y + n′NΦ)− i 2π

Lx
qxx

)

exp

(
2πiy

Ly
(mNy + k1y + nNΦ −m′Ny − k2y − n′NΦ − qy)

)
︸ ︷︷ ︸

II

exp

(
− πLx
NΦLy

(
(mNy + k1y + nNΦ)2 + (m′Ny + k2y + n′NΦ)2

))
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The exponential function in II is a δ function, which we can evaluate:

II =

∫ Ly

0

dy exp

(
2πiy

Ly
(mNy + k1y + nNΦ −m′Ny − k2y − n′NΦ − qy)

)
=

LyδmNy+k1y+nNΦ,m′Ny+k2y+n′NΦ = Lyδm,m′δn,n′δk2y,k1y+qy (3.1.4)

Here the last term of delta function separation might at first look trivial, but we

had to limit our self to the values of qy < Ny−k1y. This is the main assumption.

Later on, it will be shown that integrals over qy will have significant dumping so

the integration can be done over the whole interval [−∞,∞]. The most relevant

qy are those for which qy � Ny. This assumption will lead us toward effective

one-dimensional reduction in the density operator for which any contribution

b†mbm′ will have mx = m′x. Another point of view for this assumption will

be given in the next section. We can use the obtained result to calculate the

remaining integral I:

I =
1

Nx
(
√
πlB)−1

[Nx2 ]∑
m=−[Nx2 ]

exp

(
2πim

Nx
(k2x − k1x)

)
(3.1.5)

Z∑
n

exp

(
− πLx
NΦLy

(
(mNy + k1y + nNΦ)2 + (mNy + k1y + qy + nNΦ)2

))
∫ Lx

2

−Lx2
dx exp

(
−x

2

l2B
+

2πx

Ly
(mNy + k1y + nNΦ +mNy + k1y + qy + nNΦ)− i 2π

Lx
qxx

)
This integral can easily be solved by forming two symmetric Gaussian, and this

can be achieved by the change of variables k1y → k1y − qy
2 , now we have:

I =
1

Nx
(
√
πlB)−1

[Nx2 ]∑
m=−[Nx2 ]

exp

(
2πim

Nx
(k2x − k1x)

)
(3.1.6)

Z∑
n

exp

(
− πLx
NΦLy

(
(mNy + k1y −

qy
2

+ nNΦ)2 + (mNy + k1y +
qy
2

+ nNΦ)2
))

∫ Lx
2

−Lx2
dx exp

(
−x

2

l2B
+

4πx

Ly
(mNy + k1y + nNΦ)− i 2π

Lx
qxx

)
We can make the integrand full Gaussian and have for the final form:

I =
1

Nx

[Nx2 ]∑
m=−[Nx2 ]

Z∑
n

exp

(
2πim

Nx
(k2x − k1x)

)
(3.1.7)

exp

(
−4l2Bπ

2i

LxLy
(mNy + nNΦ + k1y)qx −

π2l2B
L2
x

q2
x −

π2l2B
L2
y

q2
y

)
∫ Lx

2

−Lx2
dx exp

(
−
(
x

lB
− lB

2

(
4π

Ly
(mNy + nNΦ + k1y)− 2πi

Lx
qx

))2
)
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The infinite sum over the Z makes the calculations a bit complicated, but we

can incorporate it into the limits of the integral if we notice that:

e
4l2Bπ

2i

LxLy
nNΦqx = e−2πinqx = 1 (3.1.8)

Now that we only have n dependency inside the integral we can do change of

variables ξ = x
lB
− lB

2

(
4π
Ly

(mNy + nNΦ + k1y)− 2πi
Lx
qx

)
and then the integral

together with the sum become:

lB

∫ ∞
−∞

e−ξ
2

dξ = lB
√
π

Final expression for the density of states in the Bloch basis is:

ρ(q) =
1

NxNΦ

∑
k1,k2

b†k1
bk2

[Nx2 ]∑
m=−[Nx2 ]

exp

(
2πim

Nx
(k2x − k1x)

)
(3.1.9)

exp

(
−4l2Bπ

2i

LxLy
(mNy + k1y)qx −

π2l2B
L2
x

q2
x −

π2l2B
L2
y

q2
y

)
δk2y,k1y+qy

Now that we have a full density in the Bloch basis we can quickly go to the

Wannier representation using:

b†k =
∑
m

eim·kb†m (3.1.10)

In this representation the density looks like:

ρ(q) =
1

Ny

∑
k1y,m1y,m2y,m

exp

(
2πik1y

Ny
(m1y −m2y)

)
exp

(
−πiqy
Ny

(m1y +m2y)

)
(3.1.11)

exp

(
−4l2Bπ

2i

LxLy
(mNy + k1y)qx −

π2l2B
L2
x

q2
x −

π2l2B
L2
y

q2
y

)
b†m1

bm2δm1x,mδm1x,m2x

(3.1.12)

As we have seen before by going to the thermodynamic limit we are not deviating

from the exact picture so that we will do the same here:

ρ(q) =
1

2π

∑
k1y,m1y,m2y,m

exp

(
− iqy

2
(m1y +m2y)− imqx −

l2B
4

(q2
x + q2

y)+

iqy
2

(m1y −m2y)− iqxqy
4π

)∫ π

−π
dk1y exp

(
ik1y(m1y −m2y −

qx
2π

)
)

︸ ︷︷ ︸
III

(3.1.13)

Integral III can be evaluated separately to finally get the density operator

(we have made a substitution m → mx). This operator is unfortunately not
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Hermitian as a consequence of our approximation:

ρ(q) =
1

2π

∑
m1,m2

exp

(
−iqym2y − iqxmx −

1

8π
(q2
x + q2

y)− iqxqy
4π

)
(3.1.14)

i(
m1y −m2y − qx

2π

)eiπ(m1y−m2y)
(

exp
(
i
qx
2

)
− exp

(
−i qx

2

))
δm1x,m2xδmx,m1xb

†
m1
bm2

3.2 Density operator in Wu basis

In the work of Wu at al.2 they have presented a new Bloch basis that we are

also using. By deriving an expression for the density of states given in the

paper, we can see what exactly the approximation in the previous section means

physically. Here we work on the same torus T = [0, Lx]× [0, Ly] pierced with

NΦ flux quantum. The LLL basis is spanned by:

|k〉 =
1√
Nx

Nx−1∑
m=0

ei2πmkx/Nx |j = mNy + ky〉 (3.2.1)

where

〈x, y|j〉 = (
√
πLylB)−1/2

Z∑
n

e
2π(j+nNΦ) x+iy

Ly
− πLx
NΦLy

(j+nNΦ)2

e
− x2

2l2
B (3.2.2)

It holds |kx +Nx, ky +Ny〉 = e−
2πikx
Nx |kx, ky〉, we do not have a periodicity in

y direction, every crossing of BZ in y direction will introduce additional phase

factor. We want to calculate density operator:

ρq =

∫
dr |r〉 ei

(
2π
Lx
qxx+ 2π

Ly
qyy
)
〈r| (3.2.3)

in the k basis so we have:

〈k1|ρq|k2〉 = (
√
πLylBNx)−1

Z∑
n1,n2

Nx−1∑
m1,m2=0

∫
dr e

− x2

l2
B ei

2π
Nx

(m2k2x−m1k1x)

e
x
[

2π
Ly

(m1Ny+k1y+n1NΦ)+ 2πiqx
Lx

+ 2π
Ly

(m2Ny+k2y+n2NΦ)
]

(3.2.4)

e
2πiy
Ly

(−m1Ny−k1y−n1NΦ+qy+m2Ny+k2y+n2NΦ)︸ ︷︷ ︸
I

e
− πLx
NΦLy

[(m2Ny+k2y+m2NΦ)2+(m1Ny+k1y+m1NΦ)2]

First, we will evaluate I as it is the only place y occurs:∫ Ly

0

dy e
2πiy
Ly

(−m1Ny−k1y−n1NΦ+qy+m2Ny+k2y+n2NΦ)
=

Lyδqy+m2Ny+k2y+n2NΦ,m1Ny+k1y+n1NΦ (3.2.5)

We allow one of the k’s to lie outside the BZ (k1 in our case) and then our delta

function trivially decompose into:

δqy+m2Ny+k2y+n2NΦ,m1Ny+k1y+n1NΦ = δqy+k2y,k1yδm1,m2δn1,n2 (3.2.6)
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The fact that k1 can lie outside the BZ will introduce a phase shift whenever

we cross the BZ so that the further care will be taken later. We can use this

delta to write matrix element like:

〈k1|ρq|k2〉 =(
√
πlBNx)−1

Z∑
n2

Nx−1∑
m2=0

∫
dx e

− x2

l2
B ei

2πm2
Nx

(k2x−k1x) (3.2.7)

e
x
[

2π
Ly

(qy+m2Ny+k2y+n2NΦ)+ 2πiqx
Lx

+ 2π
Ly

(m2Ny+k2y+n2NΦ)
]

e
− πLx
NΦLy

[(m2Ny+k2y+m2NΦ)2+(qy+m2Ny+k2y+n2NΦ)2]︸ ︷︷ ︸
†

δqy+k2y,k1y

Now we have integration over x that can be done by shifting a sum and simpli-

fying the expression. First we shift k2y → k2y − qy
2 so that we have for the x

integral:∫ Lx

0

dx e
x
[

4π
Ly

(m2Ny+k2y+n2NΦ)+ 2πi
Lx

qx
]
e
− x2

l2
B = (3.2.8)∫ Lx

0

e
−
(
x
lB
− lB2

(
4π
Ly

(m2Ny+k2y+n2NΦ)+ 2πi
Lx

qx
))2

e
l2B
4

(
4π
Ly

(m2Ny+k2y+n2NΦ)+ 2πi
Lx

qx
)2︸ ︷︷ ︸

‡

Expanding † and combining with ‡ we have

e
−
πq2y

2N2
y
− πq2x

2N2
x e

2πiqx
NxNy

(m2Ny+k2y)
(3.2.9)

in the expansion of ‡ we had a term with n2 that was in a form e2πiqxn2 = 1.

After these transformation we are left with an expression that only has n2

dependence in the exp. The integral over x including infinite sum is:

Z∑
n2

∫ Lx

0

e
−
(
x
lB
− lB2

(
4π
Ly

(m2Ny+k2y+n2NΦ)+ 2πi
Lx

qx
))2

(3.2.10)

we can do variable change ξ = x
lB
− lB

2

(
4π
Ly

(m2Ny + k2y + n2NΦ) + 2πi
Lx
qx

)
.

Now n2 only appears inside of integral limits and accounting for the infinite

sum we get infinite limits of integration:

lB

∫ ∞
−∞

dξ e−ξ
2

=
√
πlB (3.2.11)

Collecting all the terms with m2 and summing we have a delta function over

the x component of momentum:

1

Nx

Nx−1∑
m2=0

em2i
2π
Nx

(k2x−k1x+qx) = δk1x,k2x+qx (3.2.12)

If we collect all the terms and re-shift momentum values back to the original

state, finally we have for the matrix element:

〈k1|ρq|k2〉 = e−
q2

8π e
2πiqx
NxNy

(k2y+
qy
2 )
δk1x,k2x+qxδk1y,qy+k2y (3.2.13)
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and density operator:

ρq = e−
q2

8π e
πiqxqy
NxNy

BZ∑
k

e
2πiqxky
NxNy c†kck+q (3.2.14)

We should bear in mind that if k + q goes outside of BZ a phase factor appears

ck+q = e
2πipxny
Nx cp (3.2.15)

where we decomposed k + q = p + n · N. We can now see that assumption

qy < Ny − k1y, that all momenta are from the IBZ, we have made in the

previous section is a process of cutting the phase associated with going from

one BZ to another. Also, by introducing this approximation, we are getting the

previous expression for a density operator derived in (3.1.14).

3.3 Interaction operator

In the previous section, we have derived the density operator in the magnetic

Wannier basis. Sadly because of the approximation made in order to separate a

delta function, we have made a density non-hermitian. We would like to build

an interaction operator that is Hermitian, so instead of a usual way we will build

an interaction like
∑

q ρ
†(q)ρ(q) so that it would be hermitian:∫

dqρ†(q)ρ(q) =

1

4π2

∫
dq

∑
m1,m2,m′1,m

′
2

exp

(
−iqy(m2y −m′2y)− iqx(mx −m′x)− 1

4π
(q2
x + q2

y)

)

eiπ(m1y−m2y−m′1y+m′2y)(−1)
(
e
iqx
2 − e−

iqx
2

)2 1

(m1y −m2y − qx
2π )(m′1y −m′2y −

qx
2π )

δm1x,m2x
δm′1x,m′2xδmx,m1x

δm′x,m′1xb
†
m1
bm2b

†
m′2
bm′1 (3.3.1)

We can represent this graphically by a lattice and site interactions:
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CHAPTER 3. INTERACTION OPERATOR

Figure 3.1: A schematical representation of general contribution to the interac-

tion operator. Each density operator contribution ∼ b†m1
bm2

can be represented

by a vertical line in the lattice structure (red line)

Detailed analysis of the matrix elements is given in Appendix A. All the

relevant elements were analyzed and final model is proposed. Here we will just

write the final expression for a Hamiltonian and discuss the results. The model

Hamiltonian is given in this form:

Ĥ =
∑
n̂

[
c†n̂c
†
n̂cn̂cn̂ + αc†n̂c

†
n̂+x̂cn̂cn̂+x̂ + βc†n̂c

†
n̂+ŷcn̂cn̂+ŷ + i∆(c†n+ycn − c†ncn+y)

(c†n−xcn−x + c†n+y−xcn+y−x − c†n+xcn+x − c†n+y+xcn+y+x)
]

(3.3.2)

where n̂ = (nx, ny) is a vector labeling lattice and x̂, ŷ are unit vectors in x and

y direction on a lattice.

Numerical studies were performed where α = β and chiral interaction was

slowly introduced by a graduate increase of a δ parameter. Several system sizes

were tested for a different number of particles so that filling of ν = 1
2 was

satisfied. From the Laughlin state in a continuum, we were expecting a double

degeneracy of the ground state. Numerical studies did not show the agreement

for the number of degenerate states on a lattice. For example, for the system

of size Nx = 4, Ny = 4 and N = 8 four-degeneracy was found. For the system

of size Nx = 3, Ny = 6 and N = 9 the twelve-degeneracy was found. In these

examples Nx and Ny are dimensions of the sample, the number of lattice points

in x and y directions, and N is the number of bosons on a lattice.
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Conclusion

In this thesis, we have tried to propose an effective lattice model Hamiltonian for

bosons at ν = 1
2 . We have worked in an anisotropic gauge9,2 creating the mag-

netic Wannier function basis from which the density and interaction operator

were constructed. In this process long wavelength approximation was introduced

which enabled us to get the wire-like structures although this approximation is

natural and the most simple one, the ensuing density was not Hermitian, and

we had to impose further constraints on the interaction operator to make it

Hermitian. Only the nearest neighbor elements were taken into consideration

for the final model. Matrix elements that were included showed a similar be-

havior as in the previous literature.10 The proposed model Hamiltonian was

numerically diagonalized, but no evidence of Laughlin state at half filling was

found. These findings bring us to the conclusion that a simple one-dimensional

reduction scheme developed in this thesis that would produce Laughlin state on

a lattice is not possible at the moment.
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Appendix A

Analysis of a interaction

operator

In the last section, we have derived the expression for an interaction operator in

magnetic Wannier basis and gave a visual representation of a matrix element.

Here we will give a detailed analysis of the most prominent elements and try to

propose a model Hamiltonian.

A.1 On site interaction

The general element of this class is given on a picture below.

Figure A.1: onsite interaction

We will analyze the most general case of onsite interaction for which we
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APPENDIX A. ANALYSIS OF A INTERACTION OPERATOR

have m1y = m2y 6= m′1y = m′2y and mx 6= m′x:

1

4π2

∫
dq exp

(
−iqy(m2y −m′2y)− iqx(mx −m′x)− 1

4π
(q2
x + q2

y)

)
(−1)

(
e
iqx
2 − e−

iqx
2

)2 1

q2
x

(A.1.1)

we can write
(
e
iqx
2 − e−

iqx
2

)2

= −4 sin2( qx2 ) and use the approximation for

small values of qx, so sin(α) ≈ α. When we do the approximation and the

integral over q we have:

e−π(m2y−m′2y)2

e−π(mx−m′x)2

(A.1.2)

From this result, we can see that repulsive interaction between sites falls off very

quickly.

A.2 Onsite and hopping

This is one of the more interesting elements, and the general scheme is repre-

sented on a figure below:

Figure A.2: Onsite and hop interaction element

In this case we have m1y = m2y 6= m′1y 6= m′2y and mx 6= m′x. Here we

made an approximation that qx
2π � 1, by doing this we also keep the interaction

operator Hermitian:

1

4π2

∫
dq exp

(
−iqy(m2y −m′2y)− iqx(mx −m′x)− 1

4π
(q2
x + q2

y)

)
eiπ(−m′1y+m′2y)

(A.2.1)(
e
iqx
2 − e−

iqx
2

)2 2π

qx(m′1y −m′2y)
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We can do integration over y as before, but now we do not need to approximate

for small qx. Over qx we have:∫ ∞
−∞

dqx exp

(
− q

2
x

4π
− iqx(mx −m′x)

)
sin2

(qx
2

) 1

qx

We can rewrite exp(iqx(mx −m′x)) over sin and cos, and see that real part with

cos is an odd function on a symmetric interval so it will be zero and we are left

with the purely imaginary solution. The integral we are trying to solve now is:∫ ∞
−∞

dqx exp

(
− q

2
x

4π

)
sin(qx(mx −m′x)) sin2

(qx
2

) 1

qx
(A.2.2)

Now we can transform this product of sin function, so we lose power

sin(qx(mx −m′x)) sin2
(qx

2

)
=

1

4
[sin(qx(1− (mx −m′x))) + 2 sin(qx(mx −m′x))

− sin(qx(1 +mx −m′x))]

After the transformation, we have integrals that can be solved. These integrals

have form:11

∫ ∞
0

xµ−1e−βx
2

sin(γx)dx =
γe−

γ2

4β

2β
µ+1

2

Γ

(
1 + µ

2

)
F1 1

(
1− µ

2
;

3

2
;
γ2

4β

)
(A.2.3)

with conditions Re{β} > 0,Re{µ} > −1. We can apply this to our integrals:

− iπ

2
(1− (mx −m′x))e−π(1−(mx−m′x))2

F1 1

(
1;

3

2
;π(1− (mx −m′x)2

)
−

πi(mx −m′x)e−π(mx−m′x)2

F1 1

(
1;

3

2
;π(mx −m′x)2

)
− (A.2.4)

− iπ

2
(1− (mx −m′x))e−π(1+(mx−m′x))2

F1 1

(
1;

3

2
;π(1 + (mx −m′x)2

)
where F1 1 is the confluent hypergeometric function of the first kind. We can

verify that this is the solution to the integral by doing numerical integration

and comparing with this solution.
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Figure A.3: magnitude of on-site hop element

We have a complex amplitude for interaction, and we can see that the sign

changes depending on the direction of hopping which can indicate a possible

chirality. Also, it can be seen from the graphics above that all the relevant

contributions are from the nearest neighbor cells (x-axis is difference mx−m′x).

We can see that we have the same sign for upward hopping on the right as a

left hopping downward. This result has somewhat complicated form, if in the

original integral we rewrite the part with sin2 like
sin2( qx2 )

qx
≈ sin( qx2 )qx

2qx
=

sin( qx2 )
2

and then do the integration we get

iπe−
π
4

m′1y −m′2y
e−π(m2y−m′2y)2

e−π(mx−m′x)2

sinh(π(mx −m′x))

By doing this, we got a simpler form from which this can be directly seen. We

also see that the imaginary phase that particle acquires while hops depend on

the occupancy of neighboring cells, let us picture the general case:
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Figure A.4: Scheme for hopping element with the neighboring sites on which its

amplitude depends

The dependency of hopping phase on occupancy is:

∼ i(nr1 + nr2 − nl1 − nl2) (A.2.5)

This is one of the main results in this section, and we will use it latter to

construct the model Hamiltonian.

A.3 Double hop

Here we will examine the double hopping case represented on a scheme below:

Figure A.5: Scheme of a double hop element

In this case we have m1y 6= m2y 6= m′1y 6= m′2y and we will made an
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approximation that qx
2π � 1:

1

4π2

∫
dq exp

(
−iqy(m2y −m′2y)− iqx(mx −m′x)− 1

4π
(q2
x + q2

y)

)
(A.3.1)

eiπ(m1y−m2y−m′1y+m′2y) q2
x

(m1y −m2y)(m′1y −m′2y)
=

2πe−π(m2y−m′2y)2

e−π(mx−m′x)2

eiπ(m1y−m2y−m′1y+m′2y) (1− 2π(mx −m′x)2)

(m1y −m2y)(m′1y −m′2y)

Here we see that exponential dumping kills hops that end far apart. We can

also see that if two hops happen over an odd difference of cells the interaction

would be attractive otherwise is repulsive. However, these higher order hopping

terms are dumped because of the Gaussian term.

A.4 Magnitude comparison

We have examined the three types of elements in the interaction operator. Here

we will compare their magnitude and try to select the ones that will be in a

final model.

We did a numerical calculation for each element without any approximation

in their full form for the comparison to be complete. For onsite and double hop

real part is plotted, while for the onsite and hop imaginary part is plotted. We

are considering the following situation best depicted in the figures below:

(a) Onsite hop configuration (b) Double hop configuration

Figure A.6

These images represent the following conditions m2y − m′2y = 0, m1y −
m2y = 1 and m′1y −m′2y = 1.

45



APPENDIX A. ANALYSIS OF A INTERACTION OPERATOR

Onsite

Onsite hop

Double hop
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Figure A.7: Magnitude comparison for real part of onsite and double hop, imag-

inary part for onsite and hop element

Another interesting case is represented on a pictures below:

(a) Onsite hop element configuration (b) Double hop element configuration

Figure A.8

In this configuration the setup is following m2y −m′2y = 0, m1y −m2y = 1

and m′1y −m′2y = −1.
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Onsite

Onsite hop

Double hop
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Figure A.9: Magnitude comparison for real part of onsite and double hop, imag-

inary part for onsite and hop element

As it can be seen from these results, our model will consist of a lattice with

bosons distributed in such a way that each site will have a repulsive interac-

tion between each other similar as electrons trapped in a magnetic field and the

hopping term would introduce the wanted chirality as in a magnetic field. The

double hopping terms could be incorporated as a way to disrupt the perfect

lattice. It should be noted that higher order double hopping terms were ana-

lyzed and no significant terms were found. In the process of approximating the

Hamiltonian, we have indeed broken some symmetries of the original problem.

This can lead to erratic behavior of nonlocal matrix elements. Because of this,

we are restricting our self to the nearest neighbor elements. Proposed model

could be given in a form with parameters that could tune the interactions and

energies:

Ĥ =
∑
n̂

[
c†n̂c
†
n̂cn̂cn̂ + αc†n̂c

†
n̂+x̂cn̂cn̂+x̂ + βc†n̂c

†
n̂+ŷcn̂cn̂+ŷ + i∆(c†n+ycn − c†ncn+y)

(c†n−xcn−x + c†n+y−xcn+y−x − c†n+xcn+x − c†n+y+xcn+y+x)
]

(A.4.1)

where n̂ = (nx, ny) is a vector labeling lattice and x̂, ŷ are unit vectors in x and

y direction on a lattice.
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