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ABSTRACT
We here present the normal dynamics technique, which recasts the Newton’s equations of motion in terms of phonon normal modes by
exploiting a proper sampling of the reciprocal space. After introducing the theoretical background, we discuss how the reciprocal space
sampling enables us to (i) obtain a computational speedup by selecting which and how many wave vectors of the Brillouin zone will be
considered and (ii) account for distortions realized across large atomic distances without the use of large simulation cells. We implemented
the approach into an open-source code, which we used to present three case studies: in the first one, we elucidate the general strategy for
the sampling of the reciprocal space; in the second one, we illustrate the potential of the approach by studying the stabilization effect of
temperature in α-uranium; and in the last one, we investigate the characterization of Raman spectra at different temperatures in MoS2/MX2
transition metal dichalcogenide heterostructures. Finally, we discuss how the procedure is general and can be used to simulate periodic,
semiperiodic, and finite systems such as crystals, slabs, nanoclusters, or molecules.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0224108

I. INTRODUCTION

Molecular Dynamics (MD) simulation is the technique of
choice to study a vast variety of atomic systems, spanning biological
matter and inorganic materials.1 In an MD simulation, interactions
among a given set of atoms are defined by a function, i.e., the
potential energy, which depends on the position of the atoms in
the space; such interactions are provided as analytical functions or
numerical datasets, which define the force field .1 The vast majority
of force fields rely on a classical description of interactions; in the
past decades, several of them have been developed for both organic
and inorganic systems.2–7 Despite such an abundance of parame-
terizations, shortcomings of classical force fields are still present,
e.g., in terms of accuracy and availability of the description for the
system under study.8–12 Moreover, the parameterization procedure
presents an unavoidable degree of arbitrariness (for example, in the
choice of the analytical form of the force field, or in the reference

data to be used, or even in the fitting scheme to be employed), as
well as possibly being very time-demanding.13,14 Another issue is
represented by the difficulty of describing how the subtle details
of the electronic density determine the force field, especially when
the polarity of the bonds,15 charge anisotropy,16 and covalent char-
acter are decisive in the system dynamics.17–19 On the other hand,
one can perform ab initio molecular dynamics (AIMD)—such as
in the Car–Parrinello scheme20—in order to overcome the above-
mentioned limitations imposed by classical force fields. In this case,
the classical Hamiltonian is substituted by a quantum mechanical
one, which can be built for any atom topology and atomic type. The
major drawback of such schemes is that they might become very
computationally demanding. Another possibility is represented by
the QM/MM scheme,21 where the system is split into two regions,
one treated at the quantum mechanical (QM) level and the other
(MM) at the classical one. Such an approach has the advantage that,
in general, the simulations scale roughly as O(N2), where N is the
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number of atoms in the system. However, the identification of the
QM region requires a priori knowledge of the physical phenomena
to be studied; moreover, the truncation of the bonds crossing the
QM/MM interface is not trivial at all in, e.g., solid systems. Finally,
in the QM/MM approach, a classical force field including all the
chemical species of the system must be available.

In addition to this, large geometric models are often required
in order to produce accurate data comparable with experiments,22

resulting in resource-demanding MD simulations. The computa-
tional cost to produce a dynamical trajectory might become pro-
hibitive if the simulations must be carried out at the quantum
mechanical level. This issue is usually mitigated by limiting the size
of the simulation box; however, it is known that this may affect the
reliability of the results.23 This is the case when it is necessary to
include distortions realized across large interatomic distances, which
account for ripples, and determine thermal transport, diffusion
coefficients, and nucleation processes.23–30

Here, we propose an approach that can help circumvent these
difficulties. The technique uses an approximation of the real poten-
tial energy surface by means of a Taylor expansion about a ref-
erence configuration, and it produces dynamical trajectories by
solving Newton’s equations of motion in terms of phonon nor-
mal coordinates. This, in turn, corresponds to a suitable sampling
of the reciprocal space; such sampling enables the user to tune
the computational load to target a desired accuracy. Moreover,
long-wave structural modulations are accounted for with a suit-
able choice of sampling set, without the need to consider large
unit cells. The general formulation of our approach enables us
to parameterize the interatomic forces at any level of quantum
mechanical description; such forces can be calculated from either
ground or excited electronic configurations, even in the presence
of external electric or magnetic fields, and may include quantum-
mechanical electron–nuclei interactions such as the hyper-fine
Hamiltonian. Since the atomic interactions appearing in the equa-
tions of motion can be parameterized with quantum mechanical
descriptions, the sampling strategy of the technique makes it pos-
sible to generate dynamical trajectories of large systems on ordi-
nary desktop computers. As the scheme is aimed at obtaining
dynamical trajectories by integrating Newton’s equations expressed
in terms of normal coordinates, we termed it Normal Dynamics
(ND).

In this work, we present the theoretical derivation of the
method, the implementation into a freely available FORTRAN code,
and advantages and drawbacks of this approach by considering three
case studies. In the first one, we illustrate the general idea about how
to perform the sampling of the reciprocal space, for example, by con-
sidering a reduced set of wave vectors of the Brillouin zone in order
to obtain a computational speedup or by enlarging such a set in order
to obtain the desired accuracy of the results. In the second one, we
show that the ND scheme can be employed in order to observe the
stabilization effect of temperature, which has been already reported
in the literature,31 but at the cost of performing computationally
demanding AIMD simulations. In the third one, we exploit the
ND technique to study the thermal effect in the Raman spectra of
transition metal dichalcogenide heterostructures and discuss pos-
sible mistakes that may occur in the attribution of the Raman
peaks.

II. THEORETICAL BACKGROUND
Differently from most of the classical force fields,2–6 the ND

technique does not rely on the definition of a bonding topology.
It is rather based on a description that is general with respect to
the atomic type and the geometric arrangement forming the system.
Such a description relies on the Taylor expansion of the potential
energy V in terms of the atomic displacements u with respect to a
specified reference configuration,32

V(uαk
ik
) = V0 +∑

p≥1

1
p! ∑α1...αp

i1...ip

Θα1...αp
i1...ip

p

∏
k=1

uαk
ik

, (1)

where V0 is the energy reference, p is the order of the terms in
the sum, ik and αk identify the atom and the Cartesian compo-
nent of the displacement from its reference position, respectively,
and k enumerates the approximation orders. The Cartesian tensors
Θp = Θα1...αp

i1...ip
are formed by the pth order partial derivative of the

potential energy with respect to the atomic positions calculated at
the reference position. For p = 1, Θ1 = Θα1

i1
is the net force active

on the ith atom along the Cartesian direction α and is null when
V is evaluated at equilibrium; for p ≥ 2, Θp contains the pth order
interatomic force constants. If Eq. (1) is truncated at p = 2, the inter-
atomic forces are of the harmonic kind; the anharmonic effects are
instead included in the terms with p ≥ 3. The Θp tensors can be
evaluated numerically at any order by means of a quantum mechan-
ical Hamiltonian,33–38 which avoids the limitations imposed by the
availability of existing force fields or the need to parameterize a
new one.39 The use of a Taylor expansion to approximate the real
potential energy surface is not new, and it is currently exploited in
previous formulations40 (also in different contexts41) and relative
software packages, such as HIPHIVE,34 A-TDEP,31 and SSCHA.42 The
novelty of the ND method relies on the fact that we make use of the
Fourier transform of such a Taylor expansion in order to explicitly
perform dynamical simulations in the reciprocal space. To the best
of our knowledge, this has never been proposed in the literature, and
currently, there is no other software capable of performing such a
task.

Equation (1) can be used to describe the atomic interactions of
any system, irrespective of the atomic type, the stoichiometry, and
the atom geometry. Moreover, the Θp tensors represent harmonic
(p = 2) and anharmonic (p > 2) contributions determined by the
electronic density and the conditions at which the latter is calcu-
lated (e.g., ground or excited states, in the presence or not of external
fields). However, it must be stressed that the technique relies on the
Fourier transform of a Taylor expansion, which needs to be trun-
cated for practical reasons, and therefore, it has a finite convergence
radius. This results from the fact that the description of the interac-
tions is somehow local, and it can become unreliable if the dynamics
brings the system far away from the reference state, i.e., if large dis-
placements take place during the dynamics. We address this point in
Sec. III D, where we also present some strategies on how to (partially)
amend this.

A. The equations of motion
Here, we present the equations employed by the ND scheme;

the full derivation is reported in the supplementary material. We
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begin by exploiting the fact that, at each q wave vector of the Bril-
louin zone of a system with N atoms in the unit cell, the 3N normal
coordinates Qq,j are a complete basis set for the 3N Cartesian compo-
nents of the atomic displacements uα

i . We shorten the notation as Qλ,
with λ = (q, j) and j labeling the normal mode (for more details on
the notation, see Sec. I of the supplementary material). The kinetic
energy T and the potential energy V in terms of the Qλ coordinates
are then read as32,43

T = 1
2∑λ

Q̇λQ̇λ
∗ , (2)

V = 1
2∑λ

ω2
λQλQ ∗

λ +∑
p≥3

1
p! ∑λ1...λp

Φλ1...λp

p

∏
k=1

Qλk , (3)

where ωλ is the eigenfrequency of the dynamical matrix associ-
ated with the phonon mode λ, the symbol “∗” indicates the com-
plex conjugation, p is the order of approximation, and the tensors
Φp = {Φλ1...λp} are the Fourier transforms of the tensors Θp by
means of the eigenvectors of the dynamical matrix.32,43 We then
write the Lagrangian of the system L = T − V by using Eqs. (2)
and (3) and solving the Euler–Lagrange equations for the normal
coordinates Qλ,

d
dt

∂L

∂Q̇λ
− ∂L

∂Qλ
= 0, (4)

which are the Newton’s equations of motion written in terms of
the normal modes. The time integration of Eq. (4) represents the
dynamic evolution of the normal modes of the system, and it is
equivalent to the time integration of the Newton’s equations of
motion in Cartesian space. The explicit form of Eq. (4) is

Q̈λ = −ω2
λQλ −

⎛
⎝∑p≥3

1
(p − 1)! ∑λ1...λp−1

Φλλ1...λp−1

p−1

∏
k=1

Qλk

⎞
⎠

∗
, (5)

which shows that the atomic motion can be computed as a harmonic
oscillation modulated by anharmonic contributions represented by
the term in parenthesis, where p is the order of the anharmonic
correction. If no anharmonic effects are present, that is, if all the
Φp tensors are null, we recover the equation for the harmonic oscil-
lator. The derivation of Eq. (5) and the calculation of harmonic
phonons and anharmonic Φp tensors do not rely on the assumption
that the reference unit cell represents a perfect crystal.

Indeed, the presence of defects can be taken into account
by using a unit cell, which consists of a supercell containing
the defect(s) and with a size that reproduces the desired defect
concentration.

The choice of the q-points entering Eqs. (2) and (3) is done
according to the kind of system that the cell represents, that is,
periodic (bulk), semiperiodic (slab), or finite (cluster or molecule).

With the choice of the potential energy as shown in Eq. (3),
Eq. (5) enables us to sample the phase space in the microcanonical
ensemble (NVE). In order to simulate the canonical (NVT) ensem-
ble within the ND scheme, Eqs. (2) and (3) must include the energy
terms representing the degrees of freedom of a thermostat cou-
pled with the system. We, therefore, derived the equations, which

include the Nosé–Hoover thermostat44–46 (see Secs. II–IV of the
supplementary material),

Q̈λ = −ω2
λQλ −

⎛
⎝∑p≥3

1
(p − 1)! ∑λ1...λp−1

Φλλ1...λp−1

p−1

∏
k=1

Qλk

⎞
⎠

∗
− ξ̇Q̇λ,

(6)

ξ̈ = 1
Qth
(∑

λ
Q̇λQ̇λ

∗ − 3NkBT), (7)

where ξ and Qth are the dynamical variable and the “mass” associated
with the thermostat, respectively, kB is the Boltzmann’s constant,
and T is the set temperature. If ξ is constant during the whole simu-
lation, Eq. (6) reduces to Eq. (5), and the simulated ensemble is the
microcanonical one.

To the best of our knowledge, equations in the form of Eq. (5)
or Eq. (6) have not been reported before, and we refer to them as
normal equations.47 In order to obtain the dynamical trajectory, the
number of equations to be integrated is equal to the number of
normal coordinates, that is, 3N ×Nq, where Nq is the number of
q points chosen to sample the Brillouin zone. The form of the normal
equations provides a direct way to decompose the atomic motions
into harmonic and anharmonic contributions, thus facilitating the
study of anharmonic effects; indeed, the latter reduces to the study of
the tensors Φp and how they determine the phonon scattering.48–53

We also developed FORTRAN software named Phonon-
Inspired Normal Dynamics Of Lattices (PINDOL)54 to simulate
dynamical trajectories with the ND technique. At the moment, we
implemented the harmonic and the first anharmonic term (p = 3);
however, including higher orders is straightforward, and it will be
done in future releases. We also plan to derive the normal equa-
tions to sample the phase space in the isobaric (NpT) ensemble in
an upcoming work and implement them in a future version of the
software. The equations that the PINDOL software solves are of the
form

Q̈λ = −ω2
λQλ −

⎛
⎝∑λ1λ2

Φλλ1λ2 Qλ1 Qλ2

⎞
⎠

∗
(8)

reproducing the microcanonical ensemble, or

Q̈λ = −ω2
λQλ −

⎛
⎝∑λ1λ2

Φλλ1λ2 Qλ1 Qλ2

⎞
⎠

∗
− ξ̇Q̇λ (9)

reproducing, together with Eq. (7), the canonical ensemble with the
Nosé–Hoover thermostat.44–46

B. The q-point set
As it is apparent from the equations above, the essence of the

normal dynamics technique is to recast Newton’s equations in the
reciprocal space by selecting a suitable set of q-points in the Brillouin
zone. This results in several computational benefits.

One of the main advantages of the ND scheme can be appreci-
ated by considering that, in order to describe distortions with long
wavelengths in crystalline systems, one needs to simulate large unit
cells, hence a large number of atoms. In fact, a standard molecu-
lar dynamics simulation can sample all and only the distortions that
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are commensurate with the simulation box; such distortions can be
represented by the 3N phonon modes of the Γ point of the corre-
sponding reciprocal lattice. In periodic systems, in order to capture
the effect of long-range distortions, that is, to capture the effect of
lattice distortions represented by waves with large wavelengths, we
need to consider a suitable number, Nr = Na ×Nb ×Nc, of repli-
cas of the chosen unit cell; in this way, the number of equations of
motion to be solved increases from 3N to 3N ×Nr .

Let us consider a unit cell formed by N atoms and suppose that
long-range structural modulations must be taken into account. We
then create, for example, a 3 × 3 × 3 supercell of the unit cell; the
number of dynamical variables to be evolved in the Cartesian space
is, therefore, 3N × 3 × 3 × 3 = 81N. In the case of the ND scheme
(for more details, see Sec. V of the supplementary material), the
number of dynamical variables in the complete set of non-redundant
q-points is 42N, which amounts to (1 + 13 × 2) × 3N = 81N real
variables, as for the Cartesian case, since the Qq,j are all complex
quantities except for q = (0, 0, 0). However, as we will show in the
case studies, in principle, a similar result can be obtained by con-
sidering a reduced set of q-points (for example, by exploiting the
symmetries of the unit cell). This immediately leads to a reduction
of the degrees of freedom with respect to the Cartesian case, likely
opening up a computational advantage.

Let us now imagine that, after an MD simulation, we realize that
we need to further expand the size of our original 3 × 3 × 3 system by
considering, for example, a 6 × 6 × 6 supercell; in this case, the num-
ber of dynamical variables increases from 81N to 648N. In the ND
scheme, instead, one can think of expanding the {q} set by including
suitable q-points only. For example, adding q = (1/6, 1/6, 1/6) to the
q333 set enables us to introduce atomic displacements that require a
6 × 6 × 6 supercell to be represented in the real space; in this case, the
number of variables increases from 81N to 81N + 6N = 87N; that is,
we reduced the number of dynamical variables by a factor of ∼7. It
is true that the vector q = (1/6, 1/6, 1/6) alone does not fully repre-
sent a 6 × 6 × 6 supercell, as the corresponding complete set would
be made of 112 non-redundant q-points; however, we can incremen-
tally include in our set more and more points of the kind q666 until
we reach the desired accuracy.

The key point here is that ND simulations can be run regard-
less of whether the {qi} set is complete or not; the optimal size of the
set is decided by the user according to the required accuracy. The
ND sampling scheme then provides fine control over the computa-
tional load and of the accuracy the results. The number of dynamical
(normal) variables increases as O(Nq), where Nq is the number of
q-points in the set; instead, in the standard Cartesian scheme, the
number of variables increases as O(L3), where L is the number of
replicas along one of the three directions. From this consideration
and by keeping in mind that the scheme is essentially a coordi-
nate transformation, it is clear that, in the case where one needs
to consider the complete {qi} set, no computational speedup can
be expected by using the ND technique. On the other hand, as we
will show in Sec. III, in our case studies we do not need to consider
a complete {qi} set to obtain a correct description of the relevant
physical quantities, and we believe that this is likely to be the general
case.

Another advantage of the ND scheme is that we can focus the
computational load only on the relevant aspects of the dynamics.
For example, let us imagine that only long waves traveling across

a 12 × 12 × 12 supercell are relevant for our study and that the
contributions from waves commensurate with a subset of the super-
cell could be neglected. In the Cartesian scheme, 3N × 12 × 12 × 12
= 5184N variables must be somehow integrated, with no possibility
of reducing such a number by neglecting unnecessary phonon con-
tributions. On the contrary, in the ND scheme, it might be enough to
consider, for example, just two wave vectors, q1 = (1/12, 1/12, 1/12)
and q2 = (1/6, 1/6, 1/6), while neglecting all the other commensu-
rate ones; in this case, we would need to integrate only 3N × 2 × 2
= 12N real variables (Nq = 2) instead of 5184N.

III. RESULTS AND DISCUSSIONS
The goal of our case studies is to show that the ND scheme (i)

is able to produce dynamical trajectories of large systems by using a
common desktop computer and (ii) is capable of taking into account
the effect of temperature, as is the case with standard Cartesian simu-
lations. We extract the effective interatomic force constants31,40,55–60

from ND runs at finite temperatures with the help of the HIPHIVE
software;34 we use the PHONOPY61 and PHONO3PY62 software for
the necessary pre- and post-processing of the data. The steps to pre-
pare, run, and analyze the simulations are reported in Sec. VI of the
supplementary material.

The HIPHIVE software relies on a Taylor expansion of the forces
on the atoms of the kind

Fα
i = −Θαβ

i j uβ
j −

1
2

Θαβγ
ijk uβ

ju
γ
k − ⋅ ⋅ ⋅ , (10)

where Fα
i is the force on the ith atom along the Cartesian direction

α evaluated as the negative gradient of the Taylor expansion of the
potential energy V in Eq. (1).

The atomic displacements u and forces F are obtained from the
normal coordinates Q and accelerations Q̈ calculated at each ND
step and are supplied as an input to the HIPHIVE software; the latter
performs a fitting of Eq. (10) and returns the effective interatomic
force constants Θ at a finite temperature.

The first two case studies have been chosen to show how the
method works as they have already been reported in the literature.
The last case study, instead, has not been reported yet; indeed, we
exploit the capabilities of the ND scheme to study the influence
of temperature on the Raman spectrum of MoS2/MX2 bilayers and
suggest how to properly characterize the Raman peaks.

To perform the simulations, the PINDOL code has been com-
piled with the GNU Cross Compiler v. 9.4.0 included in the software
packages of the Ubuntu operative system version 20.04.5, Long
Term Stable release. The trajectories have been produced on a local
workstation equipped with an Intel Core i7-4770 CPU at 3.40 GHz;
although we implemented a basic OpenMP parallelization, we did
not use it for the present simulations.

The main quantities affecting the accuracy of an ND simula-
tion are the Cartesian Θp tensors and the sampling of the reciprocal
space: the first depends on the level of theory (i.e., classical or
ab initio) and on the technical parameters used to evaluate the
derivatives of the potential energy, while the latter is set by the
user with the choice of the {qi} set. For example, the third order
derivatives of the potential energy are the fundamental quanti-
ties determining the anharmonic effects at the first order. Their
importance in determining the accuracy of the model has already

J. Chem. Phys. 161, 084111 (2024); doi: 10.1063/5.0224108 161, 084111-4

Published under an exclusive license by AIP Publishing

 26 August 2024 11:46:19

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7397314
https://doi.org/10.60893/figshare.jcp.c.7397314


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE I. Wall-clock time [hours and minutes] required by the ND simulations on
crystalline silicon, α-uranium, and MoS2/MX2 systems at different samplings of the
Brillouin zone (Nq) and the number of unique non-null Φ3 elements. The time shown
is normalized to 4 × 106 dynamical steps and two atoms in the unit cell.

Case Time Nq #Φ3

Si q333 8 h 10′ 14 12 789
Si q555 69 h 39′ 63 279 568
Si qred

555 1 h 53′ 10 3 277
Si qred

666 4 h 6′ 16 5 389
U q423 11 h 40′ 14 38 059
U qred

423 7 h 30′ 12 19 933
MoS/MX q441 96 h 10′ 10 101 255
MoS/MX qred

441 1 h 25′ 4 11 453

been discussed in previous computational studies;63,64 in these, the
authors also show that the use of a truncated Taylor expansion rep-
resenting the potential energy abstracts the cost of a full AIMD when
computing thermal conductivity. As for any computational model,
the optimal simulation setup is the result of a compromise between
the computational requirements and the accuracy of the produced
data. The procedure to obtain an accurate evaluation of Θp is not the
subject of the present discussion, as it does not depend on the ND
framework; the reader can find information on the subject in any
computational work that makes use of the Θp tensor (see Ref. 62 as
an example). Instead, the choice of the {qi} set is crucial to obtain
reliable results from ND simulations.

In the present implementation of the ND technique within the
PINDOL code, the computational load mainly depends on the num-
ber of elements in the Φ3 tensor; such a number, in turn, depends
on the number of q-points considered, on the number of phonon
modes per q-point (i.e., 3N), and on the components of the vec-
tors forming the {qi} set. In fact, only the phonon triplets (q, q1, q2)
that satisfy the selection rule Δ(q + q1 + q2) = 1 are considered in
the generation of the Φ3 elements, as all the other triplets produce
null elements.32,43 In Table I, we report the simulation time for all the
case studies that we consider; with qmnp, we indicate a complete {qi}
set formed by corresponding Nq q-points, representing an m × n × p
supercell. The superscript “red” indicates that the set is formed by
reducing the full sampling to only the irreducible q-points; this has
been obtained with the help of the SPGLIB library,65 which is capa-
ble of exploiting the symmetries of the unit cell. We anticipate that,
by inspecting Table I, in some cases, the use of a reduced set can
drastically cut the computation time when compared with the full
set case. For example, the time required to run the Si q555 case is
reduced by 97% when the reduced qred

555 set is used, while in the case
of the U and MoS2/MX2 systems, the time is reduced by 36% and
98%, respectively.

A. Convergence of the phonon dispersion
with respect to the number of q-points

As mentioned already, one of the main quantities governing
the accuracy of the ND simulation is the sampling of the recipro-
cal space. In order to show this, we consider the Si crystal structure
with the symmetries of the space group Fd3̄m (group number 227).

The starting geometry is the primitive unit cell with an optimized
lattice parameter ap = 3.852 Å, corresponding to the lattice para-
meter ac = 5.448 Å of the conventional face centered cubic unit cell.
The primitive cell contains only two Si atoms with reduced positions
(3/4, 3/4, 3/4) and (1/2, 1/2, 1/2), respectively.

The interatomic forces are calculated within the den-
sity functional theory framework as implemented in the
ABINIT software.66–68 The Si atomic type is represented by
a norm-conserving pseudopotential generated following the
Troullier–Martins scheme69 in the Kleinman–Bylander form,70

considering four electrons in the valence shell and a cutoff radius
of 2.1 Böhr, leading to a cutoff energy equal to 380 eV. Concerning
the Self Consistent Field (SCF) parameters, we select the LDA
Teter parameterization71 as an energy functional, a 13 × 13 × 13
Monkhorst–Pack mesh72 to sample the Brillouin zone, and a
plane wave cutoff equal to 500 eV; convergence is considered to
be achieved when the difference in the total energy after three
subsequent SCF cycles is below 3 × 10−10 eV. The starting atomic
positions and lattice parameters are fully relaxed within a tolerance
of 10−6 eV/Å; after relaxation, the structure preserves the initial
cubic symmetry with a primitive (conventional) lattice parameter
equal to 3.853 Å (5.445 Å), in good agreement with the experimental
values.

In order to show how Brillouin zone sampling determines the
accuracy of the ND simulations, we consider the harmonic phonon
dispersion obtained from the finite displacements method61 as our
reference and compare it with the one calculated from the effec-
tive force constants extracted from the normal dynamics trajectory.
To achieve this aim, the ND simulations are performed at different
q-samplings in the NVT ensemble with temperatures as low as 10 K
in order to avoid anharmonic effects. Irrespective of the sampling,
the maximum harmonic frequency is found to be νmax ∼ 11 THz;
according to the Nyquist–Shannon theorem, the time step can be
Δt = 1/(2νmax) ∼ 23 fs, but we reduce it to 1 fs as a safe value. The
simulation window is 4 ns for a total of 4 × 106 dynamics steps. The
time needed for each ND simulation is reported in Table I.

For the first ND simulation, we select a 3 × 3 × 3
Monkhorst–Pack sampling, corresponding to the complete set
q333 (Nq333

= 14) representing a 3 × 3 × 3 supercell. We observe that
the phonon dispersion obtained from the effective force constants
does not correctly reproduce the reference one (Fig. 1). We then
increase the sampling of the reciprocal space by repeating the
simulation with a 5 × 5 × 5 mesh, corresponding to the complete
set q555 (Nq555

= 63); in this case, we obtain an improvement of the
phonon dispersion. As a further test, we then perform the same
simulation by using the set qred

555 (Nqred
555
= 10), obtained by reducing

the full 5 × 5 × 5 mesh sampling to only the irreducible (and
non-redundant) q-points. In addition, in this case, we obtain a close
agreement with the reference; this shows that similar accuracy can
be reached via reciprocal space mesh sampling with reduced size. In
this case, we used 2 × 3 ×Nqred

555
= 60 dynamical variables, that is 5/7

and ∼1/6 of the full 3 × 3 × 3 and 5 × 5 × 5 sampling, respectively
(2 × 3 ×Nq333

= 84, 2 × 3 ×Nq555
= 378). A further improvement has

been obtained by considering the set qred
666 (Nqred

666
= 16).

It is worth pointing out that, as described above, we could have
proceeded in an alternative way. For example, we could have started
from the set containing only the Γ and (1/5, 1/5, 1/5) q-points and
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FIG. 1. (a) Phonon dispersion of crystalline silicon as obtained from the frozen
phonon approach (ref) and extracted from the effective force constants at 10 K at
different sampling sets. (b) Details of the phonon dispersion in (a). The best agree-
ment is obtained for the qred

666 sampling; for this reason, the black line representing
the reference dispersion is barely visible.

incrementally added further points until we reached agreement with
the reference phonon dispersion. However, the irreducible q-point
set contains high symmetry points, which are likely73 to have a
large role in the determination of the system dynamics. For this
reason, and considering the little computation time, we decided to
skip the incremental test and selected the mentioned {q} sets as
case examples. Such an approach also has the advantage that it does
not require manual effort from the user thanks to the availability of
libraries (e.g., SPGLIB65) that can automatically provide the list of the
reduced set of q-points. Finally, it must be noted here that the accu-
racy of the phonon dispersion cannot be further improved when the
sampling corresponds to supercells, including interatomic distances
larger than the cutoff range used to calculate the force constants.

B. Stabilization of the optical Γ-Y branch in α-U
Let us now consider the case of α-uranium, where the effect

of temperature is explicitly investigated. By lowering the tempera-
ture, uranium is known to undergo a phase transition at 50 K due to
the softening of the longitudinal optical phonon mode in the [100]
direction, involving the doubling of the unit cell.74–77 In Ref. 31,
this phenomenon has been studied by means of AIMD simulations
performed by using hundreds to thousands of processors; here, we
propose the same study carried out by means of ND simulations,
each executed on one processor, and by using a computational setup
equivalent to that adopted in the same published AIMD work. This
shows that the ND approach enables one to perform the same study
with reduced computational resources.

More in detail, we carried out ND simulations in the NVT
ensemble at 50, 300, and 900 K, with a simulation window equal to
6 ns; the Brillouin zone sampling is performed by using the irre-
ducible points of the 4 × 2 × 3 Monkhorst–Pack mesh (qred

423 set),
while the time step is set at 1 fs, being the maximum harmonic fre-
quency equal to ∼3.65 THz. In this case, we chose not to perform
the convergence study as in the previous case, as here our main
goal is to make a direct comparison with the results reported in
Ref. 31. The lattice parameters and atomic positions of the refer-
ence structures are taken from experimental data at each considered
temperature,78–81 as has been done in previous simulations.82 The
interatomic forces are calculated within the density functional the-
ory framework as implemented in the VASP software.83–87 The plane
wave energy cutoff is set to 435 eV, the k-mesh sampling to 2 × 4 × 2
divisions according to the Monkhorst–Pack scheme, and the tol-
erance on the SCF convergence to 10−8 eV. The phonon and the
third-order force constants have been calculated by using 4 × 2 × 3
supercells of the conventional unit cell.

In Fig. 2, we report the phonon dispersion of the longitudinal
optic-like phonon mode calculated by using the standard finite dis-
placement approach, which does not take into account the effect
of the temperature; in the same figure, for comparison, we report
the phonon dispersion extracted from the ND simulations at the
selected temperatures by calculating the corresponding effective
interatomic force constants. The reference phonon dispersions [cal-
culated with the finite displacement approach in Figs. 2(a)–2(c) and
with DFPT in Figs. 2(d) and 2(e)] are evaluated at the experimental
lattice parameters and atomic positions obtained at each tempera-
ture, as shown in Ref. 31. By comparing the dispersions at different
temperatures, we observe that the ND simulations capture the hard-
ening of the soft mode as the temperature increases, unlike the finite
displacement approach [black line in Fig. 2, panels (a)–(c)]; this is
expected because the phonon interaction is not taken into account
in the latter method. We notice that the position of each dispersion
minimum extracted from the ND simulations is slightly shifted with
respect to the reference; we believe that this occurs for the follow-
ing reason: The ND simulations are run using a primitive unit cell in
order to exploit the computational advantages of the ND formalism;
such a cell is obtained by means of the SPGLIB library,65 which fol-
lows the convention of the Bilbao Crystallographic Server.88,89 Our
reference band dispersion is instead calculated by using the conven-
tional unit cell as we think it is used in Ref. 31; in fact, we could
not find enough computational details in Ref. 31, such as, for exam-
ple, the specific settings (standard or arbitrary) and orientation of
the unit cell used in the AIMD simulations. For this reason, we can-
not determine the relative orientation between the conventional cell
used for the reference and the primitive cell used for the ND simu-
lations. We here recall that the components of the lattice parameters
of the direct unit cell uniquely determine the components of the lat-
tice parameters of the reciprocal unit cell, hence the coordinates of
all the points of any path in the reciprocal space. Therefore, different
direct lattice parameters generate different components of the points
along the Γ-Y path and, as a consequence, a different position of
the reference and ND-obtained dispersion minima. However, such
a difference is small, and the experimentally observed hardening of
the soft mode is reproduced by both ND and AIMD simulations. In
addition, the quasi-harmonic approximation is not able to account
for the frequency shift, while explicit temperature effects must be
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FIG. 2. Optic-like longitudinal branch of α-U at (a) 50 K, (b) 300 K, and (c) 900 K.
The black, blue, and green lines represent the phonon dispersion obtained by the
finite displacement approach and extracted from the ND simulations at the reduced
(qred

423) and full (q423) sampling sets, respectively. Panels (d)–(f) are an adapted
reproduction of Fig. 9 reported in Ref. 31 here reported for comparison; in such
panels, black and red lines represent the results obtained by considering finite
temperature effects explicitly and density functional perturbation theory, respec-
tively. Experimental neutron-scattering data at 30 K76 are denoted by a dashed
line in panel (d) and at room temperature75 by blue circles in panel (e), both here
shown in the same way as in Ref. 31.

considered, as has been shown in the AIMD study, which we con-
sider here for comparison.31 The time needed to produce each ND
trajectory is about 7 h 30′ (Table I) on a standard desktop com-
puter (Sec. III). Finally, in order to show the computational benefits
of working with a reduced set of q-points, we also performed the
calculations using the complete set. One can notice that there is
no appreciable difference in accuracy between the two calculations,
while the computational speedup is about 36% (see Table I).

C. Raman shift in MoS2/MX2 bilayers
Heterostructures based on layered transition metal dichalco-

genides (TMDs) find application in many fields, including
photovoltaic devices, lithium-ion batteries, hydrogen evolution
catalysis, desulfurization of fossil fuels, transistors, photodetectors,
DNA detection, nanoelectromechanical systems, memory devices,

and tribology.90–97 Research in these fields relies on local and non-
invasive characterization methods capable of identifying the evolu-
tion of the physical properties with the number of layers and the
temperature, assessing sample quality, and probing interlayer inter-
actions; in this context, Raman spectroscopy is the technique of
choice.98 The positions of the Raman peaks depend on the Brillouin
zone center phonons and their effective frequencies, as determined
by phonon–phonon scattering processes; as a consequence, the posi-
tions depend on the temperature of the sample. Since the proper
labeling of the Raman spectrum is central to the characterization
of the material, the evolution of the peak position with temperature
must be determined with adequate accuracy.

Transition metal dichalcogenides are layered structures with
the general formula MX2; each MX2 layer is composed of a transition
metal M atomic layer sandwiched between two chalcogen X atomic
layers, while adjacent MX2 layers are bound by weak van der Waals
forces. In the present study, we consider bilayer heterostructures
with M =Mo, W and X = S, Se. The space group symmetry of such
systems is P3m1 (group number 156), with point group 3m (C3v in
Schöenflies notation99); accordingly, the active Raman modes own
the character of the E and A representations.100 The temperature
effect on the E and A Raman peaks with the largest intensities has
been studied experimentally mainly in MX2 homostructures101–105

and a few different heterostructures;106–108 however, a full ab initio
treatment is generally missing due to the highly demanding compu-
tational resources needed to run the supporting AIMD simulations.
Here, we exploit the ND scheme to perform atom dynamics sim-
ulations with temperature values in the range [50, 500] K. Our
references are the experimental 2H polymorph geometries of the
MoS2,109 MoSe2,110 and WS2

111 bulk systems. For each structure, we
consider two subsequent MX2 layers and set the length of the c crys-
tallographic axes to 40 Å. We then substitute the Mo and S atoms
in one layer with W and Se, respectively; in this way, we obtain the
model geometries for the MoS2/MoSe2, MoS2/WS2, and MoS2/WSe2
bilayer heterostructures, which we name as MoS/MoSe, MoS/WS,
and MoS/WSe, respectively (Fig. 3).

The optimized geometries and the interatomic forces are cal-
culated within the density functional theory framework as imple-
mented in the ABINIT software.66–68 The plane wave energy cutoff is
set to 500 eV and the Monkhorst–Pack k-mesh to 11 × 11 × 1 divi-
sions, while the tolerance on the SCF and the geometry convergence
are set to 10−8 eV and 2.6 × 10−7 eV Å−1, respectively. Following the
results of previous studies,112 we select the vdw-DFT-D3(BJ) correc-
tion113 to account for the van der Waals interactions. The phonon
spectrum and the third-order force constants have been calculated

FIG. 3. (a) Lateral and (b) c-axis views of the model geometry of the trigonal P3m1
MoS/MX systems (M = Mo, W; X = S, Se).
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by using 3 × 3 × 1 supercells of the conventional unit cell. The effec-
tive force constants have been obtained from ND simulations in the
NVT ensemble at 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 K
by using the irreducible points of the 4 × 4 × 1 Monkhorst–Pack
mesh (qred

441 set); the simulation window is 4 ns, and it has been sam-
pled with a time step equal to 1 fs. The corresponding Raman spectra
have been obtained by means of the PHONOPY-SPECTROSCOPY
tool,114 which implements the formalism described in Ref. 115. The
intensity I of the Raman signal at a frequency ν and temperature
T is calculated as

I(ν, T) =∑
λ

I0(λ)
π

1
2 Γν(λ, T)

(ν − ν(λ))2 + ( 1
2 Γν(λ, T))2 , (11)

where I0(λ) is the height of a delta function at the frequency ν = ν(λ)
of the Raman active mode λ obtained from the second order force
constants, while the base intensity is spread over a range of fre-
quencies due to the measurement uncertainty arising from the finite
lifetime of the mode τ(λ, T) = 1

2Γ(λ,T) .
In turn, Γ(λ, T) is calculated as

Γ(λ, ω, T) = 18π
h̵2 ∑

λ′λ′′
∣Φ−λλ′λ′′ ∣

2

× {[n(λ′, T) + n(λ′′, T) + 1]δ[ω − ω(λ′) − ω(λ′′)]
+ [n(λ′, T) − n(λ′′, T)][δ[ω + ω(λ′) − ω(λ′′)]
− δ[ω − ω(λ′) + ω(λ′′)]]}, (12)

where Φλλ′λ′′ are the Fourier transforms of the third order force con-
stants obtained at the temperature T, n is the occupation number of
the mode λ at the temperature T calculated from the Bose–Einstein
distribution, and ω = 2πν.

The delta functions in Eq. (12) enforce the conservation of
energy, and the mode linewidths Γ(λ, T) are obtained by setting
ω = ω(λ).

The force constants that are fed into such formulations are
extracted from each ND trajectory by means of the HIPHIVE
software,34 as described at the beginning of Sec. III.

The Raman active phonons are those belonging to the center of
the Brillouin zone; therefore, only the phonons at q = Γ will be con-
sidered in our analysis. Irrespective of the system, all such phonons
are Raman active; however, most Raman intensity concentrates in
three intense peaks, two with the E character and one with the
A character, which we label as E1, E2, and A, respectively. Each peak
corresponds to a specific set of atom displacements, i.e., the phonon
eigenvector, which identifies in a unique way the phonon responsi-
ble for a specific Raman transition (Fig. 4). It is, therefore, crucial
to correctly characterize the eigendisplacements of the Raman active
phonons in order to properly describe the layer interactions, track
their evolution with any change in temperature, and compare their
position across different chemical compositions.

We begin our analysis by taking the MoS/MoSe system as a
reference. In order to find the corresponding E1, E2, and A peak
positions in the MoS/WS and MoS/WSe systems, it is not enough
to compare the eigenfrequency values and select the closest ones
with the same character (i.e., E or A). In fact, at fixed character,
the corresponding atom displacements might be different, despite
the small difference between the two frequency values. Therefore, in

FIG. 4. Atom displacement patterns (red arrows) generating the most intense
Raman peaks in the MoS/MX systems. The color code for the atoms is the same
as in Fig. 3.

order to make a one-to-one correspondence among Raman peaks
obtained at different temperatures and chemical compositions, we
must identify the phonons with eigenvectors generating the same
set of atom displacements. To achieve this aim, we can compare the
eigendisplacements by direct inspection with suitable visualization
software;116,117 however, this is a non-rigorous and time-consuming
approach. We choose instead to consider the scalar product between
the real part of the phonon eigenvectors as a quantitative mea-
sure of the similarity between two sets of atomic displacements:
the two sets are identical if the angle between the eigenvectors is
null, while the smaller the angle, the more similar the displacement
sets. In this way, we can systematically scan the eigenvectors of the
MoS/WS and MoS/WSe systems and make a quantitative compari-
son with those of the reference (i.e., MoS/MoSe) generating the E1,
E2, and A Raman peaks. We report the formalism in Sec. VII of the
supplementary material, and implement it in the eigmap code.118

The formalism is analogous to the one used in Ref. 119 to calculate
the atom character of phonon eigenvectors. Following this phonon
map procedure, we label the Raman peak positions of the three sys-
tems as shown in Fig. 5. We notice that the displacement pattern
generating the A peak in MoS/WS does not correspond to the one
generating the A peak in MoS/MoSe. This proves that a mapping
procedure is actually needed in order to perform the correct peak
attribution.

We now track the evolution of the modes with the temperature
in each system. Let us recall here that the phonon modes are ordered

FIG. 5. Raman spectrum of the MoS/MX systems at 50 K. We focus the frequency
range on the Raman signals with the largest intensity; the width of the peaks is
not clearly visible due to the low temperature and the range of values chosen for
the x-axis. The displacement pattern generating the A peak in MoS/WS does not
correspond to the one generating the A peak in MoS/MoSe.
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FIG. 6. Evolution of the Raman peaks of the systems with temperature. The right
and wrong assignments are indicated by green and red symbols, respectively.
Lines are a guide for the eye.

according to increasing eigenfrequencies and labeled with increasing
integer numbers. Here, we would like to stress that, by increasing the
temperature, the ordering of the modes can, in principle, change,
and therefore, a mapping procedure is needed in order to perform
a meaningful attribution. We first consider the MoS/MoSe system
and focus on the peak E1 at 392.35 cm−1 calculated at 450 K; this
peak is labeled as j = 12. If we neglect the phonon mapping based
on the atomic displacements and characterize the peaks only on the
basis of the E symmetry and the difference between the frequen-
cies, that peak would be considered shifted down to 363.54 cm −1

at 500 K [Fig. 6(a)]. Such a Raman signal is generated by the phonon
mode j = 15. However, the displacement pattern of the two phonons
is different. Instead, by means of the phonon mapping procedure
discussed above, we understand that at 500 K, the E1 peak is shifted
down to 225.29 cm−1, the latter generated by the mode j = 9 having
the same eigendisplacement pattern as the mode j = 12 calculated
at 450 K. This again shows that it is not enough to focus on a spe-
cific label of a phonon mode and track how its frequency changes
at varying temperatures; at the same time, phonon labeling cannot
be used to track the frequency of a phonon mode across different
temperatures, as the label changes as the frequency of the phonon
changes. Concerning peak A at 500 K, if the phonon displacement
is not taken into account, a frequency of 399.42 cm −1 instead of
266.25 cm −1 would be assigned [Fig. 6(b)]. The abrupt drop of the
E1 and A frequencies going from 450 to 500 K is due to a sensitive
softening of the corresponding phonon modes, indicating the pos-
sible appearance of structural instabilities at higher temperatures.
Finally, in the MoS/WS and MoS/WSe systems, the erroneous attri-
bution may occur already at 200 K [Fig. 6(c)] and 50 K [Fig. 6(d)],
respectively.

The results show that a careful analysis of the phonon eigenvec-
tors is essential for the correct assignment of the character of Raman
peaks. This study has been feasible thanks to the ND scheme; in fact,
it has made it possible to run dynamics simulations with a limited

amount of computational resources (Table I). As done for the previ-
ous case studies, we also performed the same calculations using the
complete set of q-points. We recall that considering the complete
set corresponds to perform dynamical simulations in the Cartesian
space (i.e., the number of dynamical variables to be integrated is the
same). In addition, in this case, it turned out that using a reduced set
of q-points leads to a computational speedup, specifically of about
98% of the walltime. Finally, we would like to note that the scheme
avoided the burden of parameterizing classical force fields, which are
specific to the TMD chemical topology and composition considered
in this case study.

D. Limitations of the ND approach
At the moment, being in their infancy, both the ND formula-

tion and the PINDOL code show several limitations, which we plan
to overcome as future developments of the present work.

The Cartesian tensors Θp, hence their Fourier transform Φp,
representing the interatomic force constants, are evaluated by con-
sidering small atomic displacements from the reference position.
However, during the dynamics, the atomic positions can change sig-
nificantly, and, accordingly, the actual force constants might become
very different from those provided as input to the simulation. This
can be the case, for instance, of phase changes or diffusion of an
adatom on a surface. In such scenarios, the computed normal forces
may no longer be accurate. Moreover, the use of truncated poly-
nomials as in Eq. (3) may produce unphysical saddle points in the
potential energy landscape that lead to regions where the energy is
not lower-bounded, with a possible divergence of the total energy
during the dynamics.120 In order to tackle this issue, perturbative
approaches can be used.121 Another possibility is the use of a multi-
reference scheme. In fact, in cases where interrupting the dynamics
and restarting it with a different reference configuration are not
major issues, it is possible to foresee that a (possibly automatized)
procedure of updating the Φp tensors can be employed. For exam-
ple, it is, in principle, possible to introduce a tolerance on the atomic
displacements (set by the user at the beginning of the simulation),
and if during the simulation the displacement of some atom becomes
larger than the set tolerance, then the simulation is stopped. At this
point, a new reference configuration can be created (such config-
uration may be built, e.g., by averaging the atom positions over a
specified time window before the simulation stopped) and used as an
input, together with the atomic positions and forces obtained in such
a time window, for example, for the temperature dependent effective
potential (TDEP) method31 or the HIPHIVE code,34 which will yield
the updated force constants. Alternatively, the new reference config-
uration can be used to recalculate the phonons and the Φp tensors
with the same procedure used to prepare the input for the ND simu-
lation. Both the tolerance on the atom displacements and the width
of the time window can be chosen by the user. The former might be
estimated from the variation of the total energy with respect to the
starting configuration, while the latter should correspond to the last
part of the trajectory where the interatomic distances are considered
to be constant. At the moment, we have not implemented the tol-
erance check in PINDOL, but we plan to do it in future versions. At
any rate, it must be stressed that even in cases where producing dis-
continuous dynamics is not an issue, if the potential energy surface
of the system under study is very corrugated, that is, if it presents

J. Chem. Phys. 161, 084111 (2024); doi: 10.1063/5.0224108 161, 084111-9

Published under an exclusive license by AIP Publishing

 26 August 2024 11:46:19

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

a large number of local minima separated by low barriers (which is
the case for, e.g., proteins122), then the benefits deriving from the
exploitation of the ND scheme can be easily nullified by the need to
frequently update the description based on the reference configura-
tion. Nevertheless, we are confident that the proposed technique can
be exploited for the investigation of a still large set of systems.

Moreover, when the phonon lifetimes are shorter than the
Ioffe–Regel limit in time, it is no longer possible to describe phonon
scattering in terms of the phonon wave vector q and index j, and
the anharmonic effects here accounted for by the Φp tensors require
a different formulation.123 For this reason, the present ND formu-
lation is valid whenever the Φp tensors are a good approximation
of the anharmonic effects, the latter being the case of the majority
of the simulation studies on lattice anharmonicity reported in the
literature.

Concerning the PINDOL code, the amount of memory to store
the Φ3 tensor is minimized by exploiting its properties; the full
tensor is reconstructed on the fly when evaluating the sum in
Eq. (5), and the number of operations depends on the kind of triplet
(see Sec. VI of the supplementary material). The computation
time can then be reduced by a suitable parallelization of this step,
which will be realized in the next version of the PINDOL code.
At the moment, a simple OpenMP parallelization has been imple-
mented but not used for the case studies discussed here. The size
of the Φ3 tensor can be further reduced by taking into account
the phonon–phonon scattering selection rules involving the mode
eigenvectors;49 however, this feature is not yet implemented in the
present version of PINDOL.

IV. CONCLUSIONS AND OUTLOOK
In this paper, we present the normal dynamics technique, intro-

ducing the theoretical background and showing its applicability in
three case studies thanks to the open-source implementation that
we developed.54 These are some examples of the many possible uses
of the proposed technique. In fact, normal dynamics simulations
can produce dynamical trajectories that can be analyzed to calculate
temperature- and pressure-dependent quantities, which are usu-
ally calculated with existing molecular dynamics techniques. With
respect to these latter, among the advantages of the ND scheme,
it is worth recalling that (i) we do not need to parameterize inter-
atomic potentials specific to the system’s chemical composition and
topology and (ii) we can produce long dynamical trajectories of large
systems on an ordinary desktop computer. The normal dynamics
scheme also provides a straightforward decomposition of the atomic
motions in terms of normal coordinates, thus facilitating the analy-
sis of several phenomena such as heat transfer,124–126 hydrodynamic
phonon transport,127 carrier transport,128 thermoelectric effect,129

and energy dissipation in tribological conditions.48 The normal
equations of motion can be modified in order to include atomic
constraints or the presence of external forces that may simulate, for
example, an external field exciting specific phonon modes130,131 or
dragging forces producing atomic drifts;132,133 indeed, we plan to
develop the corresponding equations and add such features in future
versions of the PINDOL software. This approach can also pave the
way for a novel route to study the entangled electronic and dynamic
features. In fact, by calculating the Φp tensors for both the ground

and the excited state(s), it would be possible to run multiple parallel
normal dynamics simulations coupled in a replica exchange fash-
ion,134 thus making it possible to investigate how electronic excited
states determine the atom dynamics at a finite temperature. We
finally note that the PINDOL software and the calculation of the
Φp tensors can be interfaced with structure databases135,136 and
used in high-throughput calculations137 for the discovery of new
materials with target physical properties.

Standard molecular dynamics simulations require large unit
cells in order to take into account long-range distortions. This results
in a computational load that rapidly scales with the number of
atoms; the situation is even worse if ab initio methods are to be used
because of accuracy reasons and/or a lack of force fields. In these
cases, the computational requirements might become unaffordable
for the majority of researchers. The normal dynamics sampling
scheme overcomes these difficulties. Since the equations of motion
are integrated in the reciprocal space, a computational speedup can
be obtained by a sensible selection of the considered {q}-points. In
fact, optimal sampling can be achieved via the exploitation of the
symmetries of the unit cell, a systematic increase in the {q} set size,
or any user-decided choice of the reciprocal points. The {q} set
determines the size of the simulated direct unit cell; each q-point of
the kind (1/m, 1/n, 1/p) represents an m × n × p supercell by using
only 6N instead of 3N ×m × n × p variables; this makes it possible to
consider the effect of long-wave structural modulations at a limited
computational load.

The sampling scheme of the normal dynamics technique
implicitly includes periodic boundary conditions. The periodicity
of the system is, in fact, accounted for by the use of the recip-
rocal space integration scheme, which is based on the concept of
phonons. Nonetheless, the normal dynamics approach is also able
to simulate semiperiodic or finite systems such as nanoclusters or
molecules. Examples of semiperiodic systems are the MoS2/MX2
bilayers discussed in the last case study, for which we chose sets of
the kind {(qa, qb, 0)} in order to truncate the periodicity along the
c axis. Finite (non-periodic) systems, instead, can be simulated by
using only the Γ point, even though in this case the benefits com-
ing from a custom selection of the reciprocal space are no longer in
place.

Most of the computation time is spent for the evaluation of
the sum in Eq. (8), appearing also in the NVT equations in Eq. (9),
and depends on the number of Φλλ′λ′′ elements; however, the lat-
ter is not directly proportional to the number of q-points in the
set. In fact, the scattering rule Δ(q + q1 + q2) = 132,43 excludes the
{λ, λ1, λ2} triplets that do not satisfy it and sets the corresponding
Φλλ′λ′′ elements to zero. This reduces the number of terms in the
sum, but whether the rule is satisfied or not depends on the compo-
nents of the points in the set. Another control of the computational
load can then be obtained by selecting suitable q-points that limit the
number of Φλλ′λ′′ elements but also provide accurate results.

The results that we presented show that, in order to run long
dynamical simulations on large systems, it is not always neces-
sary to expand our computational capabilities (e.g., from standard
to quantum computers); instead, as an alternative, it is better to
focus on reducing the related computational demand, thus mini-
mizing energy consumption, power costs, and technological effort.
In this respect, the normal dynamics sampling scheme represents
a tool to perform all-atom dynamical simulations on an ordinary
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desktop computer, making the generation of dynamical trajec-
tory calculations more and more accessible to a larger audience of
researchers.

SUPPLEMENTARY MATERIAL

See the supplementary material for the detailed descriptions of
the notation used (Sec. I), the derivation of the equations reported
in the main text (Secs. II–IV), the partitioning of the q-point set
(Sec. V), how to prepare, run, and post-process ND simulations
(Sec. VI), and the mapping procedure described in the third case
study (Sec. VII).
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