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We investigate the properties of the photon Bose-Einstein condensate in the limit of small mode spacing.
Alongside the well-known threshold of the phase transition at large mode spacings, we find an emergence
of a second threshold for sufficiently small mode spacings, defining the crossover to a fully condensed
state. Furthermore, we present our findings for the mode occupations in the precondensate or supercooling
region towards the continuum limit.
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Introduction—The Bose-Einstein condensate (BEC)
is a state characterized by a phase transition at a critical
threshold above which the particles macroscopically
occupy the lowest energy state. Typically, in experiments,
the threshold for atomic BECs is the critical temperature
[1,2]; for photons, it is the critical number of particles [3,4].
In photon BECs, the setup normally consists of slightly

curved mirrors forming a cavity with dye molecules in
between the mirrors. A fixed cavity length provides a quasi-
two-dimensional (2D) setup with a transversal wave vector
as the remaining degree of freedom. While a photon BEC
can be achieved in such a confined setup, it is well known
that in two dimensions, no condensation occurs in the
thermodynamic limit, as the critical temperature (particle
number) approaches zero (infinity) [5–8].
While many experimental and theoretical works study

photon BECs within harmonic confinement mentioned
above [3,9–17], recently, the photon BEC has also been
demonstrated in a finite planar system with a 2D box
potential [18]. Theoretically, an exhaustive description of
the thermodynamical properties of a BEC has been given
in [19], also demonstrating the formation of a BEC in a
2D box potential.
The difference between small and large system sizes has

been previously considered in a 2D harmonic oscillator
setup [20,21]. It was demonstrated via the photon-BEC rate
equations that for smaller mode spacings, the ground state
occupation has a sharper increase at the threshold, exhibit-
ing a sign of thermodynamic limit. Another limit of highly
anisotropic three-dimensional geometries has been studied

with massive bosons, where the phase transition into
different condensation regimes was observed [22].
For a single mode, an analytical treatment of the photon

BEC rate equations in adiabatic approximation has been
given [23]. For small cavity decay rates, the photon number
was found to be zero below a critical threshold while
exhibiting a sharp transition into a condensate regime above
the threshold with linear growth of the photon number.
The study of condensation in the continuum limit is also

relevant to other systems with small mode spacing, e.g.,
chiral environments [23]. In such cases, the condensate
properties will qualitatively differ compared to larger mode
spacings. Without appropriate treatment of small spacings,
one initially would not be able to see the formation of the
condensate. Instead, the condensate will only emerge for
experimental parameters far from the ones expected for
large mode spacings.
In this Letter, we report our findings on the steady-state

behavior of the photon BEC in a planar cavity at the
crossover towards the continuum limit. Extending the
analytical treatment of the photon BEC rate equations in
Ref. [23] to two modes, we analytically find two critical
thresholds marking the condensate formation. We corrobo-
rate our findings with numerical simulations for higher
mode numbers and evaluate the critical number from
thermodynamic principles for an infinite system, which
we compare to the analytical solution. Finally, we dem-
onstrate the behavior of photon occupation number in the
precondensate or supercooling regime, which emerges in
the limit of small mode spacing.
The model—We start by specifying the system geometry

and the equations describing the photon BEC. Our model*Contact author: andris.erglis@physik.uni-freiburg.de
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consists of a planar cavity where the control parameter is
the transversal mode spacing Δkk with the dispersion
relation for the cavity mode frequency ωðjx; jy;ΔkkÞ ¼
cϵ−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjzπ=LzÞ2 þ ðj2x þ j2yÞðΔkkÞ2

q
, where c is the speed

of light, ϵ is the relative permittivity of the cavity medium,
jz is the longitudinal mode number, Lz is the cavity length,
jx and jy are transversal mode numbers in x and y
directions, respectively, and Δkk is defined as Δkk ¼
Δkx ¼ Δky ¼ π=L, where L is the length of the cavity
mirrors in x and y directions. The ground mode is
characterized by values jx ¼ jy ¼ 1.
As an inducer for effective photon-photon interaction,

dye molecules are commonly used. Here, we rely on
rhodamine 6G dye which fulfills the Kennard-Stepanov
relation αi ¼ εieβℏðωi−ωZPLÞ where αi and εi are the respec-
tive stimulated absorption and emission coefficients for
mode i, ωZPL is the zero phonon line, and β ¼ 1=kBT is the
inverse temperature with T ¼ 300 K. The rhodamine 6G
spectrum [24], together with the position of the cavity
modes, is shown in the Supplemental Material [25].
As the longitudinal mode spacing between the jz and

jz þ 1, jz − 1 modes is comparable to the spectral width
of the dye molecules, the cavity photons form a quasi-
two-dimensional system with fixed longitudinal mode
number jz.
The rate equations describing the dynamics of the photon

BEC can be obtained from the master equation using an
open quantum systems description [26,27]. In adiabatic
approximation with respect to the state of the dye mole-
cules, the rate equations for the photon numbers ni in mode
i are given by

ṅiðΓ↑Þ ¼ −κni þM
εiΓtot

↑ ðni þ 1Þ − αiΓtot
↓ ni

Γtot
↑ þ Γtot

↓

: ð1Þ

Here, κ is the cavity decay rate, dependent on the
reflectivity of cavity mirrors, M is the total number of
molecules, Γtot

↑ ¼ Γ↑ þ
P

M
i¼1 giαini is the total absorption

rate with Γ↑ being the pumping rate of the molecules and gi
being the degeneracy of mode i. Similarly, Γtot

↓ ¼ Γ↓ þP
M
i¼1 giεiðni þ 1Þ is the total emission rate where Γ↓ is the

spontaneous decay rate of the molecules. Photons emitted
via spontaneous decay are lost from the system into
noncavity modes. The ni þ 1 terms are responsible for
stimulated and spontaneous decay into cavity mode i.
Analytical solution—With the model above, we are ready

to solve the rate equations and obtain two thresholds. For an
analytical treatment, we restrict ourselves to the smallest
number of modes needed to observe the second threshold,
M ¼ 2. To find the pump threshold frequency at which the
condensation forms, we first algebraically solve the steady-
state condition ṅ2 ¼ 0 for n2 ¼ n2ðn1Þ. The explicit form is
written in Ref. [25]. Next, we solve ð∂3n2=∂Γ3

↑Þn1 ¼ 0 to

obtain Γ↑ ¼ Γ↑ðn1Þ. This approach is inspired by the fact
that the second derivative of the single mode solution
d2n1=dΓ2

↑ in the limit of small cavity decay [23] gives a
Dirac delta function at the first threshold position
Γ↑ ¼ Γth1

↑ , see more details in Ref. [25]. The explicit
solution of Γ↑ðn1Þ [25] marks the special points where
n2 changes its behavior and indicates the condensation
point. To proceed further, we solve the single-mode
equation ṅ1 ¼ 0 [23] and find n1ðΓ↑Þ [25]. We substitute
the solution into the threshold condition for Γ↑ ¼ Γ↑ðn1Þ
and solve for Γ↑, leading to two solutions as threshold
conditions. Expanding them to the first order in κ=M which
is a small parameter compared to αi, εi, and assuming
ε2 ≈ ε1, and α2 ≈ α1 for small mode spacings, they read

Γth1
↑ ¼ ðΓ↓ þ ε1Þα1

ε1
;

Γth2
↑ ¼ Γ↓α1

ε1
þ α1ðε1 þ α1Þκ
Mjε2α1 − ε1α2j

: ð2Þ

For small mode spacings Δkk, the populations ni in all
modes below Γth1

↑ are comparable up to the degeneracy

factor gi. Above Γth1
↑ , the populations equally rise together

and occupy the system macroscopically. Above Γth2
↑ , the

populations in excited modes saturate, and n1 assumes a
macroscopic fraction of the total photon number.
The first threshold Γth1

↑ is similar as in Ref. [23], except for

the extra ε1 term in the brackets. The second threshold Γth2
↑ is

separated from Γth1
↑ by an amount linearly dependent on κ,

inversely proportional to M and to the difference between
absorption and emission rates. This implies that at infini-
tesimal mode spacing, the denominator tends to zero, and
consequently, Γth2

↑ approaches infinity. We see that Γth2
↑ is

determined by the competition between mode width κ and
jε2α1 − ε1α2j which is determined by the mode separation
Δkk. In Supplemental Material [25] we show how Γth2

↑ is

directly related to Δkk. It is noteworthy to mention that each
threshold is mainly governed by one of two characteristic
loss channels in our system: The first threshold is determined
by the spontaneous emission of molecules Γ↓, while the
second threshold is induced by the cavity decay κ.
Numerical solutions—We now turn to numerical simu-

lations of the photon population for more modes and
demonstrate the steady state behavior for different mode
spacings together with the thresholds from Eq. (2). The
numerical parameters used in this Letter are shown
in Supplemental Material [25]. The steady-state photon
populations as a function of pumping rate Γ↑ are shown
in Figs. 1(a) to 1(c), up to the degeneracy factor gi. In
Fig. 1(a), the mode spacing is sufficiently large so that the
first and second thresholds coincide. We observe a sharp
increase in all populations at the first threshold, and for
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increasing pumping rate the ground mode separates from
all excited modes which saturate at constant values. In
Fig. 1(b), we observe a separation of Γth2

↑ from Γth1
↑ .

Furthermore, the behavior of populations is qualitatively
different compared to Fig. 1(a): The excited mode pop-
ulations saturate for higher pump values, while in ground
mode populations we observe a kink above the second
threshold. We refer to this region between both thresholds
as the precondensate region where the condensate is not
fully formed as the ground mode occupation grows in
tandem with the occupation of the neighboring modes.
Alternatively, this region may be referred to as the
supercooling region in analogy with the supercooling of
water between the freezing and the crystal homogeneous
nucleation points. Finally, in Fig. 1(c), the second threshold
is completely separated from the first threshold. All
populations increase simultaneously, and above Γth2

↑ only

the ground mode continues to grow. We see that Γth2
↑ marks

the separation of the ground mode from the other modes for
all three cases, while Γth1

↑ remains fixed. As we decrease

Δkk, a larger pump rate is required for full condensation.
Ultimately, in the limit of the free 2D photon gas, the
ground mode will only separate at an infinite pump rate.
The method of finding the zero crossing of ∂3n2=∂Γ3

↑

allows us to numerically obtain the second threshold values
for larger mode numbers, whose analytical expression
is not attainable. We call it the exact second threshold
Γ̃th2
↑ ¼ Γ↑jd3n2=dΓ3

↑¼0 which marks an exact position of the

condensation for any mode number. For M ¼ 2, we have
Γth2
↑ ≈ Γ̃th2

↑ and in Supplemental Material [25] we show a

deviation of Γth2
↑ from Γ̃th2

↑ . Figure 2(a) shows Γ̃th2
↑ as a

function of the mode number with a monotonic increase.
Figure 2(a) shows that Γth2

↑ marks the condensation point

too early for larger mode numbers. Despite that, Γth2
↑ can still

qualitatively describe the threshold point for decreasingΔkk,
as shown in Fig. 2(b). We see how Γth2

↑ consistently marks
the kink of the ground mode towards its linear condensed
asymptote even for 30 modes. For comparison, we show the
position of Γ̃th2

↑ obtained for 30 modes. We see that Γ̃th2
↑

marks the condensation point more precisely, as expected.
Thermodynamic solution—To analyze Γth2

↑ further, we
relate it to the critical particle number obtained by counting
the photons in the Bose-Einstein distribution. We can
analytically evaluate the critical photon number assuming
a paraxial approximation, kx; ky ≪ kz. Following along the
lines of [28,29], we obtain the critical photon number Nc in
a 2D system for small mode spacing Δkk:

Nð∞Þ
c ¼

X∞
jx;jy¼1

0
½eβℏ½ωðjx;jyÞ−ωð1;1Þ� − 1�−1 ≈ −

π

2

1

s
ln s; ð3Þ

FIG. 1. Mode populations gini in a steady state as a function of normalized pump rate where graphs from (a)–(c) are in order of
decreasing mode spacing, Δkk ¼ 2 × 104; 2 × 103; 50 m−1, respectively. The thick black and the green dashed curves are the ground
and first excited states, respectively. The gray lines are all the other excited modes. The corresponding vertical dashed and dot-dashed
lines show the value of the thresholds Γth1

↑ and Γth2
↑ . Here, Γth1

↑ ≈ 5.1 × 106 Hz. The simulations include 30 modes.

FIG. 2. (a) Value of the exact threshold Γ̃th2
↑ as a function of the

mode number M . Here, Δkk ¼ 50 m−1. (b) Ground mode
populations simulated for 30 modes. Each curve depicts four
different mode spacings in a decreasing value from left to right
(Δkk ¼ 2 × 104; 2 × 103; 2 × 102; 50 m−1) (lighter to darker
shades of green). Vertical dot-dashed lines indicate the second
threshold Γth2

↑ for each respective mode spacing. The vertical

purple dashed line depicts Γ̃th2
↑ for Δkk ¼ 50 m−1.
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where s ¼ βℏcðΔkkÞ2=kz
ffiffiffi
ϵ

p
and in the primed sum we

have excluded the pair ðjx; jyÞ ¼ ð1; 1Þ. To relate the two
thresholds from Eq. (2) with the photon number, we
substitute the values into Eqs. (1) and solve for the total
photon number in all the excited states NexðΓ↑Þ, obtaining
two critical photon numbers, NexðΓth1

↑ Þ≡ Nð1Þ
c and

NexðΓth2
↑ Þ≡ Nð2Þ

c . For M ¼ 2, we have Nex ≡ g2n2.

Figure 3 compares the critical photon numbers Nð1Þ
c ,

Nð2Þ
c , and Nð∞Þ

c for decreasing mode spacing. At small Δkk

the behavior of Nð2Þ
c is qualitatively similar to Nð∞Þ

c , i.e.,
both numbers tend to infinity as Δkk → 0. An offset is

present between Nð∞Þ
c and Nð2Þ

c which is expected since the
critical photon number from Eq. (2) has been obtained by
assuming only two modes in the cavity, while Eq. (3)

assumes infinitely many modes. Crucially, we see that Nð1Þ
c

fails to predict the critical number for small mode spacings
as it saturates, similarly as in Fig. 1. For large mode

spacings, Nð1Þ
c and Nð2Þ

c coincide. Comparing Figs. 3(a)

and 3(b) we see that for smaller cavity decay rates, Nð1Þ
c

separates from Nð2Þ
c at smaller Δkk value than for larger κ,

consistent with Eq. (2). Moreover, the qualitative behavior

of Nð2Þ
c around the separation point indicates higher non-

linearity for larger values of κ.
For comparison, in Fig. 3 we also show the critical

photon number obtained with Γ̃th2
↑ for 30 modes (also see

Fig. 2). Naturally, we observe that for higher mode numbers

the critical photon number approaches Nð∞Þ
c .

Supercooling region—As seen in Figs. 1 and 2(b), for
small Δkk, the second threshold diverges and the super-
cooling region extends to larger pumping strengths.
Therefore, it is insightful to investigate further the behavior
of the difference between photons in the ground and excited
modes. Since populations in the neighboring modes in the
supercooling region are similar, as seen in Fig. 1(c), it is
possible to utilize the perturbation method for a generic

number of modes. We expand the occupation in mode i
perturbatively, ni ¼ n1 þ qiΔn for i ≥ 2, where Δn is a
small difference in photon number and qi are mode-
dependent coefficients. We choose q2 ¼ 1 without loss
of generality. In a similar manner, we express the absorp-
tion and emission rates as αi ¼ α1 þ μiΔΓ and
εi ¼ ε1 þ ηiΔΓ, whereΔΓ is a small deviation proportional
to the mode spacing. Again, μi and ηi are the mode-
dependent coefficients where we choose μ2 ≡ 1 and η2 ≡ η.
With these assumptions and only retaining the lowest
orders of ΔΓ and Δn, we can solve Eqs. (1) analytically
for M ¼ 2 or higher. For a nondegenerate ground mode
g1 ¼ 1, in the limit of small cavity decay κ we obtain the
solution for Δn:

Δn ¼
(
n21

ðε1 − α1ηÞΔΓ
α1ε1

; Γ↑ ≥ Γth1
↑ ;

0; otherwise:
ð4Þ

Here, n1 is the photon occupation of the ground mode:

n1 ¼
8<
:

Mðε1Γ↑ − α1Γ↓Þ
ð1þP

M
i¼2 giÞðα1 þ ε1Þκ

; Γ↑ ≥ Γth1
↑ ;

0; otherwise:
ð5Þ

The solution (4) indicates a sharp transition above Γth1
↑

with a linear growth for increasing ΔΓ, similarly as for the
single mode discussed in Ref. [23]. The transition becomes
less pronounced for a higher number of modes or larger
degeneracies since Δn is inversely proportional to M and
gi. Figure 4 shows the dependence of jΔnj for different
values of ΔΓ. Evidently, we see the breakdown of linearity

FIG. 3. Critical number of particles as a function of the mode
spacing Δkk with (a) κ ¼ 0.05 and (b) κ ¼ 5 GHz. Red-filled and
blue hollow dots depict critical numbers for M ¼ 2 obtained
from values of Γth2

↑ and Γth1
↑ in Eq. (2), respectively. Red squares

illustrate Nc obtained from Γ̃th2
↑ for M ¼ 30. The dashed line

depicts the thermodynamic solution from Eq. (3).

FIG. 4. Absolute value of the difference between ground and
first excited mode jΔnj as a function of ΔΓ for different mode
numbers M ¼ 2 (green rhomboids), 4 (purple circles), 6 (red
squares). Solid lines are the analytical expression from Eq. (4).
Here, the value of the pump rate is Γ↑ ¼ 2Γth1

↑ .
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of jΔnj for larger values of ΔΓ. If higher orders of κ
were retained, the correspondence between numerics and
analytics would match at higher values ofΔΓ. Note that our
solution is only valid in the region Γth1

↑ ≤ Γ↑ < Γth2
↑ .

The solution (5) is similar to that in Ref. [23], except for
the correction factor in the denominator which depends
on degeneracies and the number of modes. For an increas-
ingly large system, the condensation transition becomes
less distinct, similarly as for Δn. As a result, in the
limit M → ∞ for a free photon gas, our findings indicate
Δn → 0 and n1 → 0 for a fixed Γ↑. Since Δn vanishes, the
populations in any mode i coincide with the ground mode,
ni → n1, up to a degeneracy factor.
Conclusions—In this Letter, we have demonstrated the

emergence of a second condensation threshold in the
regime of small mode spacing of a two-dimensional photon
gas in a planar cavity, which is inversely proportional to the
mode spacing. The first and second thresholds are governed
by system losses. At the second threshold, the ground mode
becomes dominant in a different fashion compared to the
case of larger mode spacing. From analytical and numerical
solutions, we see how the phase transition disappears in the
limit of a free 2D photon gas. We have found this to be
caused by an infinite growth of the second threshold value.
The intermediate region between the two thresholds,

referred to as the supercooling region, is marked by
incomplete condensation. Here, the separation in occupa-
tion between ground and first excited modes is linear in the
mode spacing, hindering the system from reaching a fully
condensed regime. Our analysis shows that potential uses
of the photon BEC, such as the quantum sensor [23], will
have to operate at a sufficiently large pumping rate to
overcome the second threshold. Furthermore, our results
are relevant for studies of open systems with a driven
dissipative nature, as well as systems at the crossover
towards continuum spectra.
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