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Predicting the evolution of the current epidemic depends significantly on understanding the
nature of the underlying stochastic processes. To unravel the global features of these
processes, we analyse the world data of SARS-CoV-2 infection events, scrutinising two 8-
month periods associated with the epidemic’s outbreak and initial immunisation phase.
Based on the correlation-network mapping, K-means clustering, and multifractal time
series analysis, our results reveal several universal patterns of infection dynamics,
suggesting potential predominant drivers of the pandemic. More precisely, the
Laplacian eigenvectors localisation has revealed robust communities of different
countries and regions that break into clusters according to similar profiles of infection
fluctuations. Apart from quantitative measures, the immunisation phase differs significantly
from the epidemic outbreak by the countries and regions constituting each cluster. While
the similarity grouping possesses some regional components, the appearance of large
clusters spanning different geographic locations is persevering. Furthermore,
characteristic cyclic trends are related to these clusters; they dominate large temporal
fluctuations of infection evolution, which are prominent in the immunisation phase.
Meanwhile, persistent fluctuations around the local trend occur in intervals smaller than
14 days. These results provide a basis for further research into the interplay between
biological and social factors as the primary cause of infection cycles and a better
understanding of the impact of socio-economical and environmental factors at different
phases of the pandemic.
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1 INTRODUCTION

In cooperative social dynamics [1, 2], the genesis of a collective phenomenon arising from contagious
social interactions involves mechanisms of self-organised criticality [3, 4]. It depends on each
individual involved, based on its actual contacts, psychology and behaviour. In the presence of
viruses, these mechanisms are additionally shaped by firm biological factors. Recent developments of
SARS-CoV-2 pandemic [5, 6] revealed a specific global phenomenon emerging from the stochastic
multi-scale processes. The infection incidence occurs with a high temporal resolution at the
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interactions between the virus and human hosts, whose biological
features, social behaviours and mobility [7] significantly
contribute to the epidemic’s spreading [8]. At the molecular
scale, the virus-host interactions [9–11] crucially depend on
the virus biology and genetic factors determining the host’s
immunity towards the virus in question [12, 13]. Thus, the
occurrence of an infection event and the infection
manifestation may lead to a range of different scenarios from
asymptomatically infected to severe health issues and fatalities
[14–17]. Multiple other factors may play a role [18], depending
on the population genetic features and social life [19]. They
include cultural, political and economic aspects, official and
spontaneous reaction to the crisis, and the organisation of the
health care system, all of which may significantly differ between
different geographical locations [20]. Moreover, the actual impact
of these factors changes over time as the epidemic develops, in
particular, since the appropriate vaccines targeting SARS-CoV-2
viruses [3, 21] are available, thus enabling potentially substantial
changes due to massive immunisation of the population given the
theoretical analysis in [22–24]. Attempts were made to identify
different parameters that may influence the epidemic and
estimate their mutual interdependence and impact. For
example, the human-development index, built-up-area-per-
capita, and the immunisation coverage appear among the
statistically high-ranking drivers of SARS-CoV-2 epidemic [18].

In addition, temporal variations occur at all scales, from the
virus mutations [11] to changed behaviours of each individual
and population groups, e.g., due to the government imposed
measures [6, 25], or adaptation caused by the awareness of the
current epidemiological situation [26, 27]. These variations
increase the stochasticity of the infection and contact
processes, making the prediction of their output even more
difficult. For real-time epidemic management and the
predictions of further developments, it is crucial to understand
the nature of the underlying stochastic processes and the factors
that can significantly influence them. For this purpose, the
empirical data analysis and theoretical modelling [28] provide
complementary views of these complex processes. For example,
agent-based models capture the interplay of the bio-social factors
at the elementary scale of the virus-host interactions at high
temporal resolution [8, 29–37]. On the other hand, more
traditional compartmental models [38] consider a coarse-
grained picture of the population groups having different roles
in the process. Another research line aims at the mathematical
description of the exact empirical data, in particular, for the
outbreak phase [39, 40]. For instance, different studies provided
tangible arguments for the cause of the changing shape of the
infection curve comprising the appearance of linear and power-
law segments [41, 42], prolonged stagnation periods, andmultiple
waves [43]. Since the beginning of the epidemic, empirical data
were collected over different countries or provinces [44]. Despite
the coarse-grained spatial and temporal structure (daily
resolution), these data may contain relevant information about
the temporal aspects of the epidemic at different geographical
locations. Previous studies, based on the empirical data regarding
the dynamics of interacting units in many complex systems,
provided valuable information about the related stochastic

processes. Some striking examples across different spatial and
temporal scales include the influence of the world financial index
dynamics on different countries [45, 46], traffic jamming [47, 48],
brain-to-brain coordination dynamics [49, 50], and the
cooperative gene expressions along different phases of the cell
cycle [51, 52]. Similarly, the collected data of SARS-CoV-2
spreading enable a possibility to investigate the infection
dynamics in various details and more appropriate modelling
of the emergent behaviours. In this respect, a larger-scale
picture may emerge by studying temporal fluctuations of the
world infection dynamics. More subtle questions regard the
indicators for hidden mechanisms arising from the interplay
of the above-mentioned biological factors and different social
behaviours [8, 27, 29, 53, 54] behind the observed epidemic
development.

In this work, we address some of these critical issues aiming
to unveil the inherent features of infection dynamics by studying
time-series data that are publicly available at GitHub [44]
collected over different countries or regions (provinces).
Using the datasets of the daily recorded number of confirmed
infection cases, we consider two separate segments of time
series. Defining two distinct 8-month periods in the
epidemic’s evolution is motivated by the appearance of
SARS-CoV-2 vaccines in the latter period, enabling
pharmaceutical intervention measures not available in the
outbreak phase, cf. Figure 1. Namely, the records for the first
8 months of the epidemic, starting from the first registered case
in each country, represent the epidemic’s outbreak phase.
Meanwhile, the last 8 months (preceding the data collection
on 30 September 2021), during which the pharmaceutical
intervention was available in most of the countries,
characterises the initial immunisation phase of this pandemic.
Our quantitative analysis comprises three levels of information:
the network mapping and spectral analysis, K-means clustering
of pairs of time series, and detrended fractal analysis of
individual time series. Each of these methods provides just
partial information about the studied dynamics. We combine
them to create a comprehensive picture of the course of the
epidemic in different countries and how they relate to each
other. In addition to quantifying the differences between the
outbreak and immunisation phase, our results reveal two global
features of the SARS-CoV-2 pandemic. Firstly, the worldwide
groups of countries (and provinces) robustly appear in clusters
having a similar temporal evolution of the infection dynamics.
This clustering suggests that the environmental and socio-
economical factors and government-imposed measures can
certainly influence small-scale fluctuation characteristics of
the clusters but do not significantly change the course of the
process on larger scales. Secondly, the epidemic evolution
exhibits ubiquitous waves driven by the cyclic infection
dynamics, where several typical cycles appear associated with
the identified clusters. Again, the shape of these specific cycles
coincides with the mentioned clustering mechanisms. Hence,
their origin and potential control will remain challenging within
purely social measures. A more detailed analysis of the complex
feedback between biological and social factors at all scales is
needed.
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2 MATERIALS AND METHODS

2.1 Data Acquisition, Preparation, and
Mapping
We consider the worldwide data of the number of new infection
cases downloaded from GitHub [44]. The dataset contains the
number of daily detected new cases for 279 countries including
separated data for some provinces. For this work, we select time
series in two eight-mount periods comprising the epidemic’s
outbreak phase (starting from the first registered case in a
given country or province) and the immunisation phase (22
January 2020 until 30 September 2021). The corresponding
number of countries and provinces with the active epidemic’s
data traced in both periods is 255. For instance, the first case in
France was detected on 24 January 2020, and thus the outbreak
time series covers the period from that date until 19 September
2020. However, Slovenia had the first registered case on 5 March
2020; hence its outbreak time series cover 5 March until 30
October 2020. Meanwhile, the immunisation period is from 3
February 2021 to 30 September 2021, equal for all considered
countries and provinces.

By mapping these datasets, we obtain two correlation
networks for the outbreak and immunisation phase,
respectively, where the network’s links stand for significant
positive correlations. We first compute the Pearson’s
correlation coefficient for the corresponding pairs (i, j) of the
time series

Cτ
ij �

1
NT − 1

∑NT

t�1

Xτ
i t( ) − μτi
στi

Xτ
j t( ) − μτj
στj

, (1)

where τ ∈ {O, V}, μτi is average value of the time series of country i
during period τ, στi is standard deviation of time seriesXτ

i (t), and
NT = 240 is the length of time series. To remove spurious
correlations, we apply the filtering procedure standardly used
in these type of network mapping [47, 49, 51]. More precisely, the
matrix elements Cτ

ij are first transformed to the interval [0, one]
byCPτ

ij � 1
2 (Cτ

ij + 1), and thenmultiplied by a factorMτ
ij which is

obtained in the following way. From the rows i and j, the diagonal
elements are removed and the considered elements CPτ

ij and CP
τ
ji

are placed at the beginning of the row i and j, respectively, thus
obtaining two n = N − 1 dimensional vectors C̃Pτ

i and C̃Pτ
j . Then

Mτ
ij is computed as Pearson’s coefficient between these two

vectors. The matrix element of the filtered correlation matrix
Cτ
ij � Mτ

ijCP
τ
ij is then mapped back to the interval [ − 1, 1].

Finally, the elements of the network’s adjacency matrix are
defined as Aτ

ij � 1 when the matrix elements Cτ
ij > θ exceed a

specified threshold value θ, and zero otherwise. The threshold
value θ is determined concerning the network’s spectral
properties, as described below.

2.2 Network’s Spectral Analysis and
Community Detection
The above-described data mapping should lead to undirected
unweighted networks; the nodes represent countries (or
provinces), and links indicate the positive correlations between
infection incidences exceeding a threshold θ. We use the spectral
properties of networks to obtain the adequate threshold value,
where the guiding criteriums are the network’s sparseness and the
relative stability of the community structure. Starting from θ = 0,
we increase it by the value 0.05 and solve the eigenvalue problem
of the corresponding adjacency matrix, Avi = λivi|θ, and calculate
the spectrum {λ1, . . . , λN}θ for each threshold θ. We compare the
adjacency matrix spectrum for network θ = 0 with spectra of each
network obtained for considered θ > 0 using Kolmogorov-
Smirnov (KS) distance. For each θ > 0 we obtain one KS
distance and plot its dependence of θ, see Figure 2B. The KS-
distance has a minimum of around θ = 0.5 for the outbreak and
immunisation phase. We use this value of θ to obtain the
networks used in our analysis.

We study the community structure of the networks for the
outbreak and immunisation period using spectral analysis and
the eigenvalue problem of the normalised Laplacian related to the
network’s adjacency matrix. In mathematics theory [55, 56], the
number of smallest non-zero eigenvalues of the Laplacian matrix
is a good indicator of the number of communities. The matrix
elements of the normalised Laplacian for undirected
binary network represented by the adjacency matrix A are
defined as

FIGURE 1 | Examples of time series. Temporal evolution of confirmed infection cases in different countries, belonging to different groups in the outbreak (A) and
immunisation phase (B).
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Lij � δij − Aij����
qiqj

√ , (2)

where qi and qj are degrees of nodes i and j. For the normalised
Laplacian [2], we solve the eigenvalue equation LvL � λNi v

L
i and

determine all eigenvalues and eigenvectors. In the case of a
connected network, these eigenvalues are non-negative. One
zero-eigenvalue appears with strictly positive eigenvector’s
components [55]. Consequently, the orthogonal eigenvectors
corresponding to the three smallest non-zero eigenvalues localise
on the communities of the network. Hence, the scatter plot of the
components of these eigenvectors shows a branching structure. Each
branch contains indexes of the non-zero eigenvector components,
that is, the nodes belonging to a network’s community [56].The size
of the q-core of the networks is determined by removing the nodes
with the increasing degree q. Several other graph properties are
determined, and the networks are visualised using Gephi
software [57].

2.3 K-Means Clustering of Time Series
The implementation of the K-means algorithm for clustering of
time series in Python known as tslearn [58] is used. K-means is an
unsupervised machine learning algorithm that aggregates data
points according to similarities, starting with K randomly
positioned centroids. Based on these centroids, data points are
assigned to the centroid closest to that data point according to
some distance metric. The algorithm consists of a certain number
of iterative (repetitive) calculations used to optimise the positions
of the centroids. Considering each time series of lengthNT as a data
point in NT dimensional space, the appropriate measures enable
calculating the distances between these data points. We use the
Dynamic Time Wrapping (DTW) algorithm to align time series
with centroids andmeasure their similarities. The DTW is a widely
used algorithm measuring similarities between time series and
their classification. It does not transform the time series; it only
finds the minimal distance between time series beyond simple
correlation. Specifically, it performs an optimal alignment between
two time series by matching the indices from the first time series to
the second time series, subject to several constraints. The mapping
of indices from the first series to the second series must be
monotonically increasing. For the indices i > j from the first

time series, there must be two indices from the second series
l > k such that i is matched with l and j is matched with k.
Meanwhile, the first index from the first series must match the first
index of the second time series, and similarly, the last index from
the first series must be matched to the last index of the second time
series, but these points may have more other matches. The optimal
alignment is the one that satisfies all of these restrictions with the
minimal cost, where cost is the sum of absolute differences of
values for each matched pair of indices. The DTW distance in the
K-means algorithm is the value of cost. We use the K-means
algorithm with DTW distance to cluster time series and find
centroids. Each centroid is again a time series that describes the
average behaviour of the time series belonging to one cluster.

2.4 Trends and Fractal Analysis of Time
Series
Temporal fluctuations are studied by the fractal detrended
analysis of each time series. For each time series x(k), k = 1, 2,
/T, the profile Y(i) � ∑i

k�1(x(k) − <x> ) of the time series is
divided in Ns segments of the length n. The fluctuation function
Fq(n) with the varied segment length n is defined as

Fq n( ) � 1
Ns

∑Ns

μ�1
F2 μ, n( )[ ]q/2⎛⎝ ⎞⎠1/q

~ nhq , (3)

Here, F2(μ, n) � 1
n∑n

i�1[Y((μ − 1)n + i) − yμ(i)]2 is the standard
deviation from a local trend yμ(i) on the segment μ. For q = 2, we
determine the Hurst exponent h2 from the straight-line segments
of the log-log plot of the fluctuation function F2(n). For the
multifractal analysis, the values of q ∈ [ − 4, 4] are varied.

To determine cyclic trends, we use the local adaptive
detrending algorithm, see [59, 60], where time series is divided
into segments of the length 2m + 1 overlapping overm + 1 points.
The polynomial interpolation is applied in each segment, and its
contribution in the overlapped region is weighted such that it
decreases linearly with the distance from the segment’s centre. As
stated in the Introduction, we consider worldwide recorded time
series of the infection cases. For illustration, a few examples of
time series recorded in different countries are shown in Figure 1.

FIGURE 2 |Networkmeasures. (A) The normalised probability density function of the filtered correlation coefficients for the outbreak and immunisation periods. (B)
The Kolmogorov-Smirnov distance between the eigenvalue spectrums of networks obtained for θ = 0 and different values of θ > 0, plotted against θ > 0. (C) The
distribution of the shortest-path distances P(d) vs. the distance d and the cumulative distribution Pc(q) of the node’s degree q for the outbreak and immunisation
networks with the threshold θ = 0.5. (D) The size of the q-core of these networks plotted against the q-rank.
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2.5 The Correlation Networks Mapping in
the Outbreak and Immunisation Phase
The network mapping is based on the cross-correlation
coefficient Cij of the pairs of time series {i, j} and a suitably
selected threshold. Hence, the correlations exceeding the
threshold θ are accepted, making the adjacency-matrix
elements Aij(θ) = Θ(Cij − θ) − δij of an undirected unweighted
network. Before selecting the threshold, a filtering procedure was
applied to the complete correlationmatrix to enhance the positive
correlations of interest in this work (see Methods). The applied
methodology was proved useful in quantifying correlations of
time series in diverse type of data [45, 47–52]. Figure 2A shows
probability distributions of filtered correlations coefficients for
the outbreak and immunisation period. While both probability
distributions have a peak at a value Cij < 0, they have slightly
different shapes. They both have a pronounced tail for positive
values of correlation coefficients, where the distribution P(Cij) for
the outbreak period has a slower decay at correlations Cij > 0.2.
The appropriate threshold is selected considering changes in
spectral properties of the adjacency matrix with the increasing
threshold, as explained in the following. Figure 2B shows the
Kolmogorov-Smirnov (KS) distance between the eigenvalues of
the Aij(θ) compared to the one at θ = 0 depending on the
threshold θ for the outbreak and immunisation networks. We
see that the KS distance grows slowly with θ up to the value ~ 0.4;
meanwhile, the growth becomes rapid for the values of θ > 0.5 for
both networks, suggesting a profound change in the networks’
structure when the threshold exceeds θ = 0.5. Thus, we select this
turning point as the optimal threshold value. Moreover, the
networks obtained by applying the threshold weight θ = 0.5
are sufficiently sparse; meanwhile, their spectral properties do not

differ drastically from the corresponding outbreak and
immunisation period networks at θ = 0 containing all positive
correlations. The resulting networks for θ = 0.5 are visualised in
Figure 3. See also Supplementary Information (SI) for more
details.

The giant connected component of each network exhibits a
community structure, i.e., the occurrence of groups of nodes that
are better connected among themselves than with the nodes
outside that group, cf. Figure 3. The identity of nodes
comprising each community is determined using the
localisation of the eigenvectors associated with the three lowest
nonzero eigenvalues of the normalised Laplacian operator [55], as
explained in Methods [56]. The eigenvalues of the normalised
Laplacians for two networks are shown in ranking order in
Figure 4, middle panel. Several lowest nonzero eigenvalues
appear to be separated from the bulk in both networks. This
network feature is compatible with the existence of mesoscale
communities, on which the corresponding eigenvectors tend to
localise [55, 56]. The scatterplots of the eigenvectors associated
with three lowest nonzero eigenvalues, see Figure 4, show three
differentiable branches, here indicated as G1, G2, G3 for the
outbreak, and g1, g2, g3 for the immunisation phase network. The
indexes with a nonzero component of the eigenvectors in each
branch mark the IDs of the nodes belonging to the corresponding
community. The complete lists of nodes in each community
(group) are given in Supplementary Tables S1–S6 in SI.

Even though both networks exhibit three major communities,
the structural differences between the two networks in Figure 3
are apparent. They indicate the corresponding differences in the
fluctuations of the infection rates in the world regions during the
immunisation phase, compared to the epidemic’s outbreak, when

FIGURE 3 | Giant connected components of the correlation networks at the threshold θ =0.5 for the outbreak period (A) and the immunisation period (B). Red,
green and blue colours indicate groups of nodes in three respective communities G1, G2, G3 in the outbreak network, and g1, g2, g3 in the immunisation period
network, determined by the eigenvector-localisation, see text and Figure 4. Unclassified borderline nodes are shown in white colour. Labels on nodes identify the
corresponding country or province. The complete lists of nodes in each community are given in Supplementary Tables S1–S6 in Supplementary Information.
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the whole population was practically susceptible to the infection.
These differences are quantified by several graph measures, see
Figures 2A–D and Table 1. Compatible with these graph-theory
measures are the span of the exponentially-decaying degree
distributions Pc(q) and different distributions of the shortest-
path distances P(d), shown in Figure 2C. We also show the
prominent differences in the q-core structure of these networks,
cf. Figure 2D.

More importantly, the majority of nodes that belong to the
same community in the outbreak phase network appear to be a
part of entirely different communities in the immunisation phase
network, cf. Figure 3 and the corresponding lists in
Supplementary Information. More precisely, we find that only
625 edges established in the outbreak phase persist in the
immunisation phase network. They are shown in
Supplementary Figure S2 left, in Supplementary Information.
A more systematic comparison is made by computing the overlap
(Jaccard index defined in Methods) for the correlation networks
determined from the successive 2-month intervals, see
Supplementary Figure S2, right. The overlap systematically
remains below 15%, suggesting that the fluctuation patterns at
these intervals can vary between the countries or even provinces
within the same country.

2.6 K-Means Clustering and Multi-Fractality
of Time Series Within Identified
Communities
To further explore the nature of temporal fluctuations of the
infection time series of the countries and provinces within each
community found using spectral analysis, we apply the K-means

algorithm adapted for time series analysis [58], see Methods. It
appears that each topological community is further partitioned
into several clusters, for example, G1c1/G1c4, for the group G1,
and so on. Inside each cluster, the corresponding time series have
a similar evolution pattern. Hence, the cluster’s typical time series
(centroid) is determined for each identified cluster. The results
are shown in Figure 5 both for the outbreak and immunisation
phase; in the figure legends, the number of countries or provinces
belonging to a given cluster is indicated in the brackets in each
panel. The names of countries and provinces belonging to each
cluster in each group are given in Supplementary Tables S1–S6
in Supplementary Information. Notably, in each network’s group,
there is one large and one medium-size cluster. Meanwhile, there
are several single-country centroids; as a rule, they indicate a
large-population country.

Next we consider the fluctuation function F2(n) vs. the interval
length n for each time series separately, see some examples in
Figure 6, and Supplementary Figure S4 in SI. We realised that
the similarity of the time series belonging to each cluster
manifests itself in the apparent similarity of the slopes of their
fluctuation function, which defines the corresponding Hurst
exponent. As Figure 6 shows, two different slopes of the
fluctuation function can be identified for a majority of time
series. At the intervals n < 14, a Hurst exponent 0.5 ≲ h2 ≲ 1
can be determined, indicating persistent fluctuations occurring at
these time intervals. Meanwhile, an exponent h2 > 1,
characteristic to the fractional Brownian motion, is found for
n ≥ 14. In some cases, the determined Hurst exponent reaches
values close to two. The histograms of the observed Hurst
exponents are shown in Figures 6D,E. Compatible with the
grouping and different shapes of centroids in the
immunisation phase, the distributions of lower and higher
values of the Hurts exponents are also different with the
increased incidence of the value h2 2 0.5 (white noise), and
h2 2 2 (periodic signals) in the immunisation phase. In the
following, we show that these large values of the Hurst exponent
in many of the studied time series can be related to the occurrence
of cyclic trends.

Two prominent examples are shown in Figure 7. The
methodology of determining local trends in these time series is
described in Methods. The original time series shows a cyclic

FIGURE 4 | The ranking of eigenvalues of the normalised Laplacian for the outbreak and immunisation networks (B). Scatter plots of the eigenvectors v1, v2, v3
corresponding to the three smallest non-zero eigenvalues for the outbreak (A) and immunisation period networks (C). Branches indicated by different colours identify the
communities (groups) of nodes of the corresponding network in Figure 3.

TABLE 1 | For the outbreak and immunisation period networks: the number of
nodes N, edges E, and triangles #△; the graph diameter D and density ρ; the
average path length < ℓ > , degree <q> , and clustering coefficient <Cc > .

N E D < ℓ > <q > <Cc > # △ ρ

Outbreak 243 9,284 11 3.55 38.2 0.735 58,508 0.158
immunis 227 5,660 7 3.10 24.9 0.656 18,857 0.112
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trend, where the cycle length can vary from region to region. A
separate analysis of the fluctuation functions for the trend and the
fluctuations around the local trend (detrended signal) reveals that
the trend drives the fluctuations beyond the intervals of
approximately 14 days; see the insets to Figure 7. The trend
has true cyclic fluctuations (the Hurst exponent equals two,
within error bars) in the range up to n ≲ 30 days. Meanwhile,

beyond this range, both the original signal and trend have a lower
Hurst exponent in the range h2 ≳ 1, characterising a fractional
Brownian motion. By extending a similar analysis to the above-
mentioned typical time series (centroids), we find that they also
exhibit cyclic trends but with different cycles characterising
different clusters of countries. The corresponding trends are
also shown in each panel of Figure 5 as a red line on the top

FIGURE 5 |Centroids of clusters c1 to c5, found for three groups G1, G2 andG3, in the outbreak phase network (A), and groups g1, g2 and g3 in the immunisation
phase network (B). In each panel, the number of countries and provinces belonging to that cluster is shown in brackets; the smooth red line represents the centroid’s
trend. The top left panel in each figure shows the fluctuations function F2(n) vs. segment length n for the identified trends; the slope h2 = 2 is indicated by the dashed line.

FIGURE 6 | Examples of the standard deviation F2(n) of time series vs. the interval length n for K-means clusters G1c1 and G3c1 identified within topological
communities G1 and G3 in the outbreak (A,C), and cluster g2c3 in the immunisation phase networks (C). The distribution of the measured Hurst exponents for the
intervals n < 14 days and n ≥ 14 days in the outbreak and immunisation phase (D,E).

FIGURE 7 | Two examples of the infection time series showing cyclic trends during the outbreak phase [from Israel, (A)], and during the immunisation phase [from
Portugal, (B)]. Insets show the corresponding functions of the standard deviation fluctuations for the identified trends and the original and detrended time series.
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of the related centroid. The trend fluctuation functions F2(n) vs. n
shows the cycle characteristics in a large range of the intervals n,
cf. top left panels of Figure 5. They differ from cluster to cluster
and, even for the same country, the cycles also differ in the
outbreak and immunisation phase. Generally, larger cycles (in the
length and amplitude) are observed in the immunisation phase as
compared to the outbreak period, cf. Supplementary Figure S5 in
SI. Remarkably, these findings imply that the cycles (or the
infection waves) represent an inherent feature of current
pandemic which may have some long-lasting consequences.

3 DISCUSSION AND CONCLUSION

In search of universal characteristics of infection dynamics, we have
analysed the worldwide empirical data of the SARS-CoV-2 epidemic
[44], focusing on the new-infection time series with a daily
resolution. The data are purposefully divided into two periods,
corresponding to the epidemic’s outbreak and the initial
immunisation phase, respectively. Three complementary methods
of quantitative analysis have been performed. Specifically, we have
analysed the mesoscopic structure of the networks, which embody
the significant pairwise correlations among the infection time series
of different countries or provinces. The further similarity in the pairs
of time series has been analysed by K-means clustering. Finally, the
fluctuation function of each time series has been determined using
the detrended time series analysis. Our analysis has revealed global
clustering and several universal features of the infection dynamics.
Our main conclusions are:

• the worldwide clustering represented by fourteen temporal
patterns of evolution of infection reveals significant
similarities transcending geographical regions;

• the cyclic trends dominate the infection fluctuations,
implying the prevalent infection waves and multi-scale
fluctuations around these cycles; typically determined
cycles appear in conjunction with the identified clusters;

• the immunisation phase differs from the epidemic outbreak
phase in all measures considered here, thus quantifying the
impact of the (partial) immunisation coverage on the
underlying stochastic process and the course of the
pandemic.

The mesoscopic (community) structure, as shown in Figure 3
is one of the striking characteristics of the infection-correlation
networks; remarkably, it occurs already at zero thresholds, see
Supplementary Figure S1 in SI. What comes as a surprise is that
these communities constitute almost entirely different nodes
(countries or provinces) in the immunisation phase compared
to the outbreak phase. Only a few edges established during the
outbreak phase persist throughout the entire evolution of the
epidemic, as shown in Supplementary Figure S2 in SI.
Consequently, the same applies to the contents of the clusters
found in these two phases, cf. Supplementary Tables S1–S6 in SI.
Notably, a given geographic location and potentially similar
cultural and economic development levels, similar healthcare
systems and other related factors play some role. However,

even such regional groups appear to be a part of a worldwide
cluster in both representative phases of the pandemic. Such a
picture probably emerges under another dominant driver,
common to countries at different locations, and with different
cultural and economic developments. In this context, the biology
factors, the virus mutations in the interplay with the social
behaviour of individuals and groups in the crisis seems to be
of the primary importance for the genesis of sustained infection
waves, quantified by cyclic trends in different clusters, cf.
Figure 7. Our analysis suggests that the waves are ubiquitous
in all countries and regions in both representative phases of the
pandemic. Meanwhile, the timing, duration and amplitude of
these waves vary between different clusters of countries and
provinces, likely depending on the applied measures and the
corresponding variations in the population behaviours.
Moreover, the small-scale fluctuations around these cyclic
trends seem to be more region-specific, and depending on the
immunisation measures; two comparative examples are shown in
Supplementary Figure S5 in SI. A more systematic analysis of
these fluctuations and the impact of the immunisation level on
the infection dynamics merits future study.

Our analysis of the world infection dynamics of the SARS-
CoV-2 pandemic revealed several universal features of the
underlying multiscale stochastic processes that go beyond the
geographical impact, locally-imposed governmental measures,
and partial immunisation phases. Indeed, while these measures
are truly valuable for short-term effects, saving lives, and
maintaining the functional healthcare system in each country
[25], they are much less effective in changing the fundamental
nature of the infection process, rooted in the interplay of biology
and social behaviours. This work has provided an in-depth
analysis of the pandemic’s fundamental phases with an
overview that can guide further research into the nature of
biosocial interdependencies. The latter factor plays a
critical role in the SARS-CoV-2 evolution, where individual
biological features of the participants and their role in the
collective behaviours need to be better understood. Our
effective long-term management of the pandemic and
prediction of its future developments rely upon our ability to
continue unfolding critical attributes of the underlying biosocial
stochastic dynamics.
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