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  1.     Introduction 

 Organic semiconductors based on conjugated polymers and 
small molecules have emerged in the last two decades as 
materials with applications in sensing, lighting, displays, solar 
energy conversion, and so forth. [ 1–10 ]  Their main advantage is a 
signifi cantly lower production cost in comparison to their inor-
ganic counterparts. [ 11 ]  Organic materials obtained by standard 
processing techniques exhibit a wealth of structures, [ 12–14 ]  
including completely disordered spaghetti-like regions formed 
by interlaced chains of conjugated polymers, [ 15 ]  ordered regions 
of polymer chains arranged in two-dimensional lamellar struc-
tures, [ 16,17 ]  polycrystalline small molecule-based structures [ 18–21 ]  
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Scientifi c   Computing Laboratory
Institute of Physics Belgrade 
 University of Belgrade
Pregrevica 118 
   11080     Belgrade  ,   Serbia   
E-mail:  nenad.vukmirovic@ipb.ac.rs   

and small molecule-based single crys-
tals. [ 22,23 ]  The variety of organic semicon-
ductors, their possible morphologies and 
the complexity of these morphologies 
make understanding of their electronic 
properties a rather challenging task. One 
cannot exploit the well developed theory 
of inorganic crystalline semiconductors 
where charge carriers are fully delocalized 
Bloch waves whose transport is limited by 
occasional scattering on phonons, defects 
or impurities. 

 On the other hand, a common feature 
of almost all organic semiconductors is 
the localization of charge carriers at band 
edge energies which arises due to a certain 
type of disorder in the material. In this 
feature article, we will discuss and quan-
tify various effects of disorder that lead to 
charge carrier localization. We will also 
discuss the consequences of charge carrier 
localization on electrical transport proper-
ties of these materials. 

 To reliably calculate the wave func-
tions and their localization properties in 
disordered organic semiconductors, the 

calculations on the length scale larger than the wave function 
localization length are necessary. This implies the length on 
the order of several nanometers, which encompasses several 
thousand atoms. Such a number of atoms is beyond what is 
achievable by standard density functional theory (DFT) based 
calculations. Consequently, the need for understanding the 
electronic properties of organic semiconductors has stimu-
lated the development of methods for electronic structure 
calculations. These methods will be described in Section 3. 
Before describing these methods and the insights obtained 
from their applications to organic semiconducting materials, 
we will introduce a toy model of an organic semiconductor 
in Section 2. This model will be very helpful to qualitatively 
understand the essence of most effects obtained from detailed 
atomistic simulations. Section 4 is devoted to the overview of 
insights obtained from atomistic simulation about the elec-
tronic properties of the material, such as the wave function 
localization and the electronic density of states (DOS). In 
Section 5, we present insights into the electrical transport in 
amorphous polymers obtain from the simulations and briefl y 
discuss possible insights into the electrical transport of other 
classes of organic semiconductors.  
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  2.     A Toy Model Hamiltonian of an Organic 
Semiconductor 

 We model the electronic Hamiltonian of the states near the top 
of the valence band (or the bottom of the conduction band) as
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 In Equations   1  –  3  cN  is the total number of polymer chains, 
Li is the length (number of monomers) of polymer chain  i , ijε  
is the on-site energy of the monomer  j  on chain  i , , ; ,tm j n k  are 
the electronic coupling elements between the monomer  j  on 
chain  m  and the monomer  k  on chain  n , while aij  and aij

+  are 
the carrier annihilation and creation operators on site  j  in chain 
 i . This Hamiltonian is fl exible enough to provide insight into 
various classes of organic materials as will be discussed below. 
Schematic illustration of the parameters of the Hamiltonian is 
presented in  Figure    1  a.  

 Ideally ordered polymer regions ( Figure    2  e) consist of two 
dimensional planes of parallel aligned chains. [ 24–28 ]  In the chain 
direction, the monomers are bonded by covalent bonds which 
lead to strong electronic coupling. In the direction in the planes 
perpendicular to the chain direction (π π−  stacking direction), 
the chains are bonded by weak van der Waals interaction and 
electronic coupling in that direction is still suffi cient to cause 
delocalization of electronic wave function. In the third direction 
the planes are separated by insulating alkyl side chains which 
lead to completely negligible electronic coupling and conduc-
tion. Consequently, ordered polymers can to a fi rst approxi-
mation be modeled by taking all chain lengths to be equal 

constLi = , by assuming equal nearest neighbor intrachain elec-
tronic coupling elements , ; , 1 1t ti j i j =+  and by taking the inter-
chain coupling elements between neighboring monomers from 
different chains equal to another constant , ; 1, 2t ti j i j =+ , while the 
remaining coupling elements are assumed to be equal to zero. 
The value of 1t  in conjugated polymers can be estimated as 
half the bandwidth of HOMO (or LUMO) band of a straight 
polymer chain. These bandwidths are typically on the order 
of 2 eV (see the literature [ 29 ]  for the cases of polythiophene, 
polyfuran and polypyrrole), which leads to the estimate for 1t  
of 1 eV. On the other hand, the value of 2t  can be estimated 
from the bandwidth in the π π−  stacking direction, which is on 
the order of 0.2 eV (see another study for the case of polythio-
phenes) [ 28 ]  and gives an estimate for 2t  of 0.1 eV.  

 In strongly disordered polymers, the chains form a spa-
ghetti-like structure (Figure  2 d). The origin of such a shape 
of the chains is the fact that the energy required to rotate the 
monomers around the bond that connects them is comparable 
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to thermal energy. Such rotations lead to irregular shape of the 
chain. It is important to note that the chains keep their shape 
on a time scale of at least a nanosecond. [ 30 ]  This timescale is 
longer than the timescale relevant for charge transport pro-
cesses. Therefore the disorder introduced by the irregular shape 
of the chains is called the “static disorder”. The effects of static 
disorder are refl ected both in the on-site energies and in the 
electronic coupling elements in the Hamiltonian that are no 
longer constant but vary in space in a largely random manner. 
In a disordered polymer material the monomer experiences 
the electrostatic potential from charges on all other monomers. 
Since the orientations of these monomers are largely random, 
the potential they create is also random and this leads to varia-
tions of monomer on-site energies. On the other hand, the elec-
tronic coupling between the neighboring monomers is mostly 
determined by their mutual orientations. It is well understood 
that the overlap of π  orbitals strongly depends on the angle 
between them. In a typical chain in disordered polymers, the 
angles between monomers take largely random values, which 
leads to variations of intrachain nearest neighbor electronic 
coupling elements. Therefore, the static disorder in amor-
phous polymers is refl ected through variations of on-site ele-
ments in Equation   2   caused by random electrostatic potential 
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and through variations of electronic coupling elements in 
Equation   2  ,  3   caused by rotations of the monomers around the 
bonds that connect them. 

 The Hamiltonian which is representative of small mole-
cule based organic crystals (Figure  2 f) can be obtained if one 
assumes that 1Li =  and that ,1; ,1 2t ti j =  for molecules which 
are nearest neighbors. Typical values of 2t  are on the order 
of 50 meV. [ 31,32 ]  Such a Hamiltonian at fi rst sight exhibits no 
effects of disorder because all the parameters of the Hamilto-
nian are constant and the system is perfectly periodic. However, 
a characteristic feature of organic materials is that the oscilla-
tions of atoms around their equilibrium positions at fi nite tem-
perature are signifi cant due to softness of intermolecular van 
der Waals bonds. [ 33 ]  Each of the parameters of the Hamiltonian 
depends on atomic positions. At a certain moment in time, the 
atomic positions are not periodic and the parameters of the 
Hamiltonian take values that vary through space in a random 
manner. Such a disorder introduced by oscillations of atoms 
around their equilibrium positions is called the dynamic dis-
order or thermal disorder. In small molecule based crystals, the 
variations of ,1; ,1ti j  are comparable to its mean value. [ 33,34 ]  

 The proposed model can also account for the effects of grain 
boundaries in organic crystals, through the changes in elec-
tronic coupling elements at the grain boundary. 

 Thermal disorder is also present in polymer based materials. 
In strongly disordered polymers it is an additional component 
of disorder that comes on top of strong static disorder and is 
therefore of secondary importance. However, in ordered pol-
ymer regions it is of major importance since it is the only type 
of disorder. 

 In this article, we will not take into account possible effects 
of polarons on the properties of organic semiconductors. The 
polarons are quasiparticles formed from a charged particle and 
the surrounding cloud of atomic displacements induced by the 
presence of the charged particle which lower the energy of the 
particle. In the Hamiltonian given by Equation   1  –  3   polaronic 
effects could be modeled by taking into account the depend-
ence of the parameters on the atomic coordinates and by 
adding an additional term with the dependence of the energy 
of the neutral system on atomic coordinates. There is recent 
evidence in the literature that in several types of organic semi-
conductors the effects of polarons might not be as important 
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 Figure 1.    a) Schematic representation of disordered polymer morphology and relevant parameters of the toy model Hamiltonian. b) Electronic DOS 
and c) the localization length for one dimensional model with Gaussian disorder (bottom), model of a grain boundary (middle) and model of an 
organic crystal (top).

 Figure 2.    Chemical formulae of conjugated polymers mentioned in this article: a) poly[2,7-(9,9-dioctyl-fl uorene)-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3-benzo-
thiadiazole)] (APFO-3); b) 2,5-bis(phenylethynyl)-1,3,4-thiadiazole (PhEtTh); (c) poly(3-hexylthiophene) (P3HT) and atomic structures of several classes 
of organic semiconductors: d) disordered polymers; e) ordered polymers; f) small molecule based crystals.
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as previously thought. The results of DFT calculations of long 
straight polythiophene chains have indicated that polaron 
binding energy is on the order of few meVs only and that it 
can be ignored in practice. [ 35,36 ]  It has been argued elsewhere [ 37 ]  
that small polaron formation does not take place in oligoacenes 
such as pentacene and rubrene. Our calculations point out to 
the same conclusion for pentathiophene monolayers [ 38 ]  and 
naphthalene crystals. [ 39 ]  It is more diffi cult to assess the effect 
of polarons in disordered materials because of the lack of theo-
retical framework that is capable of accounting for the effects 
of disorder and polarons on equal footing in realistic materials. 
Nevertheless, one may argue that if the strength of disorder 
(quantifi ed for example by the magnitude of spatial variations of 
onsite elements in the Hamiltonian) is larger than the monomer 
polaron binding energy, the effects of disorder would have 
a major infl uence on the electrical properties of the material. 
In this article we focus on the effects of localization caused by 
static or dynamic disorder and show that these are suffi cient 
to lead to signifi cant localization of band edge wave functions 
without the polaronic effects. On the other hand, further under-
standing of the role of polarons in organic materials is certainly 
desirable.  

  3.     Methods for Electronic Structure Calculations 

 In this section, the methods that can be used in practice to cal-
culate the electronic structure of organic semiconductors will 
be briefl y described. 

 Atomic structure of the material is needed as an input for 
electronic structure calculations. In the studies of thermal 
disorder in ordered materials one starts with an ideal room 
temperature crystal structure and then evolves the system in 
time using molecular dynamics (MD) technique or samples 
various possible atomic confi gurations using a confi gura-
tional Monte Carlo (MC) approach. [ 40 ]  After the equilibration 
of the system takes place, one continues with the production 
run where uncorrelated snapshots of the atomic confi gura-
tion of the system are extracted for further use in electronic 
structure calculations. To obtain the atomic structure of amor-
phous material, a more elaborate approach is needed. This is 
accomplished using a simulated annealing procedure. Initially, 
polymer chains are placed in a box which is much larger than 
the one that corresponds to experimental density of the mate-
rial and a high temperature of 1000 K is imposed. The size of 
the box is then gradually decreased during the MC or MD sim-
ulation until it reaches the fi nal size that corresponds to experi-
mental density of the material. Finally, the temperature is also 
gradually decreased down to room temperature and the system 
is relaxed to a local minimum. The procedure of this type was 
established as a standard procedure for the generation of the 
atomic structure of amorphous polymers. [ 41–47 ]  While such 
procedures are typically applied in simulations of amorphous 
polymers, one should keep in mind that the atomic structures 
obtained are only models that are constructed to capture the 
features of fully disordered polymer materials. It is well estab-
lished from experiments that the polymer molecular weight 
affects the order in the structures and that realistic materials 
contain both ordered and disordered regions. It is a challenging 

task that is beyond of the scope of this article to obtain the 
atomic structure of polymer based materials in such cases. 

 After obtaining the atomic structure of the material, elec-
tronic structure calculations can be performed. This can be 
done, in principle, using DFT. [ 48 ]  Within DFT, Kohn-Sham 
equations for wave functions of all occupied electronic states 
have to be solved self-consistently. Due to its signifi cant com-
putational cost, this approach is typically practiced only for 
systems with less than a thousand atoms which is usually not 
suffi ciently large size to obtain reliable information about the 
properties of disordered materials. 

 Charge patching method (CPM) [ 49 ]  can be used to directly 
calculate the electronic charge density. This method is based on 
the assumption that the contribution of a particular atom to the 
total electronic charge density of the system depends mainly on 
its local environment. Such contributions are called motifs and 
these are extracted from a DFT calculation of a small prototype 
system where atoms have the same bonding environment as in 
the simulated system. Contribution of an atom A at a position 

AR  is given as [ 49 ] 
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 where rρ( )  is the electronic charge density obtained from 
DFT calculation on the small prototype system, while Aw  is 
the weight function of an atom A. The total electronic charge 
density of the large system that one wants to simulate is then 
calculated as a sum of contributions of motifs corresponding to 
each atom in the system. When charge density is known, the 
single-particle Hamiltonian can be constructed as
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 where the fi rst term is the kinetic term, the second term is the 
potential of core ions, the third term is the electrostatic (Har-
tree) potential, while the last term is the exchange-correlation 
term calculated using local density approximation (LDA) within 
DFT. The Hamiltonian obtained using CPM gives an accurate 
approximation of the DFT/LDA Hamiltonian for systems where 
there is no long range charge transfer with typical eigenenergy 
errors on the order of tens of meV. [ 49 ]  

 To describe electrical transport properties of a semicon-
ducting material, only spectral region in the vicinity of the band 
gap is relevant. Therefore it is not necessary to fi nd all eigen-
values of the Hamiltonian given by Equation  ( 5)  . Instead, one 
can fi nd the eigenstates closest to a certain reference energy 
using the folded spectrum method (FSM). [ 50,51 ]  The main idea 
of the method is to solve the eigenvalue problem of the oper-
ator ref

2H E( )− . Lowest eigenstates of this operator correspond 
to the eigenstates of the operator H  closest to reference energy 

refE . With a proper choice of refE  one can fi nd the relevant 
states at the bottom of the conduction band or the top of the 
valence band. 

 For a system containing a large number of atoms, the use of 
FSM for the diagonalization of the Hamiltonian represented in 
plane wave basis may become too computationally demanding. 
Instead of using plane waves as the basis set, the Hamiltonian 
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can be represented in a localized and physically motivated 
system specifi c basis set. Overlapping fragments method 
(OFM) [ 52 ]  is an effi cient method which is based on the division 
of the system into small fragments and the use of eigenvectors 
of the fragments as the basis set. Good representation of rel-
evant electronic states is obtained when the fragments mutu-
ally overlap. To achieve suffi cient accuracy, only a few states per 
fragment are needed. OFM is particularly suitable for systems 
in which division into fragments is natural, such as conjugated 
polymers. 

 Several other methods have also been applied in the litera-
ture to calculate the electronic structure of large portions of 
organic materials—these include the density functional tight-
binding method, [ 53 ]  localized molecular orbital method, [ 54 ]  and 
sometimes even direct DFT calculation [ 42 ]  which however puts 
a severe restriction on the size of the system that can be tackled 
with available computational resources.  

  4.     Localization and the Density of States 

 The effects of disorder discussed in Section 2 lead to localiza-
tion of band edge wave functions and to the tail in the electronic 

DOS at the spectral region near the band edge. Grain bounda-
ries introduce the wave functions localized at the boundary 
whose energies are within the band gap of the bulk semicon-
ductor. In this section we present the densities of states and the 
localization lengths obtained from detailed atomistic simula-
tions and provide insight into the origin of the results obtained 
with the help of a toy model presented in Section 2. 

  4.1.     Amorphous Polymers 

 The wave functions and energies of electronic states in the 
region near the top of the valence band in the amorphous 
P3HT polymer (whose chemical formula is given in Figure  2 c) 
were calculated using the CPM and OFM, as described in Sec-
tion 3. The calculations have been performed for 50 different 
realizations of the system that consists of 12 chains, each 
40 thiophene units long. [ 55 ]  Such a system has 12024 atoms 
altogether. The electronic DOS near the top of the valence 
band obtained from such a set of calculations is presented 
in  Figure    3  b, while the dependence of localization length 
on energy is shown in  Figure    4  a. The localization length L  
was calculated as 1/ 4L dm

m
= ∑ , where dm  are expansion 
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 Figure 3.    a) Wave functions moduli squared of top ten hole states in the portion of amorphous P3HT material of the size �58.6 29.3 29.3A3× × . The 
isosurfaces correspond to the 50% probability of fi nding the hole inside the surface. b) The hole DOS in amorphous P3HT material obtained from the 
full calculation; c) in the absence of interchain electronic coupling; d) calculated by including the intrachain electronic coupling between the nearest 
neighbors only; e) calculated by assuming that the intrachain electronic coupling between nearest neighbors is constant and equal to t 0.85 eV= .

 Figure 4.    a) Dependence of localization length on energy in amorphous P3HT polymer; b) On-site Hamiltonian matrix elements mmε  (where m  is the 
index of the site on the polymer chain) for one realization of 12 024 atom P3HT polymer system; c) The wave functions of top hole states in 12024 atom 
P3HT system. dm

2 are moduli squared in the expansion of the wave function in an orthonormal basis set shifted by the energy of the hole state in eV.
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coeffi cients of the wave function in the orthonormal and local-
ized basis m . Strictly speaking, this quantity is in literature 
called the inverse participation ratio (IPR) and can be thought 
of as the number of monomers that the wave function is local-
ized on. When IPR is multiplied by the length of one mon-
omer it gives us the information about the length of the region 
of space where the wave function is localized. For this reason, 
IPR can also be thought of as the localization length where the 
unit of length is the length of one monomer. In the rest of this 
article IPR will be referred to as the localization length. The 
results indicate that electronic states near the valence band 
edge are strongly localized, while as one goes away from the 
band edge more delocalized states start to appear. The DOS 
exhibits a tail which can be well fi tted with an exponential 
function, as shown in Figure  3 b. As discussed in detail in the 
literature, [ 55 ]  the best fi t with an exponential function gives 
84% confi dence that the distribution is exponential, while the 
fi ts using a Gaussian function give the confi dence of 16% or 
less.   

 To understand different effects in the system, we have 
mapped the Hamiltonian obtained from the CPM and OFM to 
the form of the Hamiltonian discussed in Section 2 by using 
the Lowdin’s orthonormalization procedure, as discussed in 
detail elsewhere. [ 55 ]  

  4.1.1.     The Origin of Localization 

 A picture that is often used to understand the localization of 
wave functions in conjugated polymers is so called conjugation 
break model. Within such a picture the wave functions are delo-
calized along the planar parts of the polymer chain where elec-
tronic coupling between the monomers is strong. The places 
where the torsion angle between the monomers is larger than 
some critical value break the conjugation and localize the wave 
function. The simplest mathematical description of the conju-
gation break model is the special case of the toy model outlined 
in Section 2 where on-site elements are constant and nearest 
neighbor coupling elements are constant as well, except that at 
the places where the conjugation break takes place they take the 
zero value. Within such a model the wave functions at the band 
edge would have the largest localization length, while the states 
further away from the band edge would be more localized. 
These results suggest that the simple conjugation break model 
is not appropriate for the description of amorphous polymers 
as it yields a completely different behavior of the dependence 
of localization length on energy than the one obtained from 
atomistic simulations. The main origin of this is the absence 
of variations of on-site Hamiltonian matrix elements caused by 
disordered electrostatic potential, which is known to be impor-
tant in organic materials. [ 47,56,57 ]  

 On the other hand, the localization of band edge states 
is well known from the theory of one-dimensional disor-
dered systems. [ 58 ]  For example, a system described by our toy 
model Hamiltonian with constant nearest neighbor electronic 
coupling elements and with onsite elements drawn from a 
Gaussian distribution yields the dependence of localization 
length on energy which is qualitatively similar to the depend-
ence that we obtain. However, a more detailed investigation is 

required to understand the origin of the dependence of locali-
zation length that we obtain and to establish if the results 
obtained can be really related to the results of disordered one-
dimensional systems. 

 On that route, one fi rst has to establish if the polymer mate-
rial can in certain sense be considered simply as a collection of 
independent polymer chains. In Section 2, we have discussed 
that interchain electronic coupling in ordered polymers is an 
order of magnitude smaller than the intrachain coupling. In 
amorphous polymers where the spatial region between the 
main chains is also fi lled by insulating side chains, it is expected 
that interchain electronic coupling is even less important since 
it may have signifi cant values only at certain points in space 
where parts of two main chains are closely stacked. To check 
if this is really the case, we have excluded interchain electronic 
coupling from the calculation. The DOS obtained without inter-
chain electronic coupling is presented in Figure  3 c. By com-
paring Figure  3 b and Figure  3 c it is evident that the effect of 
interchain coupling on electronic DOS is very small. The same 
is the case for the dependence of localization length on energy 
(not shown) which changes only slightly in the absence of inter-
chain electronic coupling. One should note that these results do 
not suggest that interchain electronic coupling is irrelevant in 
organic materials. In Sections 4.2. and 4.3. we demonstrate the 
important role of interchain or intermolecular electronic cou-
pling in the formation of electronic states in ordered polymers 
and at grain boundaries between small molecule based crystals. 
In addition, when electrical transport is concerned, long-range 
transport is impossible without interchain coupling which is 
required for charge transfer between different chains. 

 Next, to simplify the Hamiltonian, we exclude all intrachain 
electronic coupling elements except the ones between nearest 
neighbors. The comparison of Figure  3 b and Figure  3 d indi-
cates that this is a good approximation. Finally, we set all nearest 
neighbor electronic coupling elements to a constant value 

=t 0.85 eV which corresponds to the most probable value in the 
distribution of these elements. Even such a drastic change has a 
weak effect on electronic DOS, as seen by comparing Figure  3 b 
and Figure  3 e. Such a result shows that the Hamiltonian which 
includes only on-site elements and constant nearest neighbor 
intrachain coupling elements captures the main features of the 
electronic states near the band edge, including their localiza-
tion properties. Consequently, the variations of on-site elements 
that originate from disordered electrostatic potential introduced 
from the rest of the system are responsible for localization of 
wave functions rather than the breaks in conjugation. This con-
clusion can further be supported from Figure  4 b,c. The hole 
wave functions are localized precisely at the places of largest 
on-site elements in agreement with the notion that these ele-
ments are responsible for localization.  

  4.1.2.     The Factors that Infl uence the Electrostatic Disorder 

 Given the established importance of the disordered electro-
static potential created by the rest of the system on a certain 
site, it is of great relevance to understand the factors that deter-
mine the degree of spatial variations of such a potential. In typ-
ically used conjugated polymers there is always some degree 
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of charge transfer in the monomer. Consequently, from the 
electrostatic point of view, each monomer can be considered 
as a dipole that creates a long-ranged electrostatic potential. 
Since the polymers have irregular shape, the orientations of 
these dipoles vary and there is a great degree of randomness 
in the overall potential created by these dipoles. The strength 
of the electrostatic potential on a certain site depends both on 
the strength of the dipoles and on their distances from the site. 
For this reason, one expects that alkyl side chains that act as 
spacers between the main chains tend to reduce the electro-
static disorder. 

 To investigate the effects of electrostatic disorder in more 
detail, we consider three systems based on APFO-3 polymer 
(whose chemical formula is given in Figure  2 a), the APFO-3 
polymer with side chains, the APFO-3 monomer with side 
chains, and the APFO-3 monomer without side chains. [ 59 ]  The 
monomer of APFO-3 is in a donor–acceptor–donor confi gura-
tion which leads to the creation of dipoles within the monomer. 
For this reason, it is an interesting material for the study of 
electrostatically induced disorder. To quantify the electrostatic 
disorder, we present the distribution of diagonal Hamiltonian 
matrix elements Hii, where  i  is the fragment orbital. The dis-
tribution of these elements in the case of APFO-3 polymer 
with side chains and APFO-3 monomer with side chains is 
presented in  Figure    5  . These distributions are nearly the same 
which is an expected result since both systems have the same 
built-in dipoles in the monomer and the same distribution of 

distances between the sites on the main chain and the dipoles. 
In addition, the distribution of torsion angles in both systems is 
rather similar which leads to similar distribution of the dipoles 
orientation. On the other hand, the comparison of the APFO-3 
monomer with and without side chains (also shown in Figure  5 ) 
yields a wider distribution of elements in the monomer without 
side chains. The origin of wider distribution is the absence of 
side chains, which leads to proximity of the surrounding dipoles 
and consequently to a stronger and more disordered potential.  

 Next, we compare the DOS of the three materials, shown in 
Figure  5 . It is expected that the material with wider distribu-
tion of diagonal matrix elements has a wider tail in the DOS 
at the band edge. Indeed, as seen from the fi t of the DOS to an 
exponential function presented in Figure  5 , APFO-3 monomer 
without side chains has signifi cantly larger bE  than the other 
two materials. The comparison of APFO-3 polymer and 
APFO-3 monomer with side chains yields somewhat smaller 

bE  in APFO-3 polymer. These two materials have the same dis-
tribution of diagonal elements, while the smaller bE  in APFO-3 
polymer comes from tail narrowing introduced by intrachain 
electronic coupling in the polymer. [ 59 ]   

  4.1.3.     Impact of Electrostatic Disorder on the Band Gap 

 The effect of disordered electrostatic potential may be so pro-
nounced in some materials to even lead to a drastic reduction 
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 Figure 5.    The distribution of on-site matrix elements for several materials based on APFO-3 (top). The lines are best fi ts to the Gaussian distribu-
tion with the standard deviation parameter 197 meVσ =  (APFO-3 polymer), 197 meVσ =  (APFO-3 monomer with side chains), and 282 meVσ =  
(APFO-3 monomer without side chains). The density of hole states for these materials (bottom). The lines represent fi ts to the exponential DOS 
D E D E Eexp /0 b( )( ) = − , with E 48.9 meVb =  for APFO-3 polymer, E 60.9 meVb =  for APFO-3 monomer with side chains and E 95.1 meVb =  for APFO-3 
monomer without side chains.
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of the band gap. One such material is PhEtTh (whose chemical 
formula is given in Figure  2 b). [ 60 ]  The calculation of the amor-
phous PhEtTh sample, consisting of 5 decamers (1010 atoms) 
yields the bandgap of 0.62 eV. On the other hand, the band gap 
of an isolated straight PhEtTh chain is 1.64 eV, while the band 
gaps of isolated chains in the amorphous geometry take the 
values in the 1.60–1.85 eV range. One should note that these 
band gaps were obtained from the calculation based on the 
LDA approximation and are therefore underestimated in com-
parison to true band gaps. Nevertheless, here we are mainly 
interested in the change of the band gap from straight polymer 
single chain to amorphous material and we are not focused on 
the absolute values of the band gap. The reader interested in the 
absolute value of the band gap may estimate it by dividing the 
LDA gap with a factor of 0.6. [ 60 ]  

 The directly calculated interchain coupling elements in 
amorphous PhEtTh take the values on the order of 10 meV 
and these certainly cannot explain the difference between the 
band gaps of the material and the individual chains. To under-
stand this band gap difference, we have performed the calcula-
tions where we have represented the Hamiltonian in the basis 
of eigenstates of single chains. In this basis certain coupling 
elements can be easily turned on and off and therefore their 
infl uence on the electronic structure can be identifi ed. First, we 
represent the Hamiltonian in this basis and do not turn any 
elements off. We obtain the band gap of 0.79 eV, somewhat 
different than the band gap obtained by plane wave diagonali-
zation. This difference originates from the incompleteness of 
the basis set used. However, this difference is not large and 
therefore this basis set can be used to understand the role of 
different coupling elements. Next, the interchain coupling 
elements of the Hamiltonian sH H−  (where H  is the Ham-
iltonian of the whole system, while sH  is the sum of Hamil-
tonians of individual isolated chains) between the eigenstates 
of single chains were turned off and the band gap obtained is 
0.8 eV. Then, we also turn off the intrachain off-diagonal cou-
pling elements and obtain the band gap of 1.01 eV. Finally, 
when onsite term is also ignored we obtain the single chain 
band gap of 1.6–1.85 eV. 

 From these calculations, we can identify the relative impor-
tance of various factors in determining the band gap of the 
system. Individual chains have band gaps in the 1.6–1.85 eV 
region. Other chains create an additional potential on each 
chain which changes the onsite energies and leads to the reduc-
tion of the band gap to 1.01 eV. This potential also mixes dif-
ferent states from a particular chain, which leads to further 
band gap reduction to 0.8 eV. Finally, interchain electronic 
coupling has a rather weak effect and only slightly reduces the 
band gap to 0.79 eV. 

 Such a drastic effect of electrostatic potential on the band gap 
was not obtained in polythiophene polymers [ 41 ]  with or without 
side chains. The main difference between polythiophene and 
PhEtTh materials lies in the fact that the monomer of PhEtTh, 
which is a donor acceptor copolymer, has a signifi cant dipole 
moment that originates from the charge transfer of 0.14 elec-
trons from thiadiazole to benzene ring. On the other hand, 
such a strong dipole moment in not present in polythiophenes. 
These dipoles then introduce long range electrostatic potential 
which is responsible for band gap reduction. 

 Reduction of the band gap by electrostatic disorder can be 
understood from a simple one dimensional model (which is 
a special case of the toy model from Section 2) where on-site 
energies have a Gaussian distribution with standard deviation 
σ  and electronic coupling t  is present between nearest neigh-
bors only. In Figure  1 b,c (bottom panel) we present the DOS 
and the localization length (obtained by averaging of 25 000 
different realizations of the system consisting of 100 sites) for 
such a model for two values of the / tσ  ratio. As seen from 
the fi gure, when this ratio increases, localized states deeper 
in the band gap start to appear and consequently the band 
gap is reduced. However, one should have in mind that poly-
mers where this effect is pronounced also have a rather poor 
mobility due to wide DOS tail and are therefore not suitable for 
any practical applications in electronics. Consequently, for elec-
tronic applications one should generally avoid polymers with 
strong built-in dipole moments within the monomer.   

  4.2.     Thermal Disorder in Ordered Conjugated Polymers 
and Small Molecules 

 As pointed out in Section 2, the effects of thermal disorder 
may be signifi cant in ordered conjugated polymer materials. 
This expectation comes from the weakness of interchain van 
der Waals bonding and the possibility of monomer rotation 
around the bonds that connect them (torsions) at fi nite tem-
perature. Thermal disorder in ordered conjugated polymer 
materials originates both from disorder in the shape of main 
(backbone) chains and alkyl side chains. Wave functions of rel-
evant electronic states are localized dominantly on the main 
chains. Therefore, disorder in main chains, which includes 
variations in torsion angles between thiophene rings and the 
displacements of the entire chains, directly affects the localiza-
tion length of wave functions. On the other hand, the effect of 
side chains on the electronic structure is not that transparent. 
Disorder in the shape of side chains produces spatial variations 
of the electrostatic potential on the main chains, which subse-
quently affect the electronic structure. 

 The effects of thermal disorder on electronic structure of 
crystalline region of P3HT were investigated using the atomic 
structures of P3HT at a temperature of 300 K generated from 
MC simulations. Crystalline P3HT may exhibit the structure 
where main chains are aligned and the structure where these 
are mutually shifted by half a unit cell length in the main chain 
direction. [ 24 ]  Below we will show the results for the shifted 
structure which is more energetically favorable, [ 24 ]  while one 
expects qualitatively the same results for the aligned structure. 

 The isolated effect of disorder in side chains was investigated 
fi rst by keeping main chains rigid during MC simulations. 
Then, the simulations were repeated allowing disorder in main 
chains as well. During the simulations the bond lengths and 
bond angles were kept constant, since their variations have only 
a slight effect on the electronic structure. Electronic structure 
calculations were performed using the CPM and the OFM. 
Small molecules consisting of three neighboring thiophene 
rings (trimers) were used as fragments in the OFM. 

 Effects of thermal disorder on electronic structure of P3HT 
were quantifi ed by calculating the DOS and the wave function 
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localization length for ten highest states in the valence band, 
which cover the relevant spectral region of around 0.5 eV. The 
calculation was repeated for 100 different random realiza-
tions of the atomic positions for the system that consists of 10 
chains, each 10 thiophene rings long. 

 Electronic DOS, total localization length and the localization 
length in the π–π  stacking direction for the structures with dis-
order in side chains only and disorder in both main and side 
chains are shown in  Figure    6  . Results indicate that disorder 
in side chains has a relatively weak effect on the electronic 
structure. In this case, DOS contains several peaks (Figure  6 a). 
These peaks correspond to the energies of the ideal crystalline 
structure, which are also shown for reference. On the other 
hand, when both types of disorder are present, DOS has a 
wider distribution of energies (Figure  6 d).  

 We will consider the states with a value of localization length 
L less than 15, as localized states because all the states within 
fi rst 0.2 eV from the top of the valence band have L smaller 
than 15 (see Figure  6 e). In the structures with disordered side 
chains, most of the states are delocalized (Figure  6 b). When 
both main and side chains are disordered, both localized and 
delocalized states exist (Figure  6 e) but all states are localized 
in the spectral region of 0.2 eV below the highest state. Quali-
tatively similar results were obtained in amorphous P3HT [ 55 ]  
and from other calculations in ordered polymers. [ 53,61 ]  From 
the comparison of the results for the structure with disorder in 
side chains only and the structure with disorder in both main 
and side chains, one can conclude that disorder in main chains 
is mainly responsible for the localization of charge carriers in 
ordered P3HT. 

 Charge transport in ordered polymers takes place along 
the main chain and the π –π  stacking direction. Therefore, 
the localization length in the π –π  stacking direction is also of 
particular interest. It can be considered as the number of dif-
ferent chains that a state is localized on. Localization length in 
the π –π  stacking direction bL  was calculated using a similar 
formula as for the total localization length, with a redefi ni-
tion of the expansion coeffi cients in such a manner that they 
refer to chains, instead of fragments. The energy depend-
ence of bL  is qualitatively similar as the energy dependence 
of L (Figure  6 c,f). In the case when both types of disorder are 

present, the highest states in the valence band have the 
values of bL  around 2. These states are predominantly local-
ized on two neighboring chains due to signifi cantly high 
electronic coupling between the chains. The wave function of 
the HOMO state in that case is shown in  Figure    7  b. On the 
other hand, when the disorder in side chains only is present, 
the wave functions are delocalized among a larger number of 
chains, as can be seen from Figure  6 c and from the wave func-
tion of HOMO state shown in Figure  7 a.  

 With the presented results, one can build a detailed picture 
on the role that the constituents of the polymer material have 
when the effects of thermal disorder are concerned. Side chains 
create a disordered electrostatic potential which leads to some 
degree of localization in the π–π  stacking direction. Although 
these chains are fl exible and have a rather disordered shape, 
their effect is not very strong because charge transfer between 
C and H atoms is small and therefore the electrical dipoles 
that create the electrostatic potential are weak. The dominant 
cause of localization then comes from disorder in the shape of 
main chains which has a strong effect both on the intrachain 
and interchain electronic coupling. Interestingly, the interchain 
electronic coupling remains suffi ciently strong to delocalize the 
carrier over two chains. 

 Other simulations of thermally disordered polymers also 
lead to the results that are consistent with parts of this picture. 
It was demonstrated elsewhere [ 61 ]  that electronic states on a 
single polythiophene main chain, in the absence of side chains 
exhibit localization. The localization of the states on a single 
chain of the PBTTT polymer lamella (where side chains were 
not included in the calculation) was predicted from calculations 
in the literature. [ 53 ]  

 The importance of thermal disorder in small molecule based 
organic crystals is now well appreciated [ 33 ]  and will be only briefl y 
discussed here. Its effects have been mostly studied within an 
one dimensional model where electronic coupling between 
the molecules n  and 1n +  depends on the displacements of 
these molecules un  and 1un+  as 1 1t u t u un nα[ ]( )( ) = + −+ . [ 33,62,63 ]  
In Figure  1 b,c (top panel) we present the DOS and the localiza-
tion length for such a system consisting of 100 sites, obtained 
by averaging over 25 000 realizations of the system, with atomic 
displacements from the Gaussian distribution with standard 
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 Figure 6.    DOS for a) structures with disorder in side chains only and d) structures with disorder in both main and side chains; total localization length 
for b) structures with disorder in side chains only and e) structures with disorder in both main and side chains; localization length in the π –π  stacking 
direction for c) structures with disorder in side chains only and f) structures with disorder in both main and side chains.
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deviation 
2 B

2

k T

t
σ λ

α
= , where T  is the temperature and 0.1λ = . 

As can be seen from the fi gure, the presence of localized states 
near the band edge is a feature of this class of systems, while 
the states further away from the band edge are less localized. 
The increase of temperature leads to a wider tail in the DOS 
(see top part of Figure  1 b) and to better localization of the states 
away from the band edge (see top part of Figure  1 c). In the cal-
culations performed starting from realistic atomic structure 
from MD snapshots and using the CPM and OFM to perform 
electronic structure calculations the presence of localized states 
at the band edge is also obtained. [ 38,64 ]   

  4.3.     Grain Boundaries in Polycrystalline Organic 
Semiconductors Based on Small Molecules 

 Organic thin fi lms based on small molecules are typically poly-
crystalline. It implies that they contain grain boundaries which 
separate the grains with different crystalline orientations. Grain 
boundaries are considered to be the most limiting intrinsic 
factor for charge carrier transport. [ 18,20,21,65–67 ]  Nevertheless, the 
precise way in which they affect the electronic properties is not 
well understood. Quite a few works suggest the presence of trap 
centers at the boundaries. [ 18,19,21,65,68–71 ]  The trapping of carriers 
at these centers leads to the drop in charge carrier mobility. On 
the other hand, there are suggestions that grain boundaries 

act as barriers for charge carriers, which inhibit the transport 
across the boundary. [ 72,73 ]  Therefore, detailed electronic struc-
ture calculations are required to gain better understanding of 
the effect of grain boundaries. [ 71 ]  

 Initial atomic structure used in the simulation consists of 
two joined naphthalene crystalline grains with different crystal-
line orientations. Low-angle grain boundaries (misorientation 
angles from 5° to 20°) are most relevant since the calculations 
indicate that the energy of the structure increases as the angle 
of misorientation between the grains increases. Structures 
were optimized using MC simulations. Simulations are fi rstly 
performed at a fi nite temperature of 300 K and subsequently 
cooled down to 0 K, in order to exclude thermal disorder 
effects, which can additionally affect the electronic structure, as 
discussed in Section 4.2. Electronic structure calculations were 
performed using the CPM and the FSM. Since the electronic 
transport in such materials is two-dimensional, calculations 
were performed for single layers of polycrystalline naphthalene, 
each containing around 1400 atoms. 

 Wave functions of the electronic states at the top of the 
valence band for the system consisting of two crystalline grains 
with a misorientation angle of 10° are shown in  Figure    8  . By 
inspecting the isosurfaces for the presented states, one can 
notice three types of states: 1) states localized on two mol-
ecules at the boundary (Figure  8 a); 2) other states localized at 
the boundary (Figure  8 b), and 3) delocalized states (Figure  8 c). 
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 Figure 7.    Isosurfaces of wave function moduli squared for HOMO state of P3HT with a) disorder in side chains only and b) disorder in both main and 
side chains. Isosurfaces correspond to the probability of fi nding a hole inside the surface of 90%.

 Figure 8.    Isosurfaces of wave function moduli squared of the a) HOMO, b) HOMO-3, and c) HOMO-9 state of naphthalene grain boundary with 
misorientation angle of 10°. Isosurfaces correspond to the probability of fi nding a hole inside the surface of 90%.
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Results for other simulated systems are qualitatively the same. 
The highest states are always localized on molecule pairs at the 
boundary. Molecules in such pairs have mutual distance sig-
nifi cantly smaller than the distance between neighboring mole-
cules in a crystal. States created by these pairs can be very deep 
in the band gap, even more than 1 eV above the band edge. 
It is well-known that the decrease in the distance between the 
molecules increases the electronic coupling between them. [ 74 ]  
Therefore, higher electronic coupling between molecules at the 
boundary is responsible for the creation of the trap states in the 
band gap. Other localized states produce shallow traps, with the 
depth of up to 0.1 eV. Delocalized states start to appear at cer-
tain energy where the energy spectrum becomes continuous. 
Such states exist in a single crystal and they are not induced 
by a boundary. However, our results indicate that delocalized 
states are mostly localized at one side of the boundary (as in 
Figure  8 c). For such states, grain boundary acts as a barrier.  

 Simulation results indicate that the energy of a trap state is 
strongly correlated to the distance between molecules which 
form the trap, as shown in  Figure    9  a. The exponentially 
decreasing function gives the best fi t to this dependence. Addi-
tionally, the changes in the distances between molecules in 
trap centers after the atomic relaxation in MC simulation are 
not larger than 0.1 Å. Therefore, one can predict the energy of 
a trap state without MC simulations and electronic structure 
calculations, only by using the distance between the molecules 
and the fi tting function. This method produces an error of 
around 0.1 eV. Using this approach, the density of trap states 
for large grain boundaries can be calculated. In Figure  9 b the 
density of trap states for large grain boundary (around 30 nm) 
with misorientation angle of 10° is given.  

 The features obtained from a detailed atomistic simula-
tion can largely be understood from a simple model of a grain 
boundary. We consider a special case of the model given by 
Equation   1  –  3   where the system consists of 100 sites arranged 
on a line. Electronic coupling between neighboring sites is t, 
except for the coupling between the two middle sites which is 
given by a uniform random number between 0 and 2 t . Different 
electronic coupling between the middle sites models the effect 
of the grain boundary on electronic properties. In Figure  1 b,c 
(middle panel) the DOS and the dependence of the localization 
length on energy obtained by averaging the results over 25 000 
different realizations of the system are presented. The presence 

of localized states within the band gap of the material induced 
by the grain boundary is evident from the fi gures.   

  5.     Electronic Transport 

  5.1.     Amorphous Polymers 

 Understanding the relationship between the atomic structure of 
the material and its electrical properties is a highly challenging 
task. This is the case in particular for disordered polymers 
where there is no periodicity of the atomic structure that can be 
exploited. The details of the atomic structure are also not very 
well known. In addition, specialized and effi cient methods are 
required to perform electronic structure calculations on large 
supercells that are needed to extract suffi cient statistics about 
the electronic properties of disordered materials. 

 For these reasons, phenomenological approaches were typi-
cally used to model electrical transport in disordered organic 
materials. In these approaches, one assumes that the system 
consists of a set of sites, characterized by their energy and 
the spatial position. Charge carrier transport in such a system 
then takes place by hopping between these sites. The ener-
gies of sites are drawn from a predefi ned distribution such as 
the Gaussian or the exponential distribution. The most usual 
assumptions about the spatial positions of sites are that they 
are located on cubic lattice or that they are distributed ran-
domly in space with a uniform distribution. The probability 
of carrier hopping from site  i  to an unoccupied site  j  in a unit 
of time is often assumed to take the Miller-Abrahams form 

exp 2 /0W W R aij ij( )= −  for downward transitions (E Ei j≥ ) and 
exp / BW W E E k Tji ij i j( ) ( )= − −⎡⎣ ⎤⎦ for upward transitions ( /E Ei j). 

In previous equations, Rij  is the spatial distance between sites 
 i  and  j , Ei  is the energy of the carrier at site  i , T  is the tem-
perature, while 0W  and a  are constant coeffi cients in the expo-
nentially decaying dependence of Wij  on Rij. Such a model of 
electronic transport in disordered materials (when Gaussian 
DOS is assumed) is usually referred to as the “Gaussian dis-
order model”. [ 75–78 ]  

 Due to the simplicity of the phenomenological approaches, 
these have become quite popular and they are often used to fi t 
the experimental data, such as the dependence of mobility on 
temperature. Nevertheless, the shortcomings of these models 
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 Figure 9.    a) The dependence of the energy of trap states at the grain boundary on the distance between molecules which form the traps. The data 
obtained from all simulated systems are presented in the fi gure. Energies of the trapping states are defi ned with the top of the valence band as a refer-
ence level. b) Density of trap states for the system of two naphthalene crystalline grains with misorientation angle of 10°.
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are the lack of clear physical meaning of the concepts and 
parameters of the model and the lack of their relation to atomic 
structure of the material. For example, is not clear what the 
“sites” in the model correspond to in the real physical system. 
If it is assumed that the sites are distributed on a cubic lattice, 
it is questionable how to choose the lattice constant. Miller-
Abrahams form for the transition rates was derived origi-
nally in the context of carrier hopping between impurities in 
solids. [ 79 ]  If the wave function of a carrier on the impurity is 
spherical, then the overlap between the wave functions on the 
two impurities decays exponentially with the distance between 
the impurities and the assumption of Miller-Abrahams form is 
quite plausible. On the other hand, as seen in Figure  3 a, the 
wave functions in disordered polymers have a quite different, 
elongated shape, and it is questionable if such an expression is 
applicable to them. 

 Due to mentioned shortcomings of phenomenological 
models, the development of an approach that would link the 
atomic structure of the material to its electrical properties is of 
great interest. We have developed such an approach that links 
the quantities on four length scales to obtain the macroscopi-
cally measurable property of the material, such as the charge 
carrier mobility. [ 30 ]  The whole approach in its present form 
focuses on homogeneous strongly disordered materials. Pres-
ently, it cannot be directly applied to more complex materials 
that contain both disordered and ordered phases. Nevertheless, 
the parts of the approach and the ideas from the approach will 
certainly be helpful in the development of the approach for 
treatment of more complex materials. 

 At the smallest length scale (on the order of few angstroms), 
we perform DFT calculations on small molecules (shown in 
 Figure    10  a) to obtain the motifs used in the CPM (shown in 
Figure  10 b).  

 At the next length scale (Figure  10 c), we perform electronic 
structure calculations to obtain the energies and wave functions 
of charge carriers. The atomic structure of the polymer mate-
rial at this length scale is obtained from classical MD using a 
simulated annealing procedure, as described in Section 3. Elec-
tronic structure calculations at this length scale are performed 
using the CPM which constructs the single particle Hamilto-
nian, which is then diagonalized either using the FSM or the 
OFM. At this length scale, we also calculate the charge carrier 
hopping rates between the states as
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 where Wij  is the probability of hopping from state i to state j 
in a unit of time, E j  and E j  are the energies of states, ωα�  is 
the energy of phonon of mode α , αN  the number of phonons 
in that mode given by the Bose-Einstein distribution, αMij ,  and  
is the electron-phonon coupling constant between electronic 
states i and j due to phonon mode α . The phonon modes are 
obtained from the same classical force fi eld that was used in 
MD simulations by diagonalizing the corresponding dynamical 
matrix. The electron-phonon coupling constants are obtained 
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 Figure 10.    Schematic representation of the multiscale procedure for simulation of charge transport in amorphous polymers: a) Atomic structure and 
electronic charge density of the small molecule used to generate the charge density motifs; b) Charge density motif assigned to one atom type in the 
system; c) The atomic structure and valence band wave function isosurface plots of the disordered polymer; d) Transport sites (green dots) and the 
relevant current paths through the material (blue lines) when the voltage is applied in the direction indicated; e) Continuum system at the fi nal length 
scale; f) Temperature dependence of hole mobility in P3HT polymer obtained from the described procedure (squares), its comparison to experimental 
data from the literature [ 87,88 ]  (solid line) and the estimate from percolation theory (circles).
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from the CPM by calculating the change in the single particle 
Hamiltonian due to displacements according to a given phonon 
mode.  

 One should pay particular attention to the size of the simu-
lation box at this length scale. It is absolutely necessary that it 
is larger than the localization length of strongly localized wave 
functions (otherwise the obtained wave functions would not be 
representative of wave functions in real system). On the other 
hand, its size is limited by the computational cost of electronic 
structure calculations. With the combination of CPM and 
OFM, we can calculate the system that contains on the order 
of 10 000 atoms which corresponds to box size on the order 
of 5 nm. Such a size is suffi cient to obtain reliable wave func-
tions. Nevertheless, with such a calculation we obtain several 
tens of wave functions in the spectral region within ≈0.5 eV, 
which is the spectral region of interest for electrical transport 
properties. This is too little states for the extraction of mac-
roscopic parameter of the material such as the charge carrier 
mobility because a different random realization of the system 
would lead to a completely different mobility. For this reason, 
we need to go to the next length scale to simulate charge car-
rier transport. To get suffi cient information to construct the 
system on the next length scale, we repeat the calculation on 
this length scale many times for different random realizations 
of the system. 

 At the next length scale, we consider the system as a set 
of sites among which the charge carriers are hopping [shown 
in Figure  10 d]. The simulation box is constructed by putting 
together 1 1 1k k k× ×  (typically 101k = ) small boxes whose size 
is equal to the size of the box on the previous length scale. The 
positions and energies of the sites in each of the small boxes 
are taken from the simulation on the previous length scale, by 
randomly choosing one of the realizations of the system on 
the previous length scale and randomly rotating it in space. It 
is well known [ 86 ]  that the conductance at low electric fi elds for 
hopping transport is equal to the conductance of a network of 
resistors constructed by connecting sites  i  and  j  with a resistor 

of conductance 
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2
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G
e

k T
n W

e

k T
n Wij i ij j ji= = , where ni  is the 

occupation of site  i . The hopping rates between the sites from 
the same small box are directly available from the simulation 
on the previous length scale, while the hopping rates between 
different boxes are approximated in a manner that retains their 
statistical averages. [ 30 ]  The calculations for different realizations 
of the system at this length scale (where the simulation box 
size is typically on the order of 20–30 nm) still yield different 
mobilities, which vary within one to two orders of magnitude 
depending on temperature. 

 To obtain the fi nal mobility representative of the mobility of 
bulk amorphous polymers, we therefore need to go one length 
scale further (shown in Figure  10 e). At this fi nal length scale, 
we consider the system as the continuum with spatially varying 
conductivity. The simulation box is again constructed by putting 
together 2 2 2k k k× ×  (with typical 102k = ) small boxes whose 
size is equal to the box size on the previous length scale. Each 
of these boxes is considered as a uniform but anisotropic con-
ductor whose conductivity is determined from the result on the 
previous length scale. The mobility in direction  d  (where  d  =  x , 
 y  or  z ) is calculated as /G enLd dμ ( )= , where Gd  is equivalent 

conductance in direction  d , n  is the concentration of carriers, 
and L  is the box size dimension at this length scale. We will 
present the results for the limit of low carrier concentration, 
when Gd  is proportional to n  and the mobility is independent 
of carrier concentration. At this length scale (with the box size 
on the order of 300 nm), one fi nally obtains the mobility which 
is nearly independent on random realization of the system. It 
is interesting to note that a very similar result for the mobility 
would be obtained if one simply took the geometrical average 
of the mobilities obtained at the previous length scale instead 
of performing the simulation of the continuum system at this 
length scale. 

 Our approach overcame the issue of insuffi ciently large size 
of the box used in electronic structure calculations through the 
construction of larger system on the next length scale from the 
information obtained on previous length scale. At each length 
scale we check if the simulation box is big enough by repeating 
the calculation on that length scale for different random realiza-
tions of the system. If the conductance obtained for different 
realizations signifi cantly varies, this gives an indication that the 
system is not large enough and that one needs to go one length 
scale further. The information gained from repeated calcula-
tions is then used to construct the system on the next length 
scale. At the fi nal scale the variations of the conductance for 
different realizations of the system are small which indicates 
that the simulation box on that length scale is large enough. An 
interesting alternative to our approach was discussed in another 
study. [ 80 ]  That approach is based on the fact that at higher tem-
peratures the carriers visit a signifi cantly larger number of 
sites during the transport and for that reason smaller system 
size is required to obtain the mobility at higher temperatures 
than at low temperatures. One can then calculate the mobility 
of the small system at high temperature and use it to extrapo-
late to the mobility of bulk at low temperatures as described 
elsewhere. [ 80 ]  

 Temperature dependence of the mobility of amorphous 
P3HT polymer is presented in Figure  10 f. We fi nd that the 
mobility is thermally activated and its temperature depend-
ence fi ts well the expression exp /0 A BT E k Tμ μ [ ]( )( ) = − , with 
activation energy of 347 meVAE =  and the mobility at room 
temperature of 300K 0.71 10 m V s9 2 1 1Tμ( )= = × − − − . On the 
other hand, experimental results [ 87,88 ]  yield 350 meVAE =  and 

300K 2.8 10 m V s9 2 1 1Tμ( )= = × − − − . Therefore, the simulation 
results are in quite good agreement with experiment since the 
correct value of activation energy is obtained and the correct 
order of magnitude of the mobility. 

 The fact that we needed to perform the simulation at sev-
eral length scales up to the scale of hundreds of nanometers 
is a direct consequence of disordered nature of the system. For 
a disordered system the length scale beyond which the system 
starts behaving as bulk is much larger than for ordered systems. 
The fact that we needed to extend our simulation to the 100 nm 
length scale indicates that this is exactly the length scale beyond 
which the portion of the disordered polymer material behaves 
as bulk when electrical transport characteristics are concerned. 
All devices of smaller size would exhibit different characteris-
tics for different realizations of the device. 

 In ordered materials, current is uniformly dis-
tributed through the material (at the length scale beyond the 
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interatomic distances). On the other hand, this is not the case in 
disordered materials and it is very interesting to inspect the cur-
rent paths in the material. These are presented in Figure  10 d. 
In the fi gure, the sites where the current is larger than 5% of 
the maximal current in the system are connected with lines. 
The currents between these sites contribute to at least 75% 
of the total current at each cross section perpendicular to the 
direction of the applied voltage. For these reasons the current 
paths shown in the fi gure can be considered as relevant current 
paths in the material. From visual inspection of the fi gure, one 
can notice that the overall current fl ow is determined by a rela-
tively small number of current paths, which gives an indication 
that percolation theory might be appropriate for the description 
of current fl ow in the system. 

 Percolation theory often gives a good description of transport 
properties in disordered systems. In the context of our system, 
modeled as a conductor network, percolation theory suggests 
that the current paths are formed at the place where a contin-
uous network of connections that spans the whole system can 
be formed, where connections are formed between each two 
sites with a conductance larger than some critical conductance 

cG . The criterion that can be used to check if the continuous 
network that spans the system was formed is that the number 
of connections per site is larger than some critical value ca . We 
fi nd that the conductivity of the material can reliably be esti-
mated (see Figure  10 f) from percolation theory as /c cG Lσ = , 
where cG  was determined from 3.2ca =  and cL  is taken to be 
equal to characteristic distance between the sites =L 1.5 nmc . 
Further confi rmation of the appropriateness of the percolation 
theory comes from the fact that all resistors in the relevant cur-
rent path indeed have >G Gc c. 

 In our approach, we calculate the transition rates between 
the states using a rather detailed formula given by Equation   6   
which includes the coupling to all phonon modes. To calculate 

these rates, one needs to calculate the wave functions, the 
phonon modes, and the electron-phonon coupling constants, 
which is computationally very demanding. On the other hand, 
widely used Miller-Abrahams expression contains only the 
energies of electronic states and the distance between the sites. 
It is therefore of great interest to determine to what extent can 
the full expression for transition rates (Equation   6  ) be simpli-
fi ed. Such an insight would be helpful to reduce the compu-
tational cost of the described multiscale procedure. Moreover, 
this insight will help us to address an important question about 
the main physical quantities that determine the charge car-
rier mobility. While it is widely understood that the mobility is 
strongly dependent on electronic DOS, one can imagine that 
the phonon DOS, the details of wave functions overlaps, as well 
as the details of the phonon modes could be important as well. 

 The hopping rates in the system, calculated using Equation   6   
that takes into account the interaction with all phonon modes 
largely deviate from the traditional Miller-Abrahams form 
(bottom panel in  Figure    11  b). The main reason for this devia-
tion is that the wave functions have a strongly anisotropic shape 
and therefore their overlap does not simply decay exponentially 
with distance between them.  

 Next, we would like to understand the consequences of the 
differences between the rates obtained using Miller-Abrahams 
form and the full model on electrical transport. The compar-
ison of the mobilities, shown in Figure  11 a, indicates that for 
a physically realistic prefactor 10 s0

14 1W = − , regardless of the 
values of the parameter  a , the slope of the dependence is dif-
ferent. Therefore, the model with Miller-Abrahams hopping 
rates cannot reproduce the results of the detailed model, regard-
less of the choice of parameters, as long as they are physically 
realistic. We fi nd that the dependence can be reproduced only 
with physically unrealistic pair of parameters 6.3 10 s0

20 1W = × −  
and 2A�a = . 
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 Figure 11.    a) Temperature dependence of the mobility in the full model and using the model with Miller-Abrahams rates (model C). The value of the 
parameter a  (in Angstroms) in model C is indicated in the legend. b) The comparison of hopping rates in different models with the ones obtained 
in the full model. c) Electric fi eld dependence of the mobility at room temperature within different models. The parameters of the models A–C were 
chosen to fi t the temperature dependence of the mobility from the full model.
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 While we have shown that the model with Miller-Abrahams 
rates yields quantitatively signifi cantly different results than 
the full model, we demonstrate another example where the 
model with Miller-Abrahams rates gives even a qualitatively 
different result. This result concerns the importance of the 
concept of effective electronic temperature for the system in 
a fi nite electric fi eld. The effective electronic temperature is 
defi ned from the fi t of charge carrier distribution to a Boltz-
mann distribution and its dependence on electric fi eld for sev-
eral lattice temperatures is shown in  Figure    12  a. An important 
question about the effective electronic temperature is whether 
it can be used to replace the joint effect of electric fi eld and 
lattice temperature. If this is the case, then the dependence 
of mobility on electronic temperature falls into one curve. 
As seen from Figure  12 b we reproduce the results of earlier 
studies that this is the case in the model with Miller-Abrahams 
rates, [ 81,82 ]  while we fi nd that this is not the case in the full 
model. [ 83 ]  Consequently, the model with Miller-Abrahams rates 
yields a qualitatively different conclusion related to the impor-
tance of effective electronic temperature than a realistic model.  

 Having established that the model with Miller-Abrahams 
rates can yield the results which are both qualitatively and quan-
titatively different, we would like still to fi nd a model which is 
simpler than our detailed model, and yet accurate enough. We 
therefore introduce several approximations to the hopping rate 
expression. In fi rst approximation we assume that the electron-
phonon coupling constant is simply proportional to the overlap 
of the wave function moduli 

3
S dij i jrr rr rr∫ ψ ψ( ) ( )= , which 

then yields the model that we call model A where the down-
ward hopping rate is given by the expression

   1 /A 2 2
phW S N E D E Eij ij ij ij ijβ ( ) ( )= +⎡⎣ ⎤⎦  

 
(7) 

 where β  is the proportionality factor between electron–phonon 
coupling constants and wave function moduli overlaps, phD Eij( ) 
is the phonon DOS normalized to satisfy d 1

0
phED E∫ ( ) =

∞
 and 

E E Eij i j= − . Further simplifi cation can be made by assuming 
that the wave function overlap decays exponentially with dis-
tance which yields model B where the downward hopping rate 
is given as

    
exp 2 / 1 /B 2

phW R a N E D E Eij ij ij ij ijβ ( ) ( ) ( )= − +⎡⎣ ⎤⎦   
(8)

   

 Finally, if all the energy dependence is ignored in the last 
expression, one gets the model C which is the Miller-Abrahams 

expression. The free parameters in all these models can be 
adjusted to fi t the temperature dependence of the mobility in 
the limit of low carrier concentration (albeit sometimes with 
physically unrealistic set of parameters), but the question 
is whether they can then be used to predict other properties. 
One of these properties is the electric fi eld dependence of the 
mobility in the limit of low carrier concentration. We fi nd that 
only model A can reproduce the mobility from the full model, 
see Figure  11 c. The microscopic origin of this lies in the fact 
that hopping rates in model A still quite decently reproduce the 
hopping rates from the full model, which is not the case for 
models B and C, see Figure  11 b. 

 We also note in passing that the mobility generally 
increases with an increase in electric fi eld (Figure  11 c), 
while for models A and C it exhibits a slight decrease with 
increasing fi eld at low electric fi elds (negative differential con-
ductance). It has been argued [ 77,84,85 ]  that negative differential 
conductance obtained in some experiments and simulations 
is an artefact of the time-of-fl ight and kinetic Monte Carlo 
mobility extraction procedure which ignores the presence of 
diffusion current. Due to only slight negative differential con-
ductance obtained in our simulation, it is diffi cult to establish 
with certainty if negative differential conductance is present 
or not. 

 Having established that the model A captures the most 
important features of the hopping rates, we can identify what 
are the physical quantities that determine the transport. In 
addition to electronic DOS, the phonon DOS is important since 
it appears explicitly in our model for hopping rates. Details of 
the wave function overlaps are important as well. On the other 
hand, the fact that we could simplify our initial expression to 
this model implies that the details of the phonon modes are not 
of primary importance. 

 Therefore, these results suggest than in addition to the 
widely appreciated fact that electronic DOS is important for 
electrical transport, the wave function overlap and the phonon 
DOS are also of importance.  

  5.2.     Other Organic Semiconductors 

 There is a consensus that charge transport in amorphous 
polymers takes place by hopping between the states localized 
due to static disorder present in the material. On the other 
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 Figure 12.    a) Dependence of effective electronic temperature on electric fi eld for different values of lattice temperature. b) Dependence of mobility on 
effective electronic temperature in full model (circles) and in model C with �a 6A=  (squares).
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hand, thermal disorder present in ordered organic materials 
is of dynamic nature and its infl uence on electrical transport 
properties is less transparent. This is probably one of the main 
reasons why a consensus about the mechanism and nature 
of charge transport in ordered organic materials has not been 
reached yet. In this subsection, we will discuss the results 
obtained in previous sections in view of their consequences for 
electrical transport properties. 

  5.2.1.     Small Molecule Based Organic Crystals 

 Electrical transport in small molecule based organic crystals 
has been modeled using a variety of approaches. A popular 
approach due to its relative simplicity is based on Marcus theory 
of charge transfer. [ 31 ]  In such an approach, the crystal is consid-
ered as a set of molecules and charge transfer rates between 
any two molecules are evaluated from semiclassical Marcus 
theory or its generalizations. The mobility through the mate-
rial is then calculated from Master equation or kinetic Monte 
Carlo approach. However, one should be careful regarding the 
limitations of this approach. [ 37,89 ]  Such a methodology ignores 
coherent propagation of the carrier between the molecules 
and it assumes that electronic coupling between the molecules 
is just a perturbation. As a result, it gives thermally activated 
dependence of mobility on temperature, which is in contrast to 
experimental results from the literature. 

 Other set of approaches [ 90–92 ]  is based on the canonical 
transformation of the Hamiltonian to a new basis where 
electron-phonon interaction acts just as a perturbation. These 
approaches can yield the mobility that decreases with an 
increase of temperature. However, due to the approximations 
used in the formalism (including often neglecting of non-local 
electron-phonon coupling), the reliability of these approaches is 
still the subject of investigation. 

 As pointed out in Section 4.2, the eigenstates of the Ham-
iltonian obtained by freezing the atomic coordinates at a cer-
tain moment of time (so called adiabatic states) exhibit locali-
zation. However, as the time evolves the Hamiltonian changes 
and it is not clear whether the carrier will remain in the new 
adiabatic state or make a transition to some other state. An 
approach that transparently takes into account the dynamic 
localization of carriers combines classical MD with time prop-
agation of the Schrodinger equation according to the Ham-
iltonian that depends on atomic coordinates obtained from 
MD. [ 33,93 ]  This approach is referred to as Ehrenfest dynamics. 
In simulations based on Ehrenfest dynamics, [ 33 ]  experimen-
tally observed trend of mobility that decreases with increasing 
temperature was obtained. Given the presence of localization 
of band edge states (and delocalization of states further away 
from the band edge), this trend is something that may not 
be expected since higher temperature should promote the 
carriers from localized to delocalized states and improve the 
transport. However, one should note that the spectral region 
with localized carriers is rather narrow (smaller than Bk T  at 
room temperature, see Figure  1 b,c, top parts) and that even a 
relatively small temperature is suffi cient to promote the car-
riers to delocalized states. Therefore the temperature depend-
ence of the mobility is likely determined by other effects, such 

as the decrease of the localization lengths with an increase of 
temperature. One should also note that Ehrenfest dynamics is 
known to suffer from the issue that the mean energy of car-
riers is substantially larger than the correct one, [ 38,94 ]  Fewest 
switches surfaces hopping method is a modifi cation of Ehren-
fest dynamics that solves this issue. [ 95 ]  In simulations based 
on this approach [ 38 ]  with the Hamiltonian obtained from 
CPM, it was found that the transition from one adiabatic state 
to another takes place when the two adiabatic states cross 
each other and that these transitions dominantly determine 
the carrier transport. Another issue with approaches based on 
the combination of classical MD for the motion of nuclei and 
quantum evolution of electronic degrees of freedom is that 
the phonons are treated classically, which is an approximation 
whose validity has yet to be investigated. The range of validity 
of surface hopping approaches (in particular for high mobility 
materials with band like transport) also remains a topic for 
further investigation. [ 96 ]   

  5.2.2.     Grain Boundaries in Small Molecule-Based Organic Crystals 

 Results for electronic structure of polycrystalline naphthalene, 
presented in Section 4.3, unambiguously confi rm the presence 
of trap centers at the grain boundary. From the calculations, we 
have estimated that the number of trap states per unit of volume 
(assuming the size of the grains is 1 µm) is 9 10 cmt

17 3N = × − , 
while the number of states in the valence band in naphthalene 
bulk is 6.1 10 cmv

21 3N = × − . These estimates are in good agree-
ment with previously reported results for density of trap states 
in similar materials. [ 18,65 ]  

 Since tN  is relatively signifi cant in comparison to vN , traps 
induced by grain boundaries are expected to have a signifi -
cant affect on electronic transport, especially in devices which 
operate in low carrier density regime, such as light-emitting 
diodes and solar cells. In devices which operate in high carrier 
density regime, such as fi eld-effect transistors, carriers fi ll the 
traps, which affects the transport only through electrostatic bar-
riers created by trapped carriers. [ 66,68,69 ]  

 A detailed model of electrical transport at a single grain 
boundary has not yet been developed. One of the reasons for that 
is the lack of complete understanding of transport model in bulk 
crystals, which should certainly be an ingredient of the single grain 
boundary transport model. Since, as discussed in Section 4.3, the 
grain boundary acts somewhere as a trap, and somewhere as a bar-
rier, the current fl ow through the boundary will be spatially nonu-
niform and one may expect that it contains very interesting physics.  

  5.2.3.     Ordered Polymers 

 As shown in Section 4.2, in ordered polymers there is a spec-
tral region within fi rst 0.2 eV from the top of the valence band 
where only localized states exist. These states were found to be 
persistently localized in the sense that their position does not 
signifi cantly vary during nanosecond timescales. [ 61 ]  Previous 
results, [ 61 ]  as well as our calculations, show that localization 
length does not vary signifi cantly with temperature in the range 
from 100K to 300K. On the other hand, temperature increase 
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supports hopping from localized to delocalized states. [ 97 ]  There-
fore, the promotion of carriers from localized to delocalized 
states in ordered polymers could be the reason for thermally 
activated transport, which was observed in such systems in 
mobility measurements. [ 98 ]  

 At this point, it is interesting to discuss the difference in the 
temperature dependence of the mobility observed in small mol-
ecule based organic crystals and ordered polymers. Both classes 
of systems exhibit a spectral region near the band edge where 
only localized states exist, which is followed by the region with 
more delocalized states. However, this spectral region is much 
wider in polymers, while it is so narrow in small molecule based 
crystals that a large number of carriers is present in delocalized 
states even at relatively small temperatures. On the other hand, 
in polymers signifi cant activation energy is required to promote 
the carriers to delocalized states, which may lead to thermally 
activated transport.    

  6.     Conclusion 

 With the help of atomistic simulations, one can currently 
get important insights into the wave function localization 
lengths and the electronic DOS for a variety of organic semi-
conductor structures, such as amorphous polymers, ordered 
polymer regions, small molecule based organic crystals and 
grain boundaries in organic crystals. In the case of amorphous 
polymers, which exhibit strong static disorder, these results can 
be directly used in combination with a multiscale approach 
to evaluate measurable macroscopic material properties, such 
as the charge carrier mobility. Atomistic multiscale simula-
tions are then necessary to obtain quantitatively correct results, 
while in some cases even qualitatively correct results cannot 
be obtained without the use of such detailed simulations. In 
other organic semiconducting materials and structures, where 
the effects of dynamic disorder are of signifi cant importance, 
the results of atomistic simulations give some indication about the 
nature of charge carrier transport. Further research is certainly 
needed to better understand the carrier transport mechanism 
in these materials which will presumably also lead to the devel-
opment of methods for a better quantitative description of elec-
trical transport. Moreover, simulation approaches described in 
this article certainly open the way to study complex structures 
exhibited in realistic organic materials—such as the interfaces 
between ordered and disordered regions in conjugated polymer 
based materials.  

  Acknowledgements 
 This work was supported by a European Community FP7 Marie Curie 
Career Integration Grant (ELECTROMAT), the Serbian Ministry of 
Education, Science and Technological Development (Project ON171017) 
and FP7 projects PRACE-3IP and EGI-InSPIRE.   

Received:  July 21, 2014 
Revised:  August 22, 2014 

Published online: September 22, 2014    

[1]     H. E.    Katz  ,   J.    Huang  ,  Ann. Rev. Mater. Res.    2009 ,  39 ,  71 – 92 .  
[2]     T.    Ameri  ,   P.    Khoram  ,   J.    Min  ,   C. J.    Brabec  ,  Adv. Mater.    2013 ,  25 , 

 4245 – 4266 .  
[3]     K.-J.    Baeg  ,   M.    Binda  ,   D.    Natali  ,   M.    Caironi  ,   Y.-Y.    Noh  ,  Adv. Mater.   

 2013 ,  25 ,  4267 – 4295 .  
[4]     H.    Dong  ,   H.    Zhu  ,   Q.    Meng  ,   X.    Gong  ,   W.    Hu  ,  Chem. Soc. Rev.    2012 , 

 41 ,  1754 – 1808 .  
[5]     Y.    Lin  ,   Y.    Li  ,   X.    Zhan  ,  Chem. Soc. Rev.    2012 ,  41 ,  4245 – 4272 .  
[6]     D.    Briand  ,   A.    Oprea  ,   J.    Courbat  ,   N.    Barsan  ,  Mater. Today    2011 ,  14 , 

 416 – 423 .  
[7]     M. D.    Angione  ,   R.    Pilolli  ,   S.    Cotrone  ,   M.    Magliulo  ,   A.    Mallardi  , 

  G.    Palazzo  ,   L.    Sabbatini  ,   D.    Fine  ,   A.    Dodabalapur  ,   N.    Cioffi   ,   L.    Torsi  , 
 Mater. Today    2011 ,  14 ,  424 – 433 .  

[8]     J.    Nelson  ,  Mater. Today    2011 ,  14 ,  462 – 470 .  
[9]     N. T.    Kalyani  ,   S. J.    Dhoble  ,  Renew. Sust. Energ. Rev.    2012 ,  16 , 

 2696 – 2723 .  
[10]     A. C.    Arias  ,   J. D.    Mackenzie  ,   I.    McCulloch  ,   J.    Rivnay  ,   A.    Salleo  , 

 Chem. Rev.    2010 ,  110 ,  3 – 24 .  
[11]     C. J.    Brabec  ,   J. A.    Hauch  ,   P.    Schilinsky  ,   C.    Waldauf  ,  MRS Bull.    2005 , 

 30 ,  50 – 52 .  
[12]     J.    Rivnay  ,   S. C. B.    Mannsfeld  ,   C. E.    Miller  ,   A.    Salleo  ,   M. F.    Toney  , 

 Chem. Rev.    2012 ,  112 ,  5488−5519 .  
[13]     A.    Salleo  ,   R. J.    Kline  ,   D. M.    DeLongchamp  ,   M. L.    Chabinyc  ,  Adv. 

Mater.    2010 ,  22 ,  3812 – 3838 .  
[14]     R.    Noriega  ,   J.    Rivnay  ,   K.    Vandewal  ,   F. P.    Koch  ,   N.    Stingelin  , 

  P.    Smith  ,   M. F.    Toney  ,   A.    Salleo  ,  Nat. Mater.    2013 ,  12 ,  1038 – 1044 .  
[15]     T.-A.    Chen  ,   X.    Wu  ,   R. D.    Rieke  ,  J. Am. Chem. Soc.    1995 ,  117 , 

 233 – 244 .  
[16]     H.    Sirringhaus  ,   P. J.    Brown  ,   R. H.    Friend  ,   M. M.    Nielsen  , 

  K.    Bechgaard  ,   B. M.    W. Langeveld-Voss  ,   A. J. H.    Spiering  , 
  R. A. J.    Janssen  ,   E. W.    Meijer  ,   P.    Herwig  ,   D. M.    de Leeuw  ,  Nature   
 1999 ,  401 ,  685 – 688 .  

[17]     R. A.    Street  ,   J. E.    Northrup  ,   A.    Salleo  ,  Phys. Rev. B    2005 ,  71 ,  165202 .  
[18]     W. L.    Kalb  ,   S.    Haas  ,   C.    Krellner  ,   T.    Mathis  ,   B.    Batlogg  ,  Phys. Rev. B   

 2010 ,  81 ,  155315 .  
[19]     G.    Horowitz  ,   M. E.    Hajlaoui  ,  Adv. Mater.    2000 ,  12 ,  1046 – 1050 .  
[20]     S. S.    Lee  ,   C. S.    Kim  ,   E. D.    Gomez  ,   B.    Purushothaman  ,   M. F.    Toney  , 

  C.    Wang  ,   A.    Hexemer  ,   J. E.    Anthony  ,   Y.-L.    Loo  ,  Adv. Mater.    2009 ,  21 , 
 3605 – 3609 .  

[21]     A. D.    Carlo  ,   F.    Piacenza  ,   A.    Bolognesi  ,   B.    Stadlober  ,   H.    Maresch  , 
 Appl. Phys. Lett.    2005 ,  86 ,  263501 .  

[22]     W.    Warta  ,   N.    Karl  ,  Phys. Rev. B    1985 ,  32 ,  1172 – 1182 .  
[23]     M. E.    Gershenson  ,   V.    Podzorov  ,   A. F.    Morpurgo  ,  Rev. Mod. Phys.   

 2006 ,  78 ,  973 – 989 .  
[24]     S.    Dag  ,   L.-W.    Wang  ,  J. Phys. Chem. B    2010 ,  114 ,  5997 – 6000 .  
[25]     W.    Xie  ,   Y. Y.    Sun  ,   S. B.    Zhang  ,   J. E.    Northrup  ,  Phys. Rev. B    2011 ,  83 , 

 184117 .  
[26]     T. J.    Prosa  ,   M. J.    Winokur  ,   J.    Moulton  ,   P.    Smith  ,   A. J.    Heeger  ,  Macro-

molecules    1992 ,  25 ,  4364 – 4372 .  
[27]     N.    Kayunkid  ,   S.    Uttiya  ,   M.    Brinkmann  ,  Macromolecules    2010 ,  43 , 

 4961 – 4967 .  
[28]     A.    Maillard  ,   A.    Rochefort  ,  Phys. Rev. B    2009 ,  79 ,  115207 .  
[29]     G. R.    Hutchison  ,   Y.-J.    Zhao  ,   B.    Delley  ,   A. J.    Freeman  ,   M. A.    Ratner  , 

  T. J.    Marks  ,  Phys. Rev. B    2003 ,  68 ,  035204 .  
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