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Dipole representation of composite fermions in graphene quantum Hall systems
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The even denominator fractional quantum Hall effect has been experimentally observed in graphene in the
fourth Landau level (N = 3). This paper is motivated by recent studies regarding the possibility of pairing and
the nature of the ground state in this system. By extending the dipole representation of composite fermions, we
adapt this framework to the context of graphene’s quantum Hall systems, with a focus on half-filled Landau
levels. We derive an effective Hamiltonian that incorporates the key symmetry of half-filled Landau levels,
particularly particle-hole symmetry. At the Fermi level, the energetic instability of the dipole state is influenced
by the interplay between topology and symmetry, driving the system toward a critical state. We explore the
possibility that this critical state stabilizes into one of the paired states with well-defined pairing solutions.
However, our results demonstrate that the regularized state which satisfies boost invariance at the Fermi level
and lacks well-defined pairing instabilities emerges as energetically more favorable. Therefore, we find no well-
defined pairing instabilities of composite fermions in the dipole representation in the half-filled fourth Landau
level (N = 3) of electrons in graphene. Although the theory of composite fermions has its limitations, further
research is required to investigate other possible configurations. We discuss the consistency of our results with
experimental and numerical studies and their relevance for future research efforts.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect
(FQHE) [1] represents a significant breakthrough in the study
of topological states of matter, introducing a rich landscape
of quantum phases driven by electron correlations in two-
dimensional electron systems (2DESs) [2]. Among the most
intriguing manifestations of the FQHE is the observation of
a quantized Hall plateau at the filling factor ν = 5/2 [3],
indicating the FQHE at the half-filled second Landau level
(n = 1). The observation of even-denominator FQHE states is
astonishing, considering that the fermionic statistics of elec-
trons suggest the denominator of the fraction should be an odd
number. These significant discoveries have inspired intensive
theoretical and experimental efforts to decode the underlying
physics and implications of these states.

The concept of composite fermions (CFs), introduced by
Jain [4,5], has provided an insightful framework for com-
prehending various aspects of quantum Hall phenomena,
primarily for the half-filled second LL (n = 1). CFs are quasi-
particles formed by attaching an even number of quantized
vortices to electrons.

In recent years, advancements in noncommutative field
theory in high-energy physics inspired Dong and Senthil [6]
to revisit longstanding problems in quantum Hall physics.
In particular, this includes the problem of the LL at ν = 1
for bosons, initially formulated by Pasquier and Haldane [7]
and further developed by Read [8]. This problem involves an
additional degree of freedom, namely, the vortex degree of
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freedom, where each boson is associated with a single flux of
the magnetic field, and since vortices are fermionic and the
resulting composite quasiparticles are neutral, resembles CFs.
Furthermore, CFs experience a zero average effective mag-
netic field, similar to electrons at ν = 1/2. Unlike previous
approaches that relied on an averaged field energy, Dong and
Senthil [6] introduced the concept of intrinsic dipole energy.
The application of noncommutative field theory to quantum
Hall systems has since led to significant advancements, with
recent studies extending these concepts to various quantum
Hall states [9–14].

Moreover, fractional quantum Hall (FQH) states with ad-
ditional half-integer filling factors have been observed in
various materials, including graphene—a monolayer of car-
bon atoms arranged in a hexagonal lattice. Graphene’s unique
electronic and topological properties make it an ideal platform
for studying exotic quantum phenomena, including the FQHE.
Notably, a recent experimental study by Kim et al. [15] iden-
tified FQHE states at half filling in the fourth Landau level
(N = 3) of monolayer graphene.

Additionally, research by Sharma et al. [16] investigated
CF pairing in monolayer graphene, using alternative pair-
ing functions and numerical simulations on a torus within
the Bardeen-Cooper-Schrieffer (BCS) framework. The micro-
scopic CF-BCS theory has been highly successful in capturing
many known pairing instabilities, particularly in 2DESs
such as GaAs at filling factors ν = 1/2 and ν = 5/2 [17].
Remarkably, the CF-BCS approach has also effectively de-
scribed instabilities in wide quantum wells at filling factors
ν = 1/2 and ν = 1/4 [18]. In the case of graphene, the
authors in Ref. [16] concluded that the BCS variational state
for CFs reveals an f -wave pairing instability in the N = 3
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LL. Furthermore, they suggested the possibility of a p-wave
instability for the N = 2 LL, where FQHE has not been ex-
perimentally observed. However, these findings are in contrast
with numerical studies on the sphere, which have not observed
such pairing instabilities [15]. The disparity between these re-
sults highlights the need for further investigation. In addition,
topological pairing, particularly p wave and f wave, is crucial
for quantum computing applications due to its non-Abelian
statistics, which enable robust qubits and fault-tolerant
quantum operations [19].

The dipole representation of FQHE states, introduced in
Ref. [10], is particularly relevant to this paper. In this rep-
resentation, dipoles are neutral composite objects formed by
an electron and its correlation hole. These dipoles possess
moments proportional to their momentum in an external mag-
netic field. This effective theory has proven to be robust,
capturing the microscopic description of several problems
and aligning with previous experimental and numerical stud-
ies. In particular, it yielded results consistent with numerical
and experimental studies of 2DESs, where the Pomeranchuk
instability is observed in higher half-filled LLs. A recent
study [20] even provided an explanation for the mechanism
of p-wave pairing of CFs at half filling in the second LL
(n = 1) of electrons in 2DESs and in the fully filled first LL
(n = 0) of bosons, further underscoring the importance of this
representation.

In this paper, we aim to explore the potential for CF pair-
ing in monolayer graphene using the BCS framework, also
utilizing the dipole representation. The half-filled LL system
possesses an additional feature, the particle-hole (PH) symme-
try [10], which implies that the density of holes corresponds
to the density of composite holes. Consequently, this state is
energetically unstable with respect to repulsive interactions,
leading to a critical state. Through analytical studies, we
demonstrate that in the fourth LL (N = 3) of a graphene
monolayer, this critical state is not stabilized by selecting one
of the two possible symmetry-broken paired states; instead,
it stabilizes into a regularized nonpaired state, which cannot
support gapped pairing solutions due to the absence of mass.
Our findings are consistent with numerical studies conducted
on spherical geometries [15].

This paper is organized as follows: In Sec. II, we introduce
the necessary formalism and key concepts of the dipole repre-
sentation and apply them to the half-filled LLs of electrons
in graphene. In particular, we discuss the model, and the
effective Hamiltonian in the dipole representation. Section III
explores the possibility and mechanism of paired states within
the context of the dipole representation and analyzes their
stability. Finally, in Sec. IV, we conclude with a discussion
of our findings and their implications for future research.

II. IMPLEMENTING BOOST INVARIANCE AND STATE
REGULARIZATION IN GRAPHENE’S LANDAU LEVELS

A. The model

Graphene exhibits unique electronic properties, includ-
ing a relativistic quantum Hall effect due to its charge
carriers, which behave as massless Dirac fermions [21,22].
In graphene, electrons are arranged in a honeycomb lattice

composed of two sublattices, A and B, and their behavior can
be described by a two-dimensional Dirac equation [23]. In a
tight-binding model, we consider only the nearest-neighbor
hopping parameter t between sites A and B. The low-energy
properties of graphene are captured by a two-band model
labeled as λ = ±, where the dispersion is linear. The valence
band λ = + and the conduction band λ = − touch each other
at the two inequivalent corners K+ and K− (referred to as
valleys) of the Brillouin zone [23,24].

When an external magnetic field is applied, the Hamil-
tonian for low-energy states around the K+ valley is given
by [25,26]

H = v

(
0 π†

π 0

)
, (1)

where v =
√

3
2

at
h̄ is the velocity, and the operators π† and

π , in the Landau gauge, coincide with the LL creation and
annihilation operators, respectively [26].

Here we focus on spinless electrons confined to the N th
LL, where only intra-LL excitations are considered.

The spinor states in the λ−band, obtained from the two-
dimensional Dirac equation, can be expressed as

ψ
ξ

λN ,m = 1√
2

(
|N − 1, m 〉
λ|N , m 〉

)
(2)

for N �= 0, and

ψ
ξ

N=0,m =
(

0
|0, m 〉

)
(3)

for N = 0, in terms of the harmonic oscillator states |N , m 〉
and the guiding-center quantum number m. These spinors
describe states within the N th LL in the band λ. The first
component of the spinor represents the amplitude on the A
sublattice at the point K+ (ξ = +) and the amplitude on the B
sublattice at point K− (ξ = −).

B. The Pasquier-Haldane-Read construction
for half-filled LL of electrons in graphene

In this section, we extend the traditional Pasquier-Haldane-
Read (PHR) construction [7,8] to describe the complex
excitations in half-filled LLs of electrons in graphene. The
Pasquier-Haldane approach reformulates the theory by using
an expanded Hilbert space of composite fermions, rather than
the original Hilbert space of bosons, to represent the GMP
algebra. Unlike the original model, which was formulated
for fully filled LLs of bosons, our approach adapts the PHR
construction to systems where LLs are half-filled of electrons.
In this paper, we employ an expansion of the Hilbert space
by incorporating correlation holes, which are positive charges
that pair with electrons to form neutral dipoles. This represen-
tation is crucial for describing systems with PH symmetry, a
key characteristic of half-filled LLs, and for maintaining the
topological properties of the quantum Hall states.

We begin by representing the basis states in a LL as

{|o1〉, |o2〉, . . . , |oNφ/2〉, |m1〉, |m2〉, . . . , |mNφ/2〉}, (4)

where |oi〉 and |mi〉 represent the states, which form the
foundation for describing the system in our enlarged Hilbert
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space, which accommodates both electrons and correlation
holes [10]. Here, Nφ represents the number of orbitals.

In this expanded space, we define creation and annihilation
operators that satisfy the algebra:

{cmo, c†
o′m′ } = δmm′δoo′ , {cmo, co′m′ } = 0,

{c†
mo, c†

o′m′ } = 0. (5)

CFs operators cmo and c†
mo in the LL have double in-

dices, where m and n label physical electrons and correlation
holes, respectively. Using these operators, we define the
Fourier components of the physical (left) and unphysical
(right) densities in the N th LL, incorporating the form factor
FN (| �q|) :

ρL
N (�q) = FN (| �q|)

∑
o, o′

∑
m

〈o|τ−�q|o′〉c†
moco′m, (6)

ρR
N (�q) = FN (| �q|)

∑
m, m′

∑
o

〈m|τ−�q|m′〉c†
mocom′ . (7)

Here, τ�q = ei �q �R is the translation operator, where �R =
(X,Y ) represents the guiding center coordinates of a
CF [27–29] in the external magnetic field �B = −B�ez, with
components obeying the commutation relation:

[X,Y ] = il2
B. (8)

Here, lB is the magnetic length. In what follows, we will
set lB ≡ 1. This framework ensures that the neutral CFs are
accurately described within the context of the LL dynamics.

The Fourier components of the form factor in the N th
LL are given in terms of Laguerre polynomials LN in the
following way:

F (N )(q) =
{

1 if N = 0
1
2

[
LN−1

( q2

2

) + LN
( q2

2

)]
if N �= 0.

(9)

For N = 0, the form factor for graphene coincides with that
of a 2DES, such as GaAs. However, for higher N it can be
viewed as an average of the two form factors of those for
2DES [30].

Furthermore, the annihilation operator can be written in re-
lation to its momentum space representation in the following
way:

cmo =
∫

d�k
(2π )2

〈m|τ�k|o〉c�k . (10)

By substituting Eq. (10) into the equations for the left and
right density operators, Eqs. (6) and (7), we obtain

ρL
N (�q) = FN (�q)

∫
d2�k

(2π )2
e

i
2
�k×�qc†

�k−�qc�k, (11)

ρR
N (�q) = FN (�q)

∫
d2�k

(2π )2
e− i

2
�k×�qc†

�k−�qc�k . (12)

Using the relations Eq. (5), it is easy to show that
these densities obey the Girvin-MacDonald-Platzman (GMP)

algebra [31]:

[
ρL

0 (�q), ρL
0 (�q′)

] = 2i sin

( �q × �q′

2

)
ρL

0 (�q + �q′),

[
ρR

0 (�q), ρR
0 (�q′)

] = −2i sin

( �q × �q′

2

)
ρR

0 (�q + �q′),

[
ρL

0 (�q), ρR
0 (�q′)

] = 0. (13)

This is induced by the commutation relation Eq. (8) and re-
striction to the single LL. The realization of the GMP algebra
using the canonical CF variables facilitates the application of
mean- field methods [8].

C. The effective Hamiltonian
in dipole representation in graphene

To accurately describe the system within the dipole rep-
resentation, it is essential to impose a specific constraint.
These constraints serve several purposes. First, the constraint
ensures that the number of degrees of freedom in the effective
model aligns with the microscopic description of the physical
problem. Furthermore, the constraint also defines the physical
subspace within the enlarged Hilbert space, which includes
additional degrees of freedom such as correlation holes. Sec-
ond, the imposed constraint must preserve the PH symmetry,
a fundamental characteristic of the half-filled LL, ensuring
that the model accurately reflects the physical properties of
the system.

We introduce the following constraint:

ρL
NN + ρR

NN = 1. (14)

This constraint acts as a null operator in momentum space:

ρL
�q + ρR

�q = 0. (15)

It is important to highlight that this constraint incorpo-
rates both physical and unphysical quantities, treating them
as mutually dependent. Since the right degrees of freedom
(additional degrees of freedom) represent correlation holes in
the enlarged space, this constraint effectively ensures, in the
long-distance limit, that the density of correlation holes equals
the density of real holes.

Furthermore, when defining the problem in the enlarged
space, operators, including the Hamiltonian, may map phys-
ical states into superpositions of physical and unphysical
states. To ensure that physical states remain within the
physical subspace, the Hamiltonian must commute with the
constraint.

The effective Hamiltonian in this framework must reflect
the dipole representation within N th LL. Additionally, it must
preserve PH symmetry, meaning it remains invariant under
the exchange of particles and holes. The Hamiltonian is care-
fully constructed to satisfy these conditions, and we impose
a constraint that ensures the resulting Hamiltonian has a PH
symmetric form [10]:

Heff = 1

8

∫
d2 �q

(2π )2
V (N )(�q)

(
ρL

0 (�q) − ρR
0 (�q)

)(
ρL

0 (−�q)

− ρR
0 (−�q)

)
. (16)
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Here, V (N )(�q) = 2πe2

ε| �q| e−q2/2(F (N ) )2 represents the effective
interaction, which takes into account states within the N th
LL. The form factor mimics the LL characteristics. Moreover,
it should be noted that υ (�q) = 2πe2

ε| �q| defines the Fourier trans-
form of the Coulomb interaction potential.

Using mean-field approximation and Hartree-Fock (HF)
calculations, one easily finds that dispersion relation for
graphene for the N th LL has the following form:

ε(N )(�k) = ε
(N )
0 (�k) + ε

(N )
HF (�k), (17)

where

ε
(N )
0 (�k) = 1

2

∫
d2 �q

(2π )2
V (N )(| �q|) sin2

( �k × �q
2

)
(18)

represents single-particle energy and

ε
(N )
HF (�k) = −

∫
d2 �q

(2π )2
V (N )(|�k − �q|) sin2

( �k × �q
2

)
nq (19)

represents the HF contributions. Here, nq is the Fermi (step)
function with nq = 1 for q inside a circular Fermi surface
of radius qF , and zero otherwise. This result aligns with
Ref. [32], with the difference that here V (| �q|) represents the
Coulomb interaction in the graphene system in the N th LL,
and includes an additional factor of 1/4 that reduces the
strength of the Coulomb interaction. Furthermore, the single-
particle energy ε

(N )
0 can be obtained in a closed analytical

fashion as detailed in Appendix A. Moreover, in Appendix A
we also give the complete data of the corresponding energies
for the lowest fourth LL (N = 0, 1, 2, 3). On the other hand,
we obtained the energy of interaction of this particles ε

(N )
HF via

numerical integration.
The interaction of electrons within a single LL can be fully

described by its Haldane pseudopotentials Vm [33], which
quantify the interaction energies of two electrons with relative
angular momentum m. For the nth Landau level, the Haldane
pseudopotentials are expressed as

V (n)
m =

∫
d2 �q

(2π )2
F (n)(q)e−q2

Lm(q2), (20)

where F (n)(q) is the form factor associated with the nth LL. In
this paper, we focus on two approximate effective interactions,
VToke and VPark [34,35], which are defined in real space as

VToke(r) = 1

r
+

6∑
i=0

ci ri e−r, (21)

VPark(r) = 1

r
+ a1 e−α1 r2 + a2 r2 e−α2 r2

, (22)

respectively. It can be concluded that the effective interaction
can be represented as the Coulomb interaction 1/r combined
with short-range functions to account for deviations at short
distances. Thus, in addition to the Coulomb interaction, we
will also utilize the Toke and Park interactions in the subse-
quent analysis. The coefficients ci (i = 0, 1, 2, 3, 4, 5, 6) for
VToke and a1, a2, α1, α2 for VPark are determined by matching
the effective interactions VToke(q) and VPark(q), operating in the
the lowest LL (LLL), to the first seven (m = 0, 1, 2, 3, 4, 5, 6)
and four (m = 0, 1, 2, 3) pseudopotentials of the Coulomb

TABLE I. Values of coefficients ci, ai, αi of the effective interac-
tions for n = 1, and n = 3 LL in graphene.

Coefficient n = 1 n = 3

c0 −6.631 492.524
c1 13.298 −976.021
c2 −8.997 692.713
c3 2.934 −235.342
c4 −0.499 41.446
c5 0.0426 −3.645
c6 −0.00143 0.126
a1 0.0107017 11.8887
a2 0.109467 −9.64883
α1 0.038443 0.247147
α2 0.446909 0.479972

interaction V (n)
2m−1, respectively, in the second LL (n = 1) and

the fourth LL (n = 3). The Fourier transforms of the effective
interactions are obtained as

Veff(q) =
∫

d2�r Veff(r)e−i �q·�r . (23)

The coefficients obtained through the symbolic solution of the
corresponding system of equations for both interactions are
listed in Table I.

D. Boost invariance and state regularization in graphene

In this section, we derive the Hamiltonian from the con-
straint previously established, ensuring that our effective
theory maintains a valid microscopic description, at least at
the Fermi level. As we noted above, the FQHE systems at
half filling in LLL exhibit the emergence of a Fermi liquid
(FL) state of composite quasiparticles (CFs, for example). The
Hamiltonian described in Eq. (16), which governs the dipole
representation, incorporates a finite (bare) mass for single-
particle energies as a consequence of the dipole structure.
To achieve a well-defined FL state description within the LL
framework [10], it is essential for the Hamiltonian to exhibit
boost invariance, which imposes a condition on the (bare)
mass at the Fermi level.

To begin, we introduce an interaction term that is null
within the physical space:

H0 = CN
∫

d2 �q
(2π )2

V (N )(�q)
(
ρL

0 (�q) + ρR
0 (�q)

)(
ρL

0 (−�q)

+ ρR
0 (−�q)

)
. (24)

Therefore, the resulting Hamiltonian has the following form:

Hres = Heff + H0. (25)

Furthermore, we denote the constant CN such that the energy
ε1 denoting the single energy of the resulting Hamiltonian in
Eq. (25) fulfills the condition

1

m∗ = ∂2ε0(�k)

∂k2

∣∣∣∣
k=kF

= 0, (26)

where m∗ is the effective mass. Therefore, the resulting
Hamiltonian in Eq. (25) has no terms k2

m∗ , which contribute to
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the kinetic energy. The regularized state represents a FL-like
(FLL) state, as is the case in the half-filled LLL of electrons.

III. DIPOLE REPRESENTATION OF COMPOSITE
FERMIONS IN GRAPHENE

As discussed earlier, a key feature of the Hamiltonian in
the dipole representation of CFs is its inherent symmetry, par-
ticularly PH symmetry. This symmetry means that the system
remains unchanged when particles are exchanged with real
holes or when the densities ρL(�q) and ρR(�q) are swapped,
where ρR(�q) corresponds to the density of correlation holes.

In the context of the Coulomb interaction, it is energetically
favorable for these correlation holes to move away from the
electrons, allowing real holes to surround the electrons in-
stead. We have previously shown that the density of these cor-
relation holes is equal to the density of real holes, and that the
size of the resulting dipoles is determined by a translation op-
erator. As a result, at the Fermi level k = kF , the electrons are
positioned far from the holes, making this FLL state energeti-
cally unstable and prone to become a critical FLL state [20].

Breaking the symmetry between the left (L) and right
(R) components of the system is equivalent to breaking the
symmetry between particles and real holes. Therefore, states
that break this symmetry are likely to be more energetically
favorable. It is worth noting that at half filling, most of the
paired states that emerge (such as the Moore-Read Pfaf-
fian, anti-Pfaffian, and f-wave states) spontaneously break this
symmetry.

Motivated by the aim to explore a well-defined state of
CFs within the dipole representation that stabilizes the critical
state, we derive an effective Hamiltonian. This is achieved
by revisiting the Hamiltonian in Eq. (16) and subsequently
subtracting (or adding) the following term:

H1 = 1

8

∫
d2 �q

(2π )2
V (N )(�q)

(
ρR

0 (−�q) + ρL
0 (−�q)

)(
ρR

0 (�q)

− ρL
0 (�q)

)
, (27)

which effectively represents zero in the physical space.
Consequently, the resulting effective Hamiltonians take the
following forms:

H(1)
res = 1

4

∫
d2 �q

(2π )2
V (N )(�q)ρR

0 (−�q)
(
ρR

0 (�q) − ρL
0 (�q)

)
(28)

and

H(2)
res = 1

4

∫
d2 �q

(2π )2
V (N )(�q)ρL

0 (−�q)
(
ρL

0 (�q) − ρR
0 (�q)

)
. (29)

The dipole representation of these Hamiltonians plays a cru-
cial role in defining a single energy, which is essential for
obtaining paired solutions. Additionally, they can also be
interpreted as symmetry-breaking modifications of the Hamil-
tonian in Eq. (16), stabilizing the system into one of two
paired states [20].

To explore potential paired solutions, we apply the HF
approach to the relevant part of the Hamiltonian in Eq. (28),
yielding

H(N )
HF =

∫
d2�k

(2π )2
ξN (�k) c†

�kc�k + 1

4

∫
d2 �q

(2π )2

∫
d2 �k1

(2π )2

∫
d2 �k2

(2π )2
υ(| �q|)F 2

N (| �q|)(1 − ei�k×�q)

· (〈
c†

�k1+�qc†
�k2−�q

〉
c�k1

c�k2
+ c†

�k1+�qc†
�k2−�q

〈
c�k1

c�k2

〉 − 〈
c†

�k1+�qc†
�k2−�q

〉 〈
c�k1

c�k2

〉)
, (30)

where ξN (�k) = εN (�k) − εN (�kF ), with εN (�k) representing the dispersion relation given by

εN (�k) = 1

4

∫
d2 �q

(2 π )2
υ(| �q|)F 2

N (| �q|)(1 − ei�k×�q) − 1

2

∫
d2 �q

(2 π )2
υ(|�k − �q|)F 2

N (|�k − �q|)(1 − ei�k×�q). (31)

Furthermore, we define

�N (�k) = − 1

4

∫
d2 �q

(2π )2
υ(|�k − �q|)F 2

N (|�k − �q|)(1 − e−i�k×�q) · 〈c�k1
c�k2

〉 (32)

Finally, using standard BCS transformations to diagonalize the Hamiltonian in Eq. (28), we obtain the total energy,

E (N )
paired =

∫
d2�k

(2 π )2
(ξN (�k) − EN (�k)) +

∫
d2�k

(2 π )2

|�N (�k)|2
2EN (�k)

, (33)

where the Bogoliubov quasiparticle energy is given by EN (�k) =
√

ξ 2
N (�k) + |�N (�k)|2. In the BCS treatment, we obtain the

pairing instability is described by the order parameter �(�k) self-consistently:

∣∣�(l )
N (�k)

∣∣ = 1

4

∫
d2 �q

(2π )2
υ(|�k − �q|)F 2

N (|�k − �q|)(1 − e−i�k×�q)
�

(l )
N (�q)

2EN (�q)
. (34)

Here, the gap function takes the following form: �(l )(�k) =
eilθl |�(�k)|, where θ is the angular coordinate of k, with
l = 0,±1,±3 representing different pairing channels. Details
regarding the numerical solutions of the self-consistent equa-
tion in Eq. (34) are provided in Appendix B. We note that we

obtain the same solutions for l = 1 in Hamiltonian Eq. (29) as
we do for l = −1 in Hamiltonian Eq. (28).

In the previous section, we regularized the state of the
Hamiltonian in Eq. (25) by eliminating the quadratic term,
which contributes to the kinetic energy. Consequently, the
regularized state cannot support gapped pairing solutions due
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FIG. 1. The solutions for �(�k) calculated self-consistently using Eq. (34) for different pairing channels l in the lowest four LLs
(N = 0, 1, 2, 3) for the Coulomb interaction.

to the absence of (bare) mass. While the critical state can be
stabilized among the paired states, it can also be stabilized
within the regularized state. To investigate in which of these
states the critical state is stabilized, we define the energy of
the regularized state of CFs in the dipole representation using
a mean-field approach as follows:

E (N )
FLL =

∫
d2�k

(2π )2

(
ε

(N )
0 (�k) + 1

2
ε

(N )
HF (�k)

)
. (35)

In calculating the total energy, we apply a cutoff when
necessary, using the radius of a circle in momentum space
Q = √

2 kF , which denotes the volume of available states in
the LL. Furthermore, the only viable cutoff value for the
regularized FLL state being kF , as it is designed to accu-
rately describe the physics at the Fermi surface kF . We have
carefully used the cutoff Q = √

2 kF for the paired state, but
we have also ensured that our findings do not depend on
the choice of the cutoff value. In spherical coordinates, this
corresponds to Q = √

2 kF .
We illustrate in Fig. 1 the self-consistently obtained mean-

field parameter �(�k) in the fourth LL N = 0, 1, 2, 3 for the
Coulomb potential, and Fig. 2 for the Toke and Park poten-
tials. Here, it can be noticed that nonzero pairing solutions
also appear in the LLL, which might suggest that pairing could
persist in the thermodynamic limit. However, this stands in
contrast to numerical studies, which consistently find the FLL
state to be the most stable configuration. The definitive confir-
mation about the presence or absence of pairing lies in direct
comparison of the total energies between a paired state and a

regularized FLL state. Additionally, we plotted in Fig. 3 the
total energy Epaired of the different pairing solutions compared
to the normal state energy to determine the energetically most
favorable l in the case of Coulomb and Haldane potentials.
In Fig. 4, we compare the results for EFLL and Epaired in the
case of graphene for the four lowest LLs (N = 0, 1, 2, 3)
for the Coulomb, Toke, and Park interactions to investigate
the possibility of pairing instability. We would like to note
that here we calculated Epaired to compare the energy for
the self-consistent solution that minimizes the energy value.
We find that the critical state is stabilized within the regu-
larized state, which is energetically more favorable than the
paired states. In the following sections, we will discuss these
findings in more detail for each of the four lowest LLs (N =
0, 1, 2, 3), emphasizing how our results align with previous
experiments and numerical studies.

In the lowest LL (N = 0), considering the short-range,
repulsive Coulomb interaction V (| �q|) = q2, which describes
a two-body interaction between dipoles, the three-body
Hamiltonian can be derived using the Chern-Simons ap-
proach [36,37] as follows:

H(e)
eff =

∑
〈i jk〉

∇2
i δ2(�xi − �x j )δ

2(�xi − �xk ), (36)

which aligns with the commonly used interaction model for
the Pfaffian [38]. In the lowest LL (N = 0), the effective
interaction between CFs (and therefore the physics in general)
in monolayer graphene is the same as in a 2DES, such as GaAs
quantum wells with zero width. Here, numerical experiments
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FIG. 2. Self-consistently calculated solutions for �(�k) for different pairing channels l in the second (N = 1) (left) and fourth (N = 3)
(right) Landau levels (LLs). These results correspond to the Toke and Park interactions.

indicate that the Fermi-liquid-like state is the most stable in
the half-filled first LL (N = 0).

In the half-filled second LL (n = 1), nontrivial topol-
ogy is identified via Majorana edge states in the case of a
2DES. In this LL, well-defined p-wave solutions in the 2DES
are present, particularly l = 1 (l = −1) wave pairing in the
Hamiltonian as described in Eq. (29) [Eq. (28)], but with
form factors characteristic of the 2DES [20]. This corresponds

FIG. 3. Comparison of the total energy for various pair-
ing solutions, expressed as Epaired(l ) − Epaired(l = 0) for Coulomb
interactions (upper), Toke, and Park interactions (lower). The inter-
action strength is given by V0 = 2πe2/lB.

to the Pfaffian topological order [38]. The PH conjugate of
the Pfaffian, the anti-Pfaffian, can be obtained by switching
the sign of the particles [39,40]. We would like to point out
here that a well-defined paired state can only exist if the
effective dipole physics at the Fermi level, driven by the

FIG. 4. Comparing total energies of the pairing solutions Epaired

and the regularized state EFLL in the four lowest LLs in the case of
Coulomb interactions (upper), Toke, and Park interactions (lower).
Here, we calculated Epaired for l = −1, which minimizes the energy
value and is therefore the most energetically favorable. The interac-
tion strength is defined by V0 = 4πe2/lB.

045132-7



SONJA PREDIN PHYSICAL REVIEW B 111, 045132 (2025)

nontrivial topology of the LL, is present. However, in mono-
layer graphene, in the second LL (N = 1) the regularized
state dominates over the paired state, which is consistent with
earlier studies indicating that the lowest energy state is a Fermi
sea of CFs with no pairing instabilities [41].

In the half-filled third LL (N = 2) of graphene, the FQHE
has not been observed [42,43]. However, in numerical ex-
periments on a torus using a BCS variational state for CFs,
the authors in Ref. [17] identified the presence of pairing
instability, which most likely corresponds to p-wave pairing.
This may result in the observation of pairing solutions in the
thermodynamic limit, which is well represented in numerical
experiments on a torus. In contrast with this numerical study
constructed on a torus, we propose that the regularized state
is energetically more favorable, which does not exhibit well-
defined pairing solutions.

Finally, in a previously mentioned study [17], it was pro-
posed that the Fermi sea of CFs may be unstable to f -wave
pairing in the half-filled fourth LL (N = 3) of graphene. This
particular LL is significant due to the experimental observa-
tion of the FQHE [15]. However, numerical studies conducted
on a spherical geometry reveal that neither the anti-Pfaffian
nor the PH symmetric Pfaffian [44] states exhibit a strong
overlap with the exact ground state near the pure Coulomb
interaction point. Additionally, various spin and valley singlet
states were examined, yet none showed significant overlap
with the ground state in the N = 3 LL. Although the 221-
parton state [45] demonstrates a notable similarity to the pure
Coulomb interaction across a wide parameter range, its valida-
tion still requires further theoretical and experimental studies.
Our findings suggest that the critical state in the fourth LL
(N = 3) is not stabilized among the paired states, such as
the Pfaffian. Instead, the regularized state, which lacks well-
defined pairing instabilities, emerges as energetically more
favorable. This suggests the absence of well-defined pairing
instabilities within the dipole representation of CFs in this
context. Therefore, our results are consistent with numeri-
cal studies conducted on spherical geometry. To conclusively
validate the nature of the ground state and fully elucidate
the pairing mechanism, particularly in higher LLs, additional
theoretical and experimental research extending beyond the
framework of CFs is essential. Strong short-range repulsive
interaction is crucial for defining CFs in lower LLs, where the
effects of this interaction are dominant [see Eq. (36)].

IV. CONCLUSIONS

In this paper, we have derived the dipole representation
of CFs in graphene’s quantum Hall systems, focusing par-
ticularly on the half-filled LLs. Our investigation extended
the Pasquier-Haldane-Read construction to describe the ex-
citations in half-filled LLs of electrons in graphene, and we
derived an effective Hamiltonian within the dipole framework
that respects the key symmetry of these systems, including PH
symmetry. We demonstrated that this symmetry, inherent in
the effective Hamiltonian, can be broken and stabilized either
in the phase of paired states or in a regularized state without
bare mass at the Fermi level.

We discussed the relationship of paired states to the Pfaf-
fian state. Furthermore, our analysis of the pairing mechanism

shows that the regularized state, which lacks well-defined
pairing instabilities, emerges as the energetically favored state
over the paired states with p-wave and f-wave pairing. This
finding suggests that, within the dipole representation, the
ground state in the half-filled fourth LL (N = 3) of graphene
is not characterized by pairing instabilities.

We also discussed the consistency of our results with
experimental and numerical studies. Furthermore, we high-
lighted the limitations of the dipole representation framework.
Additionally, going beyond the mean-field theory and includ-
ing fluctuations might be crucial in accurately describing the
true nature of the ground state.

We hope this paper will inspire further investigations of
these states, including the pairing mechanism and the origin
of the ground state. Notably, the experimental observation of
FQHE in bilayer graphene systems [46] suggests that similar
approaches could be applied to understand these phenomena
in other layered or structured graphene systems.
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APPENDIX A: ANALYTICAL DERIVATION
OF SINGLE-PARTICLE ENERGIES

FOR THE LOWEST FOUR LANDAU LEVELS

The Hamiltonian in the dipole representation, as described
by Eq. (16), is given by

Heff = 1

8

∫
d2 �q

(2π )2
V (n)(�q)(ρL(�q) − ρR(�q))(ρL(−�q)

− ρR(−�q)). (A1)

The energy dispersion relation for graphene in the nth LL is
expressed as

ε(�k) = ε0(�k) + εHF(�k), (A2)

where

ε
(n)
0 (�k) = 1

2

∫
d2 �q

(2π )2
V (n)(| �q|) sin2

( �k × �q
2

)
(A3)
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represents the single-particle energy and

ε
(n)
HF(�k) = −

∫
d2 �q

(2π )2
V (n)(|�k − �q|) sin2

( �k × �q
2

)
n (A4)

represents the HF contributions.
In this Appendix, we analytically derive the single-particle energies for the first four Landau levels. We begin by utilizing the

identity cos(a) = 1
2 (eia + e−ia), which allows us to express the single-particle energy as

ε
(0)
0 (k) =

∫ ∞

0

dq

8π
e− q2

2 −
∫ ∞

0

∫ 2π

0

dqdφ

32π2
e− q2

2 (eikq sin(φ) + e−ikq sin(φ) ). (A5)

The equality erf(x) = 2√
π

∫ x
0 e−t2

dt motivates us to introduce the substitution u = q√
2
, which transforms the expression into

ε
(0)
0 (k) =

∫ ∞

0

du

8
√

2
√

π

2√
π

e−u2 −
∫ ∞

0

∫ 2π

0

dqdφ

32π2
e− 1

2 k2 sin2(φ)
(
e− 1

2 (q−ik sin(φ))2 + e− 1
2 (q+ik sin(φ))2)

. (A6)

Next, by introducing the substitutions v1 = 1√
2
(q − ik sin(φ)) and v2 = 1√

2
(q + ik sin(φ)), we obtain

ε
(0)
0 (k) = 1

8
√

2
√

π
−

∫ 2π

0

dφ

16
√

2π
√

π
e− 1

2 k2 sin2(φ). (A7)

Finally, utilizing the identity sin2(φ) = 1 − cos2(φ), we derive the final expression for the single-particle energy,

ε
(0)
0 (k) = 1

8
√

2
√

π

(
1 − e− 1

4 k2
I0

(
k2

4

))
, (A8)

where I0(k) is the modified Bessel function of the first kind.
Analogously, we obtain the single-particle energies for the other LLs:

ε
(1)
0 (k) = 1

256
√

2π

(
22 − e− k2

4

(
(22 + 2k2 + k4)I0

(
k2

4

)
− k2(4 + k2)I1

(
k2

4

)))
, (A9)

ε
(2)
0 (k) = 1

4096
√

2π

(
290 − e− k2

4

(
(290 − 12k2 + 28k4 − 2k6 + k8)I0

(
k2

4

)
+ k2(56 + 30k2 + k6)I1

(
k2

4

)))
, (A10)

ε
(3)
0 (k) = 1

147456
√

2π

(
9270 − e− k2

4 (9270 − 1458k2 + 1809k4 − 360k6 + 114k8 − 14k10 + k12)I0

(
k2

4

)

+ e− k2

4 k2(1836 + 1563k2 − 192k4 + 92k6 − 12k8 + k10)I1

(
k2

4

))
. (A11)

APPENDIX B: NUMERICAL METHODS

In this Appendix, we describe the numerical methods used
to solve the self-consistent equation [Eq. (34)] using the trape-
zoidal rule algorithm. The integral on the right-hand side of
Eq. (34) is computed by discretizing the momentum space us-
ing a uniform grid. For each grid point, the integral is approxi-
mated by summing the contributions from neighboring points,
weighted by the trapezoidal rule. The integration is performed
iteratively, starting with an initial guess for the mean-
field parameter �(�k) (for example, �(�k) = 10−5 for all k)
and updating it until the convergence criterion is satisfied. The
criterion for convergence is set as

maxk

∣∣�new
k − �old

k

∣∣
maxk

∣∣�new
k

∣∣ < 10−3. (B1)

It typically takes between 11 and 70 iterations to meet the
convergence criterion.

We perform the integration on the right-hand side of
Eq. (34) using the trapezoidal rule. The trapezoidal rule for

a two-dimensional integral over a grid can be expressed as

∫ b

a

∫ d

c
f (x, y) dx dy

≈
Nx−1∑
i=1

Ny−1∑
j=1

�x �y

4
[ f (xi, y j ) + f (xi+1, y j )

+ f (xi, y j+1) + f (xi+1, y j+1)], (B2)

where �x and �y are the grid spacings in the x and y direc-
tions, respectively, and Nx and Ny are the number of grid points
in each direction.

This numerical approach ensures that the results are ac-
curate and independent of the specific choice of numerical
parameters, providing a robust solution to the self-consistent
equation.
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