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Experimental higher-order interference in a nonlinear triple slit
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Interference between two waves is a well-known concept in physics, and its generalization to more than two
waves is straightforward. The order of interference is defined as the number of paths that interfere in a manner
that cannot be reduced to patterns of a lower order. In practice, second-order interference means that in, say, a
triple-slit experiment, the interference pattern when all three slits are open can be predicted from the interference
patterns between all possible pairs of slits. Quantum mechanics is often said to only exhibit second-order
interference. However, this is only true under specific assumptions, typically single particles undergoing linear
evolution. Here we experimentally show that nonlinear evolution can in fact lead to higher-order interference.
The higher-order interference in our experiment can be understood using a simple classical or quantum descrip-
tion, namely optical coherent states interacting in a nonlinear medium. Our work shows that nonlinear evolution
could open a loophole for experiments attempting to verify Born’s rule by ruling out higher-order interference.

DOI: 10.1103/PhysRevA.107.032211

I. INTRODUCTION

Interference between particles is one of the defining phe-
nomena of quantum mechanics, and perhaps no scenario
exemplifies this better than the double-slit experiment. Al-
though the double slit was originally used to demonstrate
the wave nature of light, Feynman later famously said that
it “has in it the heart of quantum mechanics” [1]. According
to standard quantum theory, when one adds additional slits, a
measurement of all combinations of double-slit configurations
should allow one to predict the final multislit interference
pattern [2]. More generally, all interference is reducible to
double-slit interference. For this reason, quantum theory is
said to exhibit only second-order interference. Thus, the num-
ber of interfering slits (or states) is distinct from the order of
the interference. Sorkin introduced a measurable parameter to
determine deviations from this second-order interference [2],
known as the Sorkin-parameter. Finding a nonzero Sorkin-
parameter would generally be understood to indicate that our
standard formulation of quantum theory, based on Born’s rule,
is incomplete, or equivalently that nature requires a descrip-
tion involving higher-order interference.

Experiments finding a zero value for the Sorkin-parameter
have already been carried out using a variety of physical
systems [3–12]. However, in spite of these experiments, it
has been shown that under certain circumstances higher-order

interference can appear. In other words, operationally, quan-
tum mechanics exhibits second-order interference only under
specific assumptions. If these are violated, one can obtain
a nonzero Sorkin parameter within quantum theory. To our
knowledge, there are currently three mechanisms that are
predicted to lead to higher-order interference within quantum
theory: (i) near-field “looped” paths [13–16], (ii) multiparticle
interference together with coincidence measurements [17,18],
and (iii) nonlinear evolution [19]. Note that by nonlinear
evolution, we refer to Hamiltonians that are nonquadratic in
canonical variables, which is the case for optical nonlineari-
ties or particle-particle interactions. Under typical conditions
these effects are small, and extra effort is required to measure
these deviations. Nonetheless, recent experiments have veri-
fied that looped paths [20,21] and multiparticle interference
[6] can lead to higher-order interference.

In this paper, we present an experiment demonstrating that
nonlinear evolution can lead to higher-order interference. We
achieve this in a “nonlinear triple slit,” which is composed of
three laser beams interacting in an optically nonlinear crystal.
We further show that, when the nonlinearity is turned off, the
higher-order interference disappears. The higher-order inter-
ference we observe here is distinct from previous observations
[6,20,21]. In all of those experiments, one can still apply
Born’s rule using linear superpositions of the input states.
The higher-order interference in the looped-path work [20,21]
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arises because the looped paths act as different input states
(or slits), which are not included in the evaluation of the
Sorkin parameter, while the multiparticle interference work
[6] comes from the use of coincidence detection after the in-
terference and can again be explained by linear superpositions
of the input states and this detection scheme. Instead, in our
work, because of the nonlinear evolution, one cannot compute
the final probabilities using linear superpositions of the input
states. One can still apply Born’s rule in our experiment,
but only by using linear superpositions of the output states.
Because of this, the higher-order interference we observe is
not a “post-quantum” effect, as discussed in [2,22–24], but
it is rather an effect arising in the same sort of apparatus
proposed in [2], but in a different parameter regime. Just as
the higher-order interference observed in [20,21], our results
can be described equally well with a classical or a quantum
model.

II. HIGHER-ORDER INTERFERENCE

In quantum mechanics, every quantum particle can be de-
scribed by a wave function ψ that is related to the probability
of the outcome of a measurement, given by Born’s rule as
P(x, t ) = |ψ (x, t )|2. As a direct consequence of this and the
superposition principle, the interference pattern of the double-
slit experiment can be described as

P12(x, t ) = |ψ1(x, t ) + ψ2(x, t )|2

= |ψ1|2︸ ︷︷ ︸
P1

+ |ψ2|2︸ ︷︷ ︸
P2

+ψ∗
1 ψ2 + ψ1ψ

∗
2︸ ︷︷ ︸

I12

, (1)

where ψk (x, t ) are the single-slit wave functions, and we have
dropped the explicit position and time dependence in the
second line. In Eq. (1), Pk are the distributions attributed to
the single slits and I12 is the interference term.

The situation is similar in a triple-slit experiment, where
the interference pattern can now be described by

P123 = P1 + P2 + P3 + I12 + I13 + I23. (2)

Here, Pi are the probabilities to detect a particle with only slit
i open, and Ii j is the interference term between slits i and j,
defined in Eq. (1). Strikingly, there is no third-order interfer-
ence term; i.e., the interference is reducible to combinations of
two-path interference patterns. To check for the validity of this
formalism, the Sorkin-parameter was introduced, which can
be derived directly from Eq. (2), by rewriting the interference
terms as I jk = Pjk − Pj − Pk and moving all terms to the left-
hand side of the equation [3]:

κ = P123 − P12 − P23 − P13 + P1 + P2 + P3 − P0, (3)

where we have included the term P0— the probability to
observe a detection event with all slits closed—to account
for experimental background. κ can be experimentally deter-
mined using the apparatus presented in Fig. 1(a). For example,
P12 is the probability to detect a photon (at a given loca-
tion) when slits 1 and 2 are open. Assuming linear evolution
and single-particle states, standard quantum theory based on
Born’s rule predicts κ = 0 [2].

Following this, the Sorkin-parameter κ was experimen-
tally proven to vanish within experimental error in a variety

FIG. 1. (a) Measurement of the Sorkin parameter: The generic
method to measure the Sorkin parameter, on some unknown evolu-
tion. Three (or more) paths are sent through the apparatus, and all
combinations of paths are blocked and unblocked using the path
blockers. A detector placed in a path after the process is used to
estimate the probability to detect a particle. From these measure-
ments, the Sorkin parameter is constructed using Eq. (3) from the
main text. A measurement of the term P23 is pictured. (b) Nonlinear
triple slit: A pump beam of wavelength λ interacts with a signal
and an idler beam, both with wavelength 2λ in a χ (2)-nonlinear
crystal. (c) Experimental setup: A Ti:sapphire laser emits light of
λ = 800 nm with ≈140 fs pulses. The light is partly converted by
second-harmonic generation in a beta barium borate (BBO) crystal
(3 mm length, cut for type-I phase matching) to λ = 400 nm. After
being separated by a dichroic mirror, the remaining fundamental
beam is split into the signal and idler beams at a 50:50 beamsplitter
(B.S.). The length of the beam paths can be adjusted by delay stages
to ensure temporal overlap. Shutters are used to block and unblock
the individual beams. The three beams are then focused into a lithium
triborat (LBO) crystal (1 mm, cut for type-I phase matching). The
LBO crystal is mounted on a translation stage to scan it through the
focus (z-scan). This simultaneously scans the relative phase between
the beams and modulates the strength of the nonlinear interaction. A
photodiode after the crystal is used to measure the optical power in
the pump mode.

of physical systems by measuring each individual term of
Eq. (3) [3–10,20,21,25]. Most of these experiments fit the
single-particle assumption of Ref. [2]. However, several used
multiparticle coherent or thermal states [3–5,8–10], and, nev-
ertheless, found κ = 0. This is likely because there was no
appreciable nonlinear evolution involved. Other proposed sys-
tems, such as Bose-Einstein condensates (BECs) [26], may be
more prone to nonlinear evolution. However, detector nonlin-
earity was noted to be present in Ref. [25] and was identified
as a systematic error leading to κ �= 0. The nonlinear detection
discussed in Ref. [25] is a systematic nonlinearity (arising
from nonideal detectors missing some detection events at
high count rates) rather than one arising from a nonlinear
Hamiltonian in the sense considered here and in Ref. [19]. If
one carries out the straightforward quantum optics calculation
using single-photon input states, one finds κ = 0 even in the
presence of a detector nonlinearity unless multiparticle input
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states are used [19]. However, the systematic nonlinearity
presented in Ref. [25] shows κ �= 0 even for single photons.

Our goal here is to experimentally determine third-order
interference based on the evolution of quantum states under
a nonlinear Hamiltonian. To understand how nonlinear evo-
lution can lead to higher-order interference, consider three
beams (two at frequency ω, labeled signal and idler, and a 2ω

pump beam) incident on the nonlinear triple slit presented in
Fig. 1(b). Although this setup differs from the first slit-based
interferometers used to measure the Sorkin parameter [3], it
is essentially a nonlinear interferometer [27], which are often
used to enhance phase sensitivity. Furthermore, although our
results do not specifically require quantum effects, it has been
shown that such experiments can maintain quantum signatures
[28,29]. In any case, the Sorkin parameter can be measured on
any set of three or more interfering modes [19,25]. One could
measure κ with any of the output beams, but we will focus
only on measurements of the pump beam after the nonlinear
crystal. In this case, the single path terms of Eq. (3) are easy
to evaluate: P1 = P2 = 0, since the detector is mode 3, and in
order to measure P1 or P2 light is only sent into mode 1 or 2,
respectively. With light only incident in one mode, there is no
mechanism to mix the modes and generate light in mode 3.
(Experimentally, of course, one cannot make this assumption
and must measure P1, P2, and P3 directly.) Similarly, P3 =
Ppump/Ptotal, which is the input pump power normalized to
the total input power, where Ptotal = Psignal + Pidler + Ppump,
and Psignal, Pidler, and Ppump are the powers input into each
mode. We should comment that this scenario is slightly dif-
ferent from “standard” experiments testing Born’s rule based
on interference over continuous variables–e.g., an n-slit inter-
ference pattern projected on a screen. This is because we use
three discrete (approximately single-mode) optical beams in
place of three slits. This single-mode approach was noted to
decrease systematic errors in the measurement of κ [25] and
removes essentially any contribution from looped trajectories.

The two-path terms in our work correspond to sending light
into just two input modes. For example, P12 corresponds to
sending no light in mode 3, i.e., blocking the pump. Never-
theless, light can now be generated in the pump mode via
sum-frequency generation (SFG) between signal and idler
[20]. Thus P12 = PSFG/Ptotal, where PSFG is the SFG power
generated via the nonlinear mixing in the crystal. For P13 (P23),
the idler (signal) beam is blocked, and difference-frequency
generation (DFG) can occur between the pump and the signal
(idler) beams. We will assume the process is symmetric so
P13 = P23 = (Ppump − PDFG)/Ptotal. We only make these as-
sumptions for the simple example presented here. For all of
the measurements to be presented shortly, we measure each
term of Eq. (3).

The final term is P123, which is the power measured in
mode 3 when all three beams are open. In this setting,
both SFG and the two DFG processes will take place, so
the three-slit term becomes P123 = (Ppump − 2P ′

DFG + P ′
SFG)/

Ptotal. Here P ′ denotes the fact that the conversion effi-
ciency with all three beams open will be different from the
situations with just two beams present. This can arise for
two reasons. First, the various nonlinear processes modify
the power in the different modes as they propagate through
the crystal leading to different net conversion efficiencies.

Second, as we show in the Appendix, when one or two
beams are incident, the nonlinear interactions in the crystal
are independent of the relative phase. However, the nonlinear
interaction between three beams is sensitive to the relative
phases, leading to fundamentally different behavior between
the three-path and two-path terms. This phase dependence
arises because when only two beams are incident, the rela-
tive phase becomes a global phase on the excited nonlinear
polarization; on the other hand, the phases do not factor out
for three incident beams [see the Appendix, Eq. (A1)]. With
this in mind, we can write the Sorkin parameter as

κ = [(P ′
SFG − PSFG) − 2(P ′

DFG − PDFG)]/Ptotal. (4)

When the nonlinearity is small, for example in the undepleted
pump regime, P ′

SFG = PSFG and P ′
DFG = PDFG so κ = 0. For

an experimental test of higher-order interference, Eq. (3),
rather than Eq. (4), should be used so as not to make any
assumptions about the underlying process. Given the complex
nature of the nonlinear interaction, we do not provide explicit
forms of DFG and SFG interaction here, but they can be found
in our MATHEMATICA code available at [30].

III. EXPERIMENT

To maximize the nonlinear interaction in our experiment,
we use femtosecond pulsed beams, two of which are depicted
as red (λ = 800 nm) in Fig. 1 and one is blue (λ = 400 nm)
in Fig. 1. We call these three beams signal (path 1), idler
(path 2), and pump (path 3), which, unless otherwise stated,
have powers of approximately 870, 600, and 345 mW, re-
spectively. As shown in Fig. 1(c), the three beams, which are
generated from a single Ti:sapphire laser, are guided towards
the main crystal of our setup and are spatially and temporally
overlapped in a 1-mm-thick lithium triborat (LBO) crystal
cut for type-I phase-matching. To satisfy the phase-matching
condition, the pump beam is polarized orthogonally to the
signal and idler beams. The beams are focused into the crystal
with an f = 25 mm lens, resulting in beam waists of ≈30 μm.
Finally, the crystal is mounted on a translation stage which can
move it in and out of the focus. We use this to effectively turn
on and off the nonlinear interaction. When the crystal is not in
the focus (the Rayleigh range for our beams is ≈3 mm, and the
crystal is 1 mm long), the intensities are too low to generate a
measurable nonlinear response.

We will now describe our experimental procedure. To
quickly set the individual configurations and measure the
corresponding probabilities [as in Fig. 1(a)], we block var-
ious combinations of beams using fast (≈100 ms) optical
shutters. The measurements are performed with a stan-
dard optical power meter, measuring the pump beam after
the crystal. For each power measurement, we in fact measure
the power 500 times and average the results; as shown in the
Appendix (Fig. 10), this averages out the fast fluctuations.
A single cycle of the experiment, measuring the power for
each of the eight configurations [i.e., the individual terms of
Eq. (3)], takes ≈1 min. To vary the strength of the nonlinear
interaction, we then translate the crystal from a position be-
hind the common focal point of the beams, through the focus,
and then out of focus in front of the beams as in Ref. [31].
In absolute numbers, this corresponds to moving the crystal
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FIG. 2. Experimentally measured Sorkin-parameter vs the posi-
tion of the crystal. The orange points are the experimental data. The
error bars come from the standard deviation of repeated measure-
ments of the power. The solid blue curve is the fit from the quantum
model of our experiment, while the dashed violet curve is the fit
generated by the classical model of our experiment.

from z = 0.00 to 0.60 mm, with the focus at z ≈ 0.35 mm;
the result of this measurement is plotted in Fig. 2.

In addition to varying the strength of the nonlinear inter-
action, this procedure induces a relative phase between the
beams (as we describe in detail in the Appendix). This phase
only affects the P123 term, and is the origin of the fringes
in Fig. 2. This again shows that the higher-order interfer-
ence pattern with all three slits open is qualitatively different
from the second-order interference patterns. Given the phase
dependence of this term, we perform additional stability mea-
surements (Fig. 9 of the Appendix), finding that our setup is
passively phase-stable for over 90 min.

A. Quantum model

To model our experiment, we use a classical and a quantum
method, both of which are detailed in the Appendix. We will
first present our quantum approach. We start with the Hamil-
tonian

Ĥ = h̄ωâ†
1â1 + h̄ωâ†

2â2 + 2h̄ωâ†
3â3

+ ih̄χ (2)(â1â2â†
3 − â†

1â†
2â3) (5)

and we assume that coherent states |α1〉ω, |α2〉ω, and |α3〉2ω

are input into the various modes. We then apply fourth-order
perturbation theory [32], and we compute the average photon
number in mode 3 〈n̂3〉 after the interaction. As shown in the
Appendix, after approximating to small intersection angles we
arrive at the following expression for the Sorkin parameter:

κ (Z ) ≈ 2�
√

n1n2n3 e− Z2

2	2 cos

(
2πnθ2

λ1,2
Z

)
, (6)

where ni are the number of photons per pulse in mode i, Z is
position of the crystal, θ is the angle of intersection between
the pump beam and the signal (or idler) beam, λ1,2 = 800 nm,
n = 1.611 is the refractive index of the LBO crystal, � =
τχ (2) is the effective nonlinear strength (given by the product
of the nonlinearity and the interaction time), and 	 is an
effective overlap length between the three beams. Note that
the Gaussian factor in Eq. (6) is inserted by hand to model the
overlap of the three beams within the nonlinear crystal.

We use the experimentally measured SFG conversion ef-
ficiencies to estimate � = 1.05×10−6 (see Fig. 6 of the
Appendix). A slightly smaller value of � = 0.525×10−6 fits
our data better, which likely comes from a nonideal overlap
of all three beams in the crystal. The effective interaction
length, 	 = 0.08 mm, is set by examining the individual SFG
and DFG processes as the crystal is translated through the
focus. In the Appendix (Fig. 5), we observe that the non-
linear mixing is strongest when the crystal is in the focus
and then rapidly decreases. For simplicity, we fix the width
of the interaction region in our simulation to the narrowest
process. The remaining parameter in Eq. (6) is the intersection
angle θ , which is nominally 3◦ (given by the phase-matching
conditions). However, we find a better fit to our data with 6.2◦.
This deviation likely comes from the large numerical aperture
of our focusing lens. The resulting simulation is plotted as the
solid line in Fig. 2. We observe good agreement between our
experimentally measured Sorkin parameter and that simulated
by our model.

B. Classical model

To fit to the data with the classical model, we numerically
solve the coupled wave equations governing the interaction
of three beams in a nonlinear crystal [20]. In more detail, as-
suming collinear propagation, perfect phase-matching 	k =
k1 + k2 − k3 = 0, and degenerate signal and idler wavelengths
ω1 = ω2 = 1

2ω3, we can write the coupled-wave equations as

dE1

dz
= igE3E∗

2 , (7)

dE2

dz
= igE3E∗

1 , (8)

dE3

dz
= i2gE1E2, (9)

where g = 2deff ω1
c , and deff is the nonlinear strength of the

crystal. The different processes can have different efficiencies,
because, for example, beams 1 and 2 may spatially and tem-
porally overlap differently from beams 2 and 3. We thus use a
different coupling constant for each differential equation:

dE1

dz
= ig1(Z )E3E∗

2 , (10)

dE2

dz
= ig2(Z )E3E∗

1 , (11)

dE3

dz
= i2g3(Z )E1E2. (12)

To model translating the crystal through the focus, we further
make them depend on the crystal position Z:

gi(Z ) = ηige− Z2

2	2 , (13)

where 	 characterizes the interaction range, g is a coupling
constant defined above, and ηi is a fitting parameter we use to
account for experimental imperfections such as beam overlap
and walk-off in the crystal.

We then numerically solve these Eqs. (7)–(9) for different
values of Z using MATLAB. Our code is available at [30]. In
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FIG. 3. A histogram of 50 000 repeated measurements of the
Sorkin parameter at a fixed crystal position. For these data, the crystal
was set to a position corresponding to a maximal value of κ . The
asymmetric distribution occurs because phase fluctuations can only
reduce this value. The net measurement time for these data was
approximately 1 h.

the Appendix, we discuss the exact details of how we fit this
model to our experimental data. In brief, we measure the DFG
and SFG output powers for each pair of beams and fit to
these using different coupling constants ηi, as illustrated in
Fig. 5 of the Appendix. After fixing these parameters, the only
remaining free parameters are the angle at which the beams
intersect in the crystal and the interaction length, which we
take to be θ = 6.2◦ and 	 = 0.08 mm, the same as in the
quantum fit to our data. The result is plotted as the dashed
violet curve in Fig. 2.

IV. RESULTS AND DISCUSSION

Both our quantum and classical theoretical models, to-
gether with our experimental data, clearly show the presence
of higher-order interference, without requiring any exotic
physics. To better quantify this effect, we performed a longer
measurement with the crystal set to the point at which we
observed a maximum κ (Z ≈ 0.31 cm). We again measured
the individual terms of Eq. (3) by blocking and unblocking
each of the beam paths 100 times and measuring the power;
this is intended to average out any longer-term drifts. Since for
each power measurement we measured the power 500 times
(to average out fast drifts), this results in 50 000 individual
measurements of κ in ≈1 h. A histogram of the observed
values is shown in Fig. 3. The asymmetric distribution is due
to phase fluctuations that occurred during the long measure-
ment time. Since the experiment was aligned at a maximum
of the fringe, fluctuations predominately decrease κ . To obtain
our final value, we do not use the data presented in Fig. 3,
since this always uses the first measured values of power
to compute a value for κ , and there is no a priori reason
to make this assumption. Instead, we estimate each term of
Eq. (3) directly by taking the mean of the data presented in
Fig. 7 in the Appendix. We also compute the standard error
from the standard deviation of these data, and we arrive at
κ = 0.0334 ± 0.0002, where the final error bar is obtained by
standard propagation of error through Eq. (3). In our definition
of κ we normalize only to the input power, and not to the
second-order interference (P12 + P13 + P23), as was originally
done in Ref. [3] and subsequently in several other works.
Doing so would in fact slightly increase our experimentally
measured κ , but, since in our experiment the relative phase

and the strength of the nonlinearity are coupled via the crystal
position, this normalization complicates the analysis.

To conclude, in this paper we have presented an experiment
wherein we can turn on and off higher-order interference by
modulating the nonlinear interactions in our system. Together
with Ref. [19], this demonstrates that multiparticle input states
on their own are not sufficient to observe higher-order interfer-
ence, rather nonlinearity is the key. Since many experiments
searching for violations of Born’s rule have used multiparticle
states, our work shows that such tests must also consider
sources of nonlinearities before claiming any deviation from
quantum theory. Finally, we stress again that our work does
not imply a failing of Born’s rule. One could, of course, still
apply Born’s rule to our experiment. To do so, one needs
to compute the quantum state after the nonlinear interaction,
which cannot be constructed by taking a linear superposition
of the states in the input modes.
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APPENDIX

1. Phase induced during Z-scan

To acquire our data, we translate the crystal parallel to
the pump beam through the focus. We refer to the crystal
position as Z . In addition to modulating the strength of the
nonlinear interaction, this induces a phase between the pump
beam and the signal and idler beams. The phase is symmetric,
i.e., the induced phase between the pump and signal is the
same as the induced phase between the pump and idler. This
effect, for the signal and pump beams, is illustrated in Fig. 4.
Panel (a) shows the situation when the two beams intersect
before the crystal. We define this as our 0 phase reference. As
the crystal is moved through the focus, the optical path that the
pump experiences changes differently from the path that the
signal experiences [panel (b)]. A straightforward calculation
shows that the pump picks up phase as φ3 = 2πn

λ3
Z , where

n = 1.611 is the refractive index of our LBO crystal [33]
(since the crystal is phase-matched for degenerate SFG, this
is the same for all three beams) and λ3 = 400 nm. Similarly,
the signal and idler acquire phase as φ1,2 = 2πn

λ1,2 cos θ
Z , where

λ1,2 = 800 nm.
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FIG. 4. Phase acquired during Z-scan. (a) At the start of the Z-
scan of the crystal, the pump and signal beams intersect in front of
the crystal. We set this to be a zero relative phase between the two
beams. (b) As the crystal is translated through the intersection point,
the optical path length for the pump beam L changes slower than the
optical path of the signal beam L′. Thus as the crystal is translated
through the intersection point, the relative phase is also scanned.

2. Classical model

In classical nonlinear optics, the central object is the
nonlinear polarization, which describes the coupling of the
incident light fields to a nonlinear medium, which gives
rise to reemission of light at potentially different fre-
quencies. For example, two fields at frequencies ω1 and
ω2 can excite a nonlinear polarization associated with ei-
ther sum-frequency generation P(ω1 + ω2) = 2εoχ

(2)E1E2 or
difference-frequency generation P(ω1 − ω2) = 2εoχ

(2)E1E∗
2 ,

where E1 and E2 are the incident fields. Notice that any
phase between fields E1 and E2 becomes a global phase on
the polarization. Hence, processes with only two input fields
are independent of this phase. If, however, three fields are
incident, as is the case for our experiment, the relative phase
between the three beams is no longer global. Hence, the phase
can, in general, affect the nonlinear generation. To see this,
consider three fields E1, E2, and E3, the first two at a frequency
ω, and the third at 2ω, that are incident in a χ (2) nonlinear
medium that is phase-matched for both SFG between E1 and
E2, and DFG between both E1 and E3, and E2 and E3. In this
case, the polarization will be

2εoχ
(2)(E3E∗

1 ei(φ3−φ1 ) + E3E∗
2 ei(φ3−φ2 ) + E1E2ei(φ2+φ1 ) ). (A1)

Here we have explicitly separated the phases φ1, φ2, and φ3

from their respective fields to stress the phase dependence.
To solve for the generated fields with three incident beams,

we use the so-called coupled wave equations, as described in
Ref. [34],

dE1

dz
= 2ideffω

2
1

k1c2
E3E∗

2 e−i	kz, (A2)

dE2

dz
= 2ideffω

2
2

k2c2
E3E∗

1 e−i	kz, (A3)

dE3

dz
= 2ideffω

2
3

k3c2
E1E2e−i	kz. (A4)

In these equations, 	k is the phase mismatch, which we will
set to 0 for our simple model, deff is the nonlinear strength

of the crystal, and ki is the wave vector of each field. Setting
g = 2deff ω1

c and ω1 = ω2 = 1
2ω3, we arrive at Eqs. (7)–(9) of

the main text, which can be solved numerically.
Then to compute a value for the Sorkin parameter κ , we

simply solve these equations under different initial conditions
to compute each term of κ in Eq. (3) in the main text. For
example, to compute P12, we use the initial conditions E1(z =
0) ∝ √

P1, E2(z = 0) ∝ √
P2, and E3(z = 0) = 0, where Pi

is the power input into mode i. Then we evaluate the field
in mode 3 (the pump mode) at z = 1 mm (the length of the
crystal) to compute the optical power in mode 3 after exiting
the crystal. While this is sufficient to show a nonzero value of
κ , to model our experiment we include additional experiment
factors: (i) the changing efficiency of the nonlinear processes
during the z-scan and the different relative efficiencies of the
three nonlinear processes, and (ii) the optical phase induced
during the z-scan.

To model varying efficiencies, we first use a different cou-
pling constant for each differential equation:

dE1

dz
= ig1(Z )E3E∗

2 , (A5)

dE2

dz
= ig2(Z )E3E∗

1 , (A6)

dE3

dz
= i2g3(Z )E1E2, (A7)

and we also make them depend on the crystal position Z .
We use different coupling constants to model the fact that,
say, beams 1 and 2 may spatially and temporally overlap
differently from beams 2 and 3. Then we numerically solve
these equations for different values of Z . In particular, we
assume a Gaussian form for gi(Z ), defined in Eq. (13). where
	 characterizes the interaction range, g is a coupling constant
defined below Eqs. (7)–(9), and ηi is a fitting parameter we
use to account for experimental imperfections such as beam
overlap and walk-off in the crystal.

The goal of this is to model the different interactions be-
tween the three beams as the crystal is translated through the
focus. Experimentally, this effect is evident in different data
sets. For example, the data presented in Fig. 8 show that as the
crystal is moved through the intersection points of the beams,
the different processes respond differently. We believe that
this is caused by slightly different intersection angles between
the three beams, and by the fact that the crystal is not perfectly
perpendicular to the pump beam or the direction the crystal is
moved.

To fit to our data, we observe the power in the pump
mode 3 when all pairs of beams are turned on and the crystal
is scanned through the focus. In particular, we measure the
Z-dependence of P13 [Fig. 5(a)], P23 [Fig. 5(b)], and P12

[Fig. 5(c)]. For these sets of measurements, the input power
in each beam is 870 mW in the signal (mode 1), 600 mW
in the idler (mode 2), and 345 mW in the pump (mode 3).
For our simulation, we then convert these average powers to
fields, assuming Gaussian pulses with a width of τ = 140 fs,
a repetition rate of R = 76 MHz, and a beam diameter at the
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FIG. 5. Individual Sorkin terms vs the position of the crystal. The orange data show the power that is measured in the pump mode 3 after
the crystal, while the blue curves are the results of classical simulations used to fit to the data. For the data in panels (a) (P13) and (b) (P23),
the pump beam undergoes difference-frequency generation with the signal and idler, respectively. The decrease in power corresponds to
difference-frequency power being generated into the third mode. (c) Sum-frequency generation between the signal and idler into the pump
mode (P12). Over the range the crystal is scanned here, the power is more or less constant. (The data presented in Fig. 5, SFG-P12, show that
the SFG process eventually turns off.) (d) For these data, all three beams are open and the three processes all occur simultaneously, P123. The
oscillations are induced by a phase discussed in the main text. For simplicity, we fix the width of the interaction region in our simulation to
the narrowest process shown in panel (b). This is why the simulations presented in panels (a) and (c) only match the measured values at the
focus. If instead we use longer interaction widths for the other two processes, our simulations predict that oscillations in panel (d) persist over
a much longer range. This arises from phase-dependent interference from the vanishingly small tails of the Gaussian envelope function of the
narrow process in panel (a).

focus of w = 26 μm. Then the field is

E =
√(

ln2

π

)3/2 16

Rτw2ε0c
P, (A8)

where ε0 is the permittivity of free space and c is the speed
of light [31]. In our simulation, we set the initial conditions
to match the experimental configuration (one beam blocked
and the other two open), and then we adjust ηi to match the
change in power observed throughout the z-scan. The result
of these fits is shown in Figs. 5(a)–5(c). For simplicity, we
assume the same interaction length for all three processes,
	 = 0.08 mm, which is given by the narrowest process, which
is DFG between the idler [Fig. 5(b)]. We set η1 = η2 = 0.15
and η3 = 0.05, and we use deff = 0.749 pm/V (given by [33]
for LBO) to evaluate g. Additionally, we scale all three values
of η by an additional factor of 0.3 when all three beams are
open—i.e., when measuring P123—to account for the reduced
“mutual overlap” between all three beams.

Finally, we add the Z-dependent phases (introduced in the
previous section) to each of the respective fields. With all
this in place, we compute the Sorkin parameter using our
classical model. The result, plotted in Fig. 5(e), agrees well
with our experimentally measured Sorkin parameter [plotted
as the orange circles in Fig. 5(e)].

3. Quantum-mechanical description

To express our experiment within quantum mechanics, we
start with the Hamiltonian Ĥ describing three modes interact-
ing in a χ (2)-nonlinear medium:

Ĥ = h̄ωâ†
1â1 + h̄ωâ†

2â2 + 2h̄ωâ†
3â3

+ ih̄χ (2)(â1â2â†
3 − â†

1â†
2â3).

(A9)

Here, â†
i and âi are the ladder operators acting on mode i. As in

the main text, mode 1 describes the signal beam at frequency
ω, mode 2 the idler beam at ω, and mode 3 the pump beam
at 2ω. Since we measure photons in mode 3 after the interac-
tion, we need to evolve the number operator associated with
mode 3 as

n̂3, f = eiĤτ/h̄â†
3â3e−iĤτ/h̄. (A10)

Here, τ , the interaction time, is proportional to the crystal
length. We then apply a Baker-Campbell-Haussdorff expan-
sion [32] up to fourth order to Eq. (A10). Given the number
of terms in the expansion, we do not include the result here,
but it is available in our MATHEMATICA script uploaded to [30].
Since we will only consider coherent input states |αi〉, we can
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FIG. 6. Extraction of the nonlinear interaction � from measured
data. The blue points are a plot of the approximated photon numbers
vs the measured photon numbers. Note that we measure the average
power and then compute the photon number per second. Error bars
are not plotted, since the uncertainty is on the order of the size of the
circles. For an ideal approximation, this procedure should result in a
line with a slope of 1 (the green line).

do the following substitution into our expanded form of n̂3, f :

âi|αi〉 → √
ni eiφi ,

〈αi|â†
i → √

ni e−iφi , (A11)

where the phase factors φi represent the phase acquired during
the Z-scan, and they are defined in the previous section. We
are now interested in the average photon number in mode 3

after the interaction. This is computed by taking the expecta-
tion value of n̂3, f for coherent inputs as

〈α1, α2, α3| n̂3, f |α1, α2, α3〉
= f (τ, κ (Z ), n1, n2, n3, φ1(Z ), φ2(Z ), φ3(Z )). (A12)

From this equation, we compute the outcome photon number
for all experimental configurations by inserting the specific
states for αi. For example, if all three beams are open, the
outcome photon number in mode 3 is simply

n123 = 〈α1, α2, α3|n̂3, f |α1, α2, α3〉. (A13)

If, e.g., the pump beam is blocked, the output photon
number is

n12 = 〈α1, α2, 0|n̂3, f |α1, α2, 0〉, (A14)

and so forth. As in the classical simulations, the relative phase
cancels out for all configurations except n123 and has the same
form as stated above. From the output photon numbers, we
then compute the individual terms of Eq. (3) by normalizing
by the input photon number. For example, P12 = n12/(|α1|2 +
|α2|2 + |α3|2), and so on. All of the necessary expectation
values are defined in the MATHEMATICA code, available at [30].

From these normalized expectation values, we can con-
struct the Sorkin parameter, defined in Eq. (3), resulting in
the following expression:

κ = 4
3τχ (2)√n1n2n3

(
3
2 − (τχ (2) )2(1 − n1 − n2 + n3)

)
× cos (φ1 + φ2 − φ3) + (τχ (2) )4n1n2n3

× (2 + cos (2φ1 + 2φ2 − 2φ3)). (A15)

Given that the typical average powers in our experiment
are ≈500 mW and we use a 76 MHz pump laser, we have
approximately 1010 photons per pulse, hence ni ≈ 1010. Fur-
thermore, in the next section we estimate the maximum value

FIG. 7. Histograms of the individual terms of the Sorkin-parameter. The x-axis for these data is the normalized power, as described in the
main text, for a given configuration of the experiment. For example, P12 is the normalized power measured when beams 1 and 2 are opened,
and beam 3 is blocked. These data were used to compute the final value of κ = 0.0334 ± 0.0002, the data presented in Fig. 3.
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FIG. 8. Generated power for each two-mode process. For these
data, one path is blocked and a detector is placed after the crystal in
the blocked path. In other words, the detector is moved among the
modes to ensure that the power generated by the nonlinear mixing
is always measured. Then the power is recorded as the crystal is
translated through the beam’s focus. From the vastly different Z
dependence of these data, one can observe that the different pairs
of beams have significantly different overlap within the crystal.

of τχ (2) ≈ 10−6. Given these values, we can further approxi-
mate the Sorkin parameter in our nonlinear triple slit as

κ ≈ 2τχ (2)√n1n2n3 cos (φ1 + φ2 − φ3). (A16)

Finally, we will add in the dependence on the crystal posi-

tion Z . First we define τχ (2) = �e− Z2

2	2 making the effective
nonlinearity, τχ (2), a function of Z to represent the overlap of
the beams with the crystal (just as was done for the coupling
constants in the classical simulations). Here � is the maximum
value of the nonlinear strength, which we estimate in the next
section. Finally, substituting in the expressions derived above
for the phases, and approximating to small intersection angles,
we arrive at

κ (Z ) ≈ 2�
√

n1n2n3 e− Z2

2	2 cos

(
2πnθ2

λ1,2
Z

)
. (A17)

4. Fitting to the nonlinear strength

To fit to our experimental data, we first estimate the product
of the nonlinearity and the interaction time, which we define
as � = τχ (2). To do this, we examine two interacting beams
in the crystal. In particular, we examine the SFG process by
sending the signal and idler beams into our nonlinear crystal
and measuring the sum-frequency light generated in the pump
beam, as in the configuration n12. We then vary the input
powers and measure the output power. These powers are then
all converted into photon numbers n1, n2, and n3, f .

Under these conditions, the only unknown from Eq. (A14)
is �. We then compute the residuals between the measured
data points and the predictions of Eq. (A14). By minimizing
the residuals over �, we obtain � = 1.05×10−6. In Fig. 6
our approximation is visualized by plotting the predictions of
Eq. (A14) versus the measured power (blue points). Ideally
this results in a line with a slope of 1 (green line). The close

FIG. 9. Stability of P123. The power detected in the pump beam
when all three beams are present plotted vs time. For these data, the
crystal position was fixed and all three paths were left open. The
phase in our experiment is stable for over 90 min.

fit demonstrates that we have sufficient precision using the
fourth-order expansion.

Finally, to model the Z-scan of the crystal through the
focus, we take � to be a Gaussian function of Z , as in Eq. (13).
We then simply compute κ by computing the individual terms
of Eq. (3) using Eq. (A12) for each crystal position Z where
both � and the phase are functions of Z . The result, shown in
the main text and discussed therein in more detail, agrees well
with our experiment.

5. Additional measurements

Figures 7–10 present additional measurements.

FIG. 10. Convergence of power measurements. For our measure-
ments of κ , we measured the power 500 times to average out fast
fluctuations. Here we plot typical results of the current average as
a function of the measurement number as the blue curve. For these
data, beams 1 and 3 were incident on the crystal, and the power was
measured on beam 3 after the nonlinear interaction. The dashed black
line shows the average of the full 500 data points. This shows that our
measurements already begin to converge after ≈300 measurements.
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