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Abstract. In order to understand how a heterogeneous habitat affects the pop-
ulation dynamics of the predator–prey system, a spatially explicit lattice model
consisting of predators, prey and obstacles is constructed. The model includes
smart pursuit (predators to prey) and evasion (prey from predators). Both spe-
cies can affect their movement by visual perception within their finite sighting
range. Non-conservative processes that change the number of individuals within
the population, such as breeding and physiological dying, are implemented in
the model. Obstacles are represented by non-overlapping lattice shapes that are
randomly placed on the lattice. In the absence of obstacles, numerical simula-
tions reveal regular, coherent oscillations with a nearly constant predator–prey
phase difference. Numerical simulations have shown that changing the probabilit-
ies for non-conservative processes can increase or decrease the period of coherent
oscillations in species abundances and change the relative lag between coher-
ent components. After introducing obstacles into the model, we observe random
transitions between coherent and non-coherent oscillating regimes. In the non-
coherent regime, predator and prey abundances continue to oscillate, but without
a well-defined phase relationship. Our model suggests that stochasticity intro-
duced by density fluctuations of obstacles is responsible for the reversible shift
from coherent to non-coherent oscillations.
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1. Introduction

In predator–prey modeling, a system is modeled as a collection of autonomous decision-
making entities called agents. Basically, two types of agents are present in the system:
chasers (predators) and escapees (prey). A predator–prey model consists of a system of
agents and the relationships between them. Each agent individually assesses its situation
and makes decisions on the basis of a set of rules. Predator–prey models can exhibit
complex behavior patterns and provide valuable information about the dynamics of
real-world systems. For example, simple predator–prey models may exhibit limit cycles
during which the populations of both species have periodic oscillations in time with a
1/4-period lag between predator and prey [1–4]. These oscillations in species abundances
have been successfully observed in nature [5–8]. Furthermore, the predator–prey systems
have been studied in various contexts, such as robotics, game theory and ecology [9–15].

Habitat heterogeneity has long been recognized as a major factor in ecological
dynamics. Animal habitats include natural physical obstacles, such as lakes, rivers or
high mountains and areas of avoidance due to increased predation risk such as open
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areas without refuge. In addition, habitats are often intersected by long human-made
structures, such as roads, railways, power lines and pipe lines [16, 17]. These spatial het-
erogeneities can affect predator–prey interactions in two qualitatively different ways, by
providing refuge for the prey or obstacles that interfere with the movements of both
prey and predators. Predation is a consequence of predators and prey overlapping (i.e.
encounters) in time and space. Animals regulate the encounter process by deciding
which parts of resource to use, how long to use these parts, and how to travel among
them. However, anthropogenic landscape changes can alter the animals’ ability to access
resources and avoid predation, with consequences for predator–prey dynamics [18–20].
In this paper, we aim to explore how habitat spatial obstacles may affect the predator–
prey dynamics. Special attention is paid to the changes in the oscillatory properties of
species abundances caused by the presence of obstacles.

In the following, we sketch the main features of our numerical model, along the
lines of [21, 22]. Our model is an agent-based approach to simulate numerically col-
lective chasing and escaping in a discrete space with periodic boundary conditions.
Our approach is similar to the model of hunting in groups proposed by Kamimura and
Ohira [23–25]. The problem of group chase and escape in various situations and exten-
sions has been studied by computer simulations and by theoretical analysis. Examples
include the model with conversion of caught escapees into chasers [26], the group chase
and escape by three groups [27], the models with fast chasers [28], the group chase
and escape model with the chaser’s interaction [29], the off-lattice model [30], the three
aggregation strategies for the prey [31], etc. Predators and prey are initially placed ran-
domly on the sites of the square lattice as pointlike particles. Distances in the present
study are measured by the L1 (‘Manhattan’) metric. For example, the site (x, y) is at
distance |x|+ |y| from the origin, with the lattice spacing equal to unity. Both species
perform independent nearest-neighbor walks on a lattice following simple dynamical
rules, increasing or decreasing the distance from the nearest particle of the opposite
group. Each species has its specific sighting range σ in which it can see the other spe-
cies. Predators (prey) can sense the position of the prey (predator) at a predefined
distance σ and they try to move to one of the nearest neighboring sites in order to
decrease (increase) the distance from the nearest prey (predator). Therefore, the sight-
ing range σ describes their skills at chasing or escaping. Prey is caught upon the first
encounter with a predator. Analysis of the capture dynamics in the present study is
limited to species with the same sighting ranges, i.e. σ=2 [21, 22]. If the value of σ is
equal to zero, the movement is equivalent to that of random walkers [23, 26, 32, 33]. It
has been confirmed that the idea of animals using blind search strategies does not seem
to be usable since it neglects the role of animal intelligence and experience in guiding
them [34]. Consequently, we have not considered species with zero sighting range.

Non-conservative processes that change the number of individuals (size of the pop-
ulation), such as breeding and physiological dying, are also implemented in the model
[22, 32, 35–38]. The model contains five parameters that control the non-conservative
processes. The birth and two death rates of predators and two parameters character-
izing the birth and death of prey. In the presence of non-conservative processes, the
dominant type of dynamics can be characterized by regular, coherent oscillations in
time with a nearly constant predator–prey phase difference [1–4]. These oscillations in
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species abundances have been successfully observed in real-world systems or laboratory
studies with fast-reproducing organisms [5–8, 39, 40].

Furthermore, an element of stochasticity of the environment, such as obstacles
present in any natural system, is incorporated into the model. Lattice-based models
allow easy handling of obstacles of various shapes and sizes. We study the case when the
lattice is initially covered with obstacles at various concentrations. Depositing objects
(obstacles) of various shapes are formed by a small number of lattice steps on the
square lattice. The spatial distribution of the obstacles on the lattice is created using
the random sequential adsorption (RSA) method [41, 42].

In addition to the empirical data, long-running experiments with fast-reproducing
organisms also support the sustained nature of predator–prey cycles [6, 39, 40, 43–45].
Since these experiments can be carried out under controlled conditions, they are suit-
able for finding the most important parameters that influence the species dynamics and
coexistence. Recently, the potential for long-term persistence of predator–prey cycles has
been experimentally studied with a planktonic predator–prey system [45]. Experiments
were conducted with parthenogenetic rotifers as predators and unicellular algae as prey
under constant environmental conditions. Although the experiments were not perturbed
by external influences, transitions between two different dynamic regimes were identi-
fied. Periods in which the predator densities follow the prey densities with a phase lag of
about π/2 (coherent oscillations) were intersected by non-coherent oscillation regimes in
which a well-defined phase relationship between the measured signals is lost. We show
that the stochasticity introduced by the presence of obstacles can be responsible for the
reversible shift from coherent to non-coherent oscillations.

We organized the paper as follows. Section 2 describes the details of the model and
simulations. In section 3, results of numerical simulations are presented and discussed.
Section 4 contains some additional comments and final remarks. Some technical details
of the calculations are given in the appendices.

2. Definition of the model and the simulation method

The environment where two interacting species coexist is represented by a two-
dimensional square lattice of linear size L=256 with periodic boundary conditions.
The lattice is initially occupied by obstacles of various shapes and sizes. Their spatial
distribution at density ρ0 is generated using the RSA method [41, 42]. This density ρ0 is
defined as the fraction of sites of the lattice that are occupied by the obstacles. Linear
obstacles are k -mers of length ℓ= 0,1, . . . ,8, shown in table 1 as objects (A1)–(A9).

To initialize the numerical simulations, N
(0)
1 predators and N

(0)
2 prey are randomly

distributed as monomers in the lattice up to the chosen densities ρ
(0)
1 =N

(0)
1 /L2 and

ρ
(0)
2 =N

(0)
2 /L2. Again, the initial spatial distribution of species on the lattice is generated

using the RSA method [41, 42]. Accordingly, each site can be either empty or occupied
by one particle: a chaser (predator), an escapee (prey) or a particle that belongs to an
obstacle.
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Table 1. Jamming coverages ρ
(x)
J for various k -mers (x ) of length ℓ(x) on a square

lattice [46].

(x ) k -mer ℓ(x) ρ
(x)
J

(A1) 0 1.0
(A2) 1 0.9067
(A3) 2 0.8465
(A4) 3 0.8102
(A5) 4 0.7867
(A6) 5 0.7699
(A7) 6 0.7578
(A8) 7 0.7479
(A9) 8 0.7405

2.1. Movement of predators and prey

The movement of individuals with escape and pursuit behavior within the lattice is
modeled as a discrete-time process. At this stage, apart from the hard-core interaction
between the species and between the species and the obstacles, there are simple rules
governing the dynamic processes at an individual level. At each Monte Carlo step,
a lattice site is selected at random. If the chosen site is unoccupied, the positions of
predators and prey remain unchanged, and a new site is randomly selected. If a predator
or prey occupies the chosen site, each species follows the hopping rules described below.
After each Monte Carlo step, the time t is updated, t→ t+1/L2, and the process
continues by randomly choosing a new lattice site. The present model includes species
with the same sighting range, σ=2. Accordingly, the decision for every step, both of
the predator and prey depends on the individuals and obstacles that are found at the
places of the first and second neighbors.

Suppose that the predator is placed in a randomly selected site of the lattice. If
the first neighbors of the selected site are entirely occupied by obstacles and predators,
the chosen predator stays at its original position. Then, the time t is updated, and the
process continues by selecting a new lattice site at random. Suppose that some of the
first neighbors of the selected site are occupied by prey. Then, we randomly select a
prey among them, remove it from the lattice, and move the chosen predator to this
empty place. However, if the first neighbors of the selected predator are not occupied
by prey, the predator executes a jump as long as there is at least one empty nearest
neighbor site. In this case, the predator moves to the vacant adjacent site surrounded by

the highest number of prey, n
(max)
2 , as its first neighbors. If two or more empty nearest

neighbor sites correspond to the same highest number of prey, n
(max)
2 , one of them is

selected at random.
Suppose that the prey is placed in a randomly selected lattice site. If there are no

empty nearest neighbors of the selected site, the chosen prey does not change its position,
and the time increases by 1/L2. The process continues by choosing a new lattice site
at random. If the selected site has empty adjacent sites, the chosen prey jumps to
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the vacant nearest neighbor site surrounded by the lowest number of predators, n
(min)
1 ,

as its first neighbors. If two or more empty nearest neighbor sites correspond to the

same lowest number of predators, n
(min)
1 , one of them is selected at random. It must be

emphasized that a prey moves to the selected site only if n
(min)
1 is less than or equal to

the number of predators surrounding it in its original position.

2.2. Non-conservative processes

We introduce into the model the following non-conservative processes and an additional
set of rules that define the population dynamics.

Rules intended for predators:

1. Predators that have eaten prey during the displacement can leave offspring at the
previously occupied site, with probability P fed

1b (birth probability of predators). To
breed, the predator must be strong enough, i.e. it must have food available in the
immediate vicinity.

2. Predators that have not eaten prey during the displacement can die with probability
P unfed
1d . It is assumed that the lack of food reduces the number of predators in the

habitat.

3. Predators can suddenly die with probability P1d (death probability of predators).

Rules intended for prey:

1. After displacement, prey can leave offspring filling an empty previously occupied site
with probability P2b (birth probability of prey).

2. Prey has a probability P2d of dying (death probability of prey).

Species mortality probabilities P1d and P2d quantitatively describe dying that could
be related to various factors and events in the ecosystem, such as the age of individuals or
diseases. Here, we list the probability values that characterize non-conservative processes
as sequences of numbers with the following structure: S = {P fed

1b , P
unfed
1d , P1d; P2b, P2d}.

2.3. Algorithm

Based on the above definitions and rules, we formulate the algorithm as follows. If a
randomly selected site of the lattice is not empty, the predator (prey) can die with
probability P1d (P2d). If the predator (prey) dies, it is removed from the lattice, and a
new site is selected. Otherwise, we apply the rules for the pursuit–evasion movement for
individuals explained above (section 2.1). If the randomly selected predator survives,
we check whether it ate the prey during the displacement. If so, the predator leaves an
offspring at the previously occupied site, with probability P fed

1b . However, if the predator
did not eat the prey during the displacement, it dies with probability P unfed

1d . Similarly,
if the randomly selected prey survives, we check whether it moved into a new position.
If so, the prey leaves an offspring at the previously occupied site, with probability P2b.
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3. Results and discussion

In the first part of this section, the group spatial chase and escape phenomena are
analyzed in the environment without heterogeneities. Then, population dynamics are
studied in an environment that contains spatial obstacles.

3.1. Dynamics of the system without obstacles

In figures 1 and 2, we present numerical results regarding the time evolution of the

normalized number of predators, Ñ1(t) =N1(t)/N
(0)
1 , and prey, Ñ2(t) =N2(t)/N

(0)
2 , for

the two representative sets of probabilities that characterize the non-conservative pro-
cesses: S1 = {0.09,0.05,0.01;0.15,0.01} and S2 = {0.25,0.10,0.01;0.20,0.01}. For both

cases, the initial numbers of species were chosen as N
(0)
1 = 2880 and N

(0)
2 = 3200, cor-

responding to the initial densities ρ
(0)
1 =N

(0)
1 /L2 = 0.0439 and ρ

(0)
2 =N

(0)
2 /L2 = 0.0488,

with the ratio ρ
(0)
1 /ρ

(0)
2 =N

(0)
1 /N

(0)
2 = 0.90. It is important to note that the time evolu-

tion of the normalized number of species Ñ1(t) and Ñ2(t) does not depend on the lattice

size L if the initial densities ρ
(0)
1 and ρ

(0)
2 of species do not change with L [22]. However,

for a lattice of fixed size L, the time evolution of Ñ1(t) and Ñ2(t) depends on the initial

number (density) of predators N
(0)
1 and prey N

(0)
2 .

Let us compare the results for two different sets of probabilities S1 and S2, shown in
figures 1(a) and 2(a). We show that the time dependencies of the normalized number

of species Ñ1(t) and Ñ2(t) are qualitatively similar. In the initial stage, the number of
predators and prey oscillates periodically with large amplitudes, rapidly decreasing in
time. After a short transient period, the system arrives at a quasi-steady state. This
state corresponds to coexisting populations of predators and prey when their densities
oscillate around some average values, which do not change over time.

More details about the temporal behavior of the number of predators and prey for
the quasi-steady state stage of evolution, in the time range between t1 = 4000 u.t. and
t2 = 5000 u.t. are shown in figures 1(b) and 2(b). Our model provides the usual prediction
that in predator–prey cycles, the peaks in prey abundance precede the peaks in predator
abundance [4]. When predators are sparse, prey increase and are in abundance. As the
number of prey increases, predators also increase and are in abundance. When the
predators reach sufficiently high densities, the prey population is driven down to low
densities. With a lack of prey, the predator population reduces, and the cycle repeats.

It is interesting to compare the oscillatory behavior of the number of predators Ñ1(t)

and prey Ñ2(t) in the quasi-steady state regime obtained for two different sets of prob-
abilities, S1 and S2, that characterize the non-conservative processes (see figures 1(b)
and 2(b)). It is obvious that the change of probabilities from S1 to S2 leads to an increase
in the frequency of oscillations of the number of predators and prey. We investigate the
species fluctuations in further detail using a wavelet analysis, which reveals statistic-
ally significant associations between the dynamics of the predator and prey densities
[47, 48]. Details of the power analysis and the phase analysis (in particular, cross-wavelet
analysis and wavelet coherence (WCO)) are given in the appendix.
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Figure 1. (a) Time dependencies of the number of the normalized number of

predators Ñ1 =N1(t)/N
(0)
1 (red lines) and prey Ñ2 =N2(t)/N

(0)
2 (blue lines) on

the lattice of size L=256. Initial numbers of species are chosen as N
(0)
1 = 2880

and N
(0)
2 = 3200. Probabilities that characterize the non-conservative processes

are S1 = {0.09,0.05,0.01,0.15,0.01}. (b) Shown here are the temporal dependen-
cies of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between
t1 = 4000 u.t. and t2 = 5000 u.t., taken from the panel (a).
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Figure 2. (a) Time dependencies of the number of the normalized number of

predators Ñ1 =N1(t)/N
(0)
1 (red lines) and prey Ñ2 =N2(t)/N

(0)
2 (blue lines) on

the lattice of size L=256. Initial numbers of species are chosen as N
(0)
1 = 2880

and N
(0)
2 = 3200. Probabilities that characterize the non-conservative processes

are S2 = {0.25,0.10,0.01,0.20,0.01}. (b) Shown here are the temporal dependen-
cies of the Ñ1 and Ñ2 in the oscillatory region of the quasi-steady state, between
t1 = 4000 u.t. and t2 = 5000 u.t., taken from the panel (a).
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Figure 3. Scalograms and time-averaged wavelet power spectra of the predator and
prey time series, Ñ1(t) (a) and Ñ2(t) (b) respectively, corresponding to the quasi-
steady state regime of evolution (t > 1000 u.t.). Probabilities that characterize the
non-conservative processes are S1 = {0.09,0.05,0.01,0.15,0.01}.

In figure 3, we show the scalograms and the time-averaged power spectra of the
signals Ñ1(t) and Ñ2(t) obtained for the same conditions as in figure 1. The scalogram
is the absolute value of the continuous wavelet transform (CWT) plotted as a function
of time and frequency (i.e. period). Time-averaged power spectra are obtained by time-
averaging the magnitude-squared scalogram over all times. The period is plotted on a
logarithmic scale. The cone of influence showing where edge effects become significant
is also plotted. Gray regions outside the dashed white line delineate regions where edge
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Figure 4. Scalograms and time-averaged wavelet power spectrum of the predator
and prey time series, Ñ1(t) (a) and Ñ2(t) (b) respectively, corresponding to the
quasi-steady state regime of evolution (t > 1000 u.t.). Probabilities that characterize
the non-conservative processes are S2 = {0.25,0.10,0.01,0.20,0.01}.

effects are significant. Here, we normalize the power of the time-averaged wavelet spec-
trum as a probability density function. CWT gives a time-frequency representation that
accurately captures the instantaneous frequencies of the signals Ñ1(t) and Ñ2(t). Both
for predators and prey, the CWT shows nearly steady-state oscillations with the same
period of about T1 = 97u.t.. This value corresponds to the position of the maximum in
the time-averaged wavelet spectra (see the right-hand-side panels in figure 3).

The scalograms and the time-averaged power spectra of the signals Ñ1(t) and Ñ2(t)
from figure 2, which correspond to the set of probabilities S2, are presented in figure 4.
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Figures 3 and 4 enable a quantitative comparison of the oscillatory behavior of the
number of predators and prey for the two sets of probability values S1 and S2 that char-
acterize the non-conservative processes. For the set S2, numerical simulations revealed
sustained oscillations with a shorter period length of T2 = 64u.t.. In the second set
of parameters S2, the probabilities P fed

1b , P unfed
1d and P2b for the non-conservative pro-

cesses related to predator feeding and prey reproduction are significantly enhanced.
The predator–prey cycles are based on a feeding relationship between two species. We
consider the case where the coupling between the predator and prey systems is much
stronger in the case of parameters from set S2. Consequently, the period of oscillations
of species in the quasi-stationary regime corresponding to the set of parameters S2 is
smaller than in the case of the set of parameters S1.

The previously mentioned reasons for the change of the period of oscillations in
species abundances are confirmed by the results of additional numerical simulations.
For instance, numerical simulations have shown that increasing the probability P2b is a
sufficient condition for decreasing the period of oscillations. Increasing the probability
P2b tends to hasten the growth of the prey population. The increased food availability
and better nutrition hasten the growth of the number of predators. Faster growth of
the predator population shortens the time required for the number of prey to reach
the maximum value. Then, the increased number of predators leads to an accelerated
decrease in the prey number. The resulting lack of food shortens the time needed for
the number of predators to reach a maximum value and begin to decline.

3.1.1. Coherence of the fluctuations Often the two signals are related in some way,
e.g. one signal may determine behavior in another. The signals may also be correl-
ated due to some influence intrinsic to both signals. Fourier-domain coherence is a
well-established technique for measuring the linear correlation between two stationary
processes as a function of frequency. Since wavelets provide local information about
data in time and scale (frequency), wavelet-based coherence allows us to measure the
time-varying correlation as a function of frequency. Consequently, a WCO is suitable
for nonstationary processes, such as predator–prey coexistence. The WCO measures the
correlations between the fluctuations of two time series (i.e. the coherence of the fluctu-
ations). Wavelet coherency is defined as the wavelet cross-spectrum (WCS) normalized
by the spectrum of each signal (see appendix).

In figure 5, we show the WCO between predators and prey obtained from the numer-
ical data shown in figure 1(a). Color coding indicates the WCO, while arrows indicate
the phase angles between the fluctuations of the two time series. The black contour
lines enclose significant areas (95% significance level). The red dots show the instantan-
eous oscillation period s̃(t) of the highest WCO within these areas (coherent oscillation
regimes). To clarify the diagram, only in regions of the time-frequency (period) plane
where WCO exceeds 0.85, is the phase of the WCS used to indicate the relative lag
between coherent components. Note that a 1/4 cycle lag between the two signals at a
particular frequency is indicated by an arrow pointing vertically down. The white dashed
line shows a cone of influence where edge effects become significant at different frequen-
cies (scales). It is evident that oscillations corresponding to the set of probabilities S1

are persistently coherent, meaning that the ups and downs of the different species in the
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Figure 5. WCO between predators and prey, corresponding to time series Ñ1(t)
and Ñ2(t) shown in figure 1(a). Values range from 0 (blue) to 1 (yellow). Cone of
influence is indicated by the dashed white lines. Red dots indicate the instantaneous
oscillation period s̃(t) of the highest WCO within the prefixed period length band
(64–256 u.t.). Significant areas (95% significance level) are enclosed by thin solid
lines. Arrows indicate the phase angles between the fluctuations of the two species.
Arrows pointing down represent a 1/4 cycle delay between the two time series.
Clockwise (counterclockwise) arrow rotation corresponds to an increase (decrease)
in phase lag between them. We use the phase display threshold of 0.85, which shows
phase arrows only where the coherence is greater than or equal to 0.85.

predator–prey community are indeed related to each other. For the whole quasi-state
regime, we observe oscillations of period of about T1 = 97 u.t. both for predators and
prey, with a significantly coherent, nearly constant phase relationship. These sustained
cycles are also reflected in the clockwise motion in the predator–prey phase plane. More
precisely, the predator densities follow the prey densities with a phase lag of about π/2
at frequencies 1/T1. A quarter delay (phase angle of π/2) between the fluctuations of
predator and prey species is typical for many predator–prey models (e.g. [49]).

Figure 6 shows the WCO between predators and prey obtained from the time series
shown in figure 2(a). The dominant type of dynamics is characterized by regular, coher-
ent oscillations with a nearly constant predator–prey phase difference. In fact, the two
species fluctuate at a significant periodicity of T2 = 64 u.t. but the arrows now indicate
a phase angle noticeably smaller than π/2. These phase differences are notably con-
stant over all different numerical simulation replicates. An increase in the probability of
predator breeding P fed

1b tends to accelerate the growth of the number of predators. The
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Figure 6. WCO between predators and prey, corresponding to time series Ñ1(t)
and Ñ2(t) shown in figure 2(a). Values range from 0 (blue) to 1 (yellow). Cone of
influence is indicated by the dashed white lines. Red dots indicate the instantaneous
oscillation period s̃(t) of the highest WCO within the prefixed period length band
(32–256 u.t.). Significant areas (95% significance level) are enclosed by thin solid
lines. Arrows indicate the phase angles between the fluctuations of the two species.
Arrows pointing down represent a 1/4 cycle delay between the two time series.
Clockwise (counterclockwise) arrow rotation corresponds to an increase (decrease)
in phase lag between them. We use the phase display threshold of 0.85, which shows
phase arrows only where the coherence is greater than or equal to 0.85.

faster growth of the predator population slows the growth of the number of prey. These
processes shorten the time between reaching two successive maxima, i.e. the maxima
for the time dependencies of predators Ñ1(t) and prey Ñ2(t).

3.2. Dynamics of the system with obstacles

Here, we consider in more detail the influence of the length ℓ and density ρ0 of the linear
segments that cause the obstacles on the temporal behavior of the number of predators
Ñ1(t) and prey Ñ2(t). Simulations have been performed for linear segments (k -mers) of
lengths ℓ= k− 1, k = 1,2, . . . ,9 (see, table 1), and for a wide range of obstacle densities,
ρ0 = 0− 0.25, below the corresponding percolation thresholds [50, 51]. As the density
of obstacles is increased above a percolation threshold p∗c , the initial large cluster of
empty lattice space breaks into tiny non-communicating components so that connectiv-
ity between both sides of the lattice disappears. In this case, spatially separated groups
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of predators and prey can be formed on the lattice during the initialization process.
These artificial situations will not be considered in this paper.

We begin the analysis of habitat heterogeneity’s impact on predator–prey coexist-
ence dynamics with a quantitative description of the interaction of individuals with
obstacles. In our model, there is a hard-core interaction between the individuals and
the obstacles. We consider that grid nodes that form the obstacles are inaccessible
to predators and prey. When the obstacle is located at the place of the first neigh-
bor, it affects the individual’s decision about where to go. Accordingly, predators and
prey will never choose a direction of movement towards a neighboring node where an
obstacle is located. They ‘see’ the obstacles and ‘wisely’ determine the direction of their
movement , following the movement rules provided in section 2.1. It is stated that prey
always move towards lower predator concentration. Predators, in the absence of prey as
their immediate neighbors, move towards higher prey concentration. Although collisions
of individuals with obstacles (in the sense of particle collision with a wall) do not form-
ally exist, it is necessary to quantitatively characterize their interaction with obstacles.
Therefore, we count the movements of predators and prey in which at least one first
neighbor is occupied by an obstacle while selecting the direction of their motion. The
number of such ‘encounters’ between predators (prey) and obstacles per unit of time
normalized to one individual, is called the collision frequency, ν.

The temporal behavior of the collisional frequencies of predators (ν1) and prey
(ν2) for the quasi-steady state stage of evolution (t= 4000− 6000) in the presence
of obstacles (4-mers) are shown in figure 7. The numerical results correspond to
a set of probabilities S1 = {0.09,0.05,0.01,0.15,0.01}, and two densities of 4-mers,
ρ0 = 0.15, 0.25. At both densities of the obstacles, the collision frequency of prey ν2
is higher than the collision frequency of predator ν1. Indeed, when avoiding predators,
prey move towards areas where the predator population is smaller. These areas often
contain a higher concentration of obstacles. The movement of prey towards regions of
higher concentration of obstacles increases the collision frequency of ν2. As expected,
increasing the density of obstacles ρ0 increases the collision frequencies of both species
with obstacles.

In figure 8, we show the time-averaged wavelet power spectrum (WPS)

of the time-series Ñ1(t) and Ñ2(t) obtained for the set of probabilities S1 =
{0.09,0.05,0.01,0.15,0.01}, in the presence of obstacles (9-mers) at various densities
ρ0 = 0, 0.10, 0.15, 0.20, 0.25. It is observed that the maximum of the global WPS shifts
to higher values with the increase in the density of obstacles ρ0. This shift indicates an
increase in the mean oscillation period T of the time series Ñ1(t) and Ñ2(t). The period
T grows from T ≈ 97 u.t. to T ≈ 112 u.t. when the density of obstacles ρ0 increases
from 0 to 0.25. Hence, the presence of obstacles in the habitat slightly slows down the
dynamics of a group chasing and escaping between predators and prey. In addition,
increasing the density of obstacles ρ0 leads to a broadening of the peak in the global
WPS. Time-averaged WPS measures the averaged variance of the time-series Ñ1(t) and

Ñ2(t) at scale s (see appendix). Accordingly, the presence of obstacles increases the

deviations of the oscillatory period T of the time-series Ñ1(t) and Ñ2(t) from its mean
value.
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Figure 7. Collisional frequencies of predators (ν1) and prey (ν2) in the pres-
ence of obstacles (4-mers) at densities ρ0 = 0.15, 0.25. Numerical results corres-
pond to the set of probabilities S1 = {0.09,0.05,0.01,0.15,0.01}, and two densities
ρ0 = 0.15, 0.25 of 4-mers. Shown here are the temporal dependences of the ν1 and
ν2 in the oscillatory region of the quasi-steady state, between t1 = 4000 u.t. and
t2 = 6000 u.t..

Comparisons of the time-averaged WPS obtained for various obstacle lengths
k = 1,2,4,8 are shown in figure 9. We note that changing the length and shape of
obstacles at a fixed density ρ0 = 0.15 has almost no effect on the global WPS.

3.2.1. Coherence of the fluctuations In the absence of obstacles, the oscillations are
persistently coherent, without the non-coherent breaks in the time-series Ñ1(t) and

Ñ2(t) (see figures 5 and 6). In the following, we present the results of our analysis of the
WCO between predators and prey obtained in the cases when the habitat is covered with
obstacles at various concentrations ρ0 ⩽ 0.25. We show that the presence of obstacles is
responsible for the reversible shift from coherent to non-coherent oscillations.

In figure 10, we compare WCO for the two values of obstacle density, ρ0 = 0.15, 0.25.
For comparison, we show the results obtained for obstacles of very different lengths,
namely, for monomers and 8-mers (table 1). The numerical results correspond to the set
S1 = {0.09,0.05,0.01,0.15,0.01} of probabilities that characterize the non-conservative
processes. Thick solid lines indicate the 95% significance level. Arrows that indicate
phase angles between fluctuations of the two species are only shown where the value of
the WCO is greater than or equal to the threshold of 0.85. For lower density ρ0 = 0.15,
the dynamics can be characterized by regular oscillations in time with a nearly constant
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Figure 8. Time-averaged WPS of the predator and prey time-series, Ñ1(t)
(a) and Ñ2(t) (b) respectively, obtained for 9-mers (k =9) as obstacles at densities
ρ0 = 0, 0.10, 0.15, 0.20, 0.25. Probabilities that characterize the non-conservative
processes are S1 = {0.09,0.05,0.01,0.15,0.01}.

predator–prey phase lag of about π/2 at frequencies corresponding to maximum WCO
values (i.e. around T1 = 97u.t.). For higher density of obstacles ρ0 = 0.25, significant
regions of the time-frequency (period) plane reveals a wide distribution of different phase
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Figure 9. Time-averaged WPS of the predator and prey time-series, Ñ1(t) (a) and
Ñ2(t) (b) respectively, obtained for various k -mers (k = 1, 2, 4, 8) as obstacles at
density ρ0 = 0.15. Probabilities that characterize the non-conservative processes are
S1 = {0.09,0.05,0.01,0.15,0.01}.

angles. We also note a tendency for regions with significant WCO to be decomposed
into disjoint areas, especially in the case of long obstacles (see figure 10(d)).

A representative example of the occurrence of short episodes of irregular, non-
coherent oscillations without any significant phase relationship induced by the presence
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Figure 10. WCO between predators and prey, corresponding to time-series Ñ1(t)
and Ñ2(t), obtained for monomers (k =1) and 8-mers (k =8) as obstacles, at two
densities ρ0: (a) k =1, ρ0 = 0.15; (b) k =8, ρ0 = 0.15; (c) k =1, ρ0 = 0.25; (d) k =8,
ρ0 = 0.25. Values range from 0 (blue) to 1 (yellow). Cone of influence is indicated by
the dashed white lines. Red dots indicate the instantaneous oscillation period s̃(t) of
the highest WCO within the prefixed period length band (64–256 u.t.). Significant
areas (95% significance level) are enclosed by thin solid lines. Arrows indicate the
phase angles between the fluctuations of the two species. We use the phase display
threshold of 0.85, which shows phase arrows only where the coherence is greater
than or equal to 0.85.

of obstacles is given in figure 11. The numerical results correspond to the set of probabil-
ities S1 = {0.09,0.05,0.01,0.15,0.01} and a high density ρ0 = 0.25 of 9-mers as obstacles.
Figure 11(a) shows the WCO between predators and prey obtained from the time-series
shown in figure 11(b). In order to make it easier to connect the results on both panels,
dashed vertical lines border an arbitrarily chosen time interval t= 4770− 5540 u.t.
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Figure 11. (a) WCO between predators and prey, corresponding to time-series
Ñ1(t) and Ñ2(t), obtained for 9-mers (k =9) as obstacles, at density ρ0 = 0.25. Red
dots indicate the instantaneous oscillation period s̃(t) of the highest WCO within
the prefixed period length band (64–256 u.t.). Significant areas (95% significance
level) are enclosed by thin solid lines. Arrows indicate the phase angles between
the fluctuations of the two species. We use the phase display threshold of 0.85,
which shows phase arrows only where the coherence is greater than or equal to
0.85. (b) Shown here are the temporal dependencies of the normalized number
of predators Ñ1 (red lines) and prey Ñ2 (blue lines) in the oscillatory region of
the quasi-steady state, between t1 = 4000 u.t. and t2 = 6500 u.t. obtained under the
same conditions as in panel (a). Dashed vertical lines on both panel border a time
interval t= 4770− 5540 u.t. Solid vertical lines at t1 = 5040 u.t. and t2 = 5228 u.t.
indicate the time span of irregular oscillations.

https://doi.org/10.1088/1742-5468/aceb58 20

https://doi.org/10.1088/1742-5468/aceb58


Consequences for predator–prey dynamics caused by the presence of obstacles

J.S
tat.

M
ech.(2023)

083406

Coherent oscillation regime is a contiguous time interval for which the dominant
scale s̃(t) is within a statistically significant area in the time-scale plane (see appendix).
The time intervals that do not meet this condition constitute the non-coherent oscilla-
tion regimes. Solid vertical lines in figure 11 border a time interval without significant
WCO between predator and prey. Non-coherent oscillations arise between t1 = 5040 u.t.
and t2 = 5228 u.t. Indeed, the appearance of more irregular time-series can be observed
in figure 11(b), in which the phase relationship between prey and predator is lost in
oscillatory regions between solid vertical lines, although both populations continue to
oscillate. Within significant regions of the time-frequency (period) plane, we observe
that the predator density follows the prey density with a phase difference of ∆> π/2.

Dominant phase difference values ∆̃(t) (see appendix) range from 90◦ to ≈ 120◦, with

a mean value of ⟨∆̃⟩= 105◦± 15◦ for the entire time interval. Since the dominant scale
s̃(t) constitutes the line of the strongest co-oscillating component of both signals in

the time-scale plane, it can be concluded that value ⟨∆̃⟩= 105◦± 15◦ is the dominant
predator—prey phase difference that characterizes coherent regions.

In the time range between dashed vertical lines in figure 11 (δt= 4770− 5540 u.t.), we
observe a reversible shift from coherent to non-coherent oscillations that are triggered by
the presence of obstacles. Outside this region, oscillations with a dominant predator–
prey phase difference ⟨∆̃⟩ ≈ 105◦ are established. The central part inside this region
corresponds to the regime of incoherent oscillations. However, inside significant areas
that are enclosed between dashed vertical lines we detect predator–prey cycles with
phase shift of π/2. Here, we observe that the regime of coherent oscillations gives way to
a noncoherent time-series spontaneously, but the system also shows a tendency to return
to the dominant dynamical regime with a defined phase relationship. It is important
to note that the regime of incoherent oscillations also appears when another parameter
set, S2, determines non-conservative processes. As in the case of parameter set S1,
decoherence of oscillations occurs if the obstacle density is sufficiently high. This is
confirmation that the presence of obstacles can induce incoherent oscillations, regardless
of the characteristics of the non-conservative processes.

In figure 12, we show the scalograms and scale-averaged power spectra (SAWS) of

the signals Ñ1(t) and Ñ2(t) obtained under the same conditions as in figure 11. Scale-
averaged WPS is obtained by scale-averaging the magnitude-squared scalogram over all
scales. In fact, the SAWS is a time-series of the average variance in a certain band [47].
In the case of figure 11, it is the 16–1024 u.t. band on the period scale. Thus, SAWS
can be used to examine modulation of one time-series by another, or modulation of one
frequency by another within the same time-series. The variance plot for predators and
prey (2nd and 4th panel in figure 12) shows a distinct period between vertical lines
when variance is low. Both time series show consistent changes over time. According
to figures 11 and 12, we can see that periods with low values of SAWS coincide with
regions without significant WCO between predator and prey.
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Figure 12. Scalograms and SAWS of the predator and prey time-series, Ñ1(t)
(a) and Ñ2(t) (b) respectively, obtained for 9-mers (k =9) as obstacles at dens-
ity ρ0 = 0.25. Data correspond to the quasi-steady state regime of evolution
(t > 1000 u.t.). SAWS is obtained by scale-averaging the magnitude-squared sca-
logram over all scales. As in figure 11, dashed vertical lines on both panels bor-
der a time interval t= 4770− 5540 u.t.. Solid vertical lines at t1 = 5040 u.t. and
t2 = 5228 u.t. indicate time span of irregular oscillations.

4. Concluding remarks

In this paper, we have developed an intuitively plausible model for understanding the
impact of habitat spatial heterogeneities on the population dynamics of predator–prey
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systems. We study a stochastic lattice model describing group chase and escape with
sight-limited predators and prey using numerical simulations. Five probabilities that
control the breeding and physiological dying of predators and prey were introduced
into the model. The habitat heterogeneities are built by randomly selecting a fraction
of the sites of the square lattice that are considered forbidden for the species.

In the absence of obstacles, numerical simulations reveal sustained oscillations with
a nearly constant predator–prey phase difference. Numerical simulations have shown
that changing the probabilities for non-conservative processes can increase or decrease
the period of coherent oscillations in the abundance of species and change the relat-
ive lag between coherent components. After introducing obstacles into the model, we
observe the breaks in the oscillation regimes, with random transitions between coher-
ent and non-coherent oscillating regimes. Our model suggests that stochasticity intro-
duced by obstacles is probably responsible for the reversible shift from coherent to
non-coherent oscillations. At a sufficiently small scale, heterogeneities in the environ-
ment can decrease the ability of predators to catch prey by modifying the movement
of individuals. Indeed, obstacles reduce the spatial spread of particles. By changing the
trajectory of predators, obstacles increase the probability that a predator explores a
place he had already gone through and previously cleared of prey. Therefore, obstacles
decrease the encounter rate of the predator with prey. Furthermore, predators could
lose time to handle obstacles they encounter during their search for prey. Accumulation
of a high number of obstacles encountered could decrease the time available to search
for prey. Consequently, the handling of obstacles could also decrease the attack rate.
We consider that obstacles, at sufficiently high densities, decompose the habitat into
areas of various sizes and shapes, where predators and prey are partially isolated from
the rest of the habitat. The local dynamics in these areas are determined by the size
and shape of these regions, due to the influence of obstacles on, for example, encounter
and attack rates. Impaired communication among individuals in different habitat areas
further promotes the development of different dynamics within these isolated units. In
other words, the spatial separation of habitats leads to the development of local oscil-
latory regimes with different phase relationships. Consequently, density fluctuations of
obstacles make predator–prey dynamics in different parts of the habitat very hetero-
geneous. This heterogeneity of the coexistence dynamics reduces or even prevents the
establishment of overall oscillations with a defined phase relationship. Note that we have
shown that periods with low values of SAWS coincide with short episodes of irregular,
non-coherent oscillations (figure 12). If the signal of interest is contaminated by noise or
interference, it can affect the wavelet analysis and result in small scale-averaged power
values. Noisy signals often have components that may not contribute significantly to
the overall power at each scale, leading to smaller values in the scale-averaged spectra.
In general, stochasticity or external perturbations can obscure or prevent predator–prey
oscillations, and our simulations suggest that stochasticity introduced by obstacles is
probably responsible for the reversible shifts from coherent to more-erratic oscillations
that we observe in our model.

Here, obstacles are represented by non-overlapping k -mers that are randomly placed
on the lattice. It would be interesting to perform a similar investigation with obstacles
of various shapes. We can introduce anisotropy in the deposition procedure for obstacle
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shapes. This simple modification introduces a preferential direction in the obstacle ori-
entations and, depending on the aspect ratio of the deposited shapes, imposes specific
‘patterning’ on the habitat. This would allow us to study the role that the spatial
structure of the habitat plays in the pursuit–evasion processes.
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Appendix. Wavelet analysis

The wavelet transform decomposes signals over dilated and translated functions called
‘mother wavelets’ ψ(τ). Throughout our analysis, we used the Morlet wavelet ψ(τ) =
π−1/4 exp(iω0τ)exp(−τ 2/2). The CWT of a signal x (t) is calculated as the convolution
of the signal with a localized complex-valued wavelet function ψ(τ) centered at time t
and dilated by the scale parameter s:

Wx(s, t) =
1

s1/2

ˆ
dt ′x(t ′)ψ∗

(
t ′− t

s

)
. (A1)

Here, the asterisk denotes the complex conjugate. The wavelet coefficients, Wx(s, t),
represent the contribution of the scales (the s values) to the signal at different time
positions (the t values).

To quantify the statistical relationship between two non-stationary signals x (t)
and y(t), the WCS is defined as the smoothed product of the corresponding wavelet
transforms:

Wx,y(s, t) =
⟨
Wx(s, t)W

∗
y (s, t)

⟩
. (A2)

Here, ⟨· · · ⟩ denotes a smoothing operator in both scale and time. The WCS is a measure
of the distribution of power of two signals. Local WPS of a signal x (t) at time t and
scale s is defined as Wx,x(s, t) = ⟨Wx(s, t)W

∗
x (s, t)⟩. The global (time-averaged) WPS is

defined as the time average of the local WPS and measures the averaged variance of
the signal x (t) at scale s. We use the maximum of global WPS to estimate the mean
oscillation period of the signal.

WCO is defined as the amplitude of the WCS divided by the square roots of the
two local WPS:

WCOx,y(s, t) =
|Wx,y(s, t)|√

Wx,x(s, t)
√
Wy,y(s, t)

. (A3)

The WCO estimates the relationship between the two signals at time t and scale s,
normalized into the range 0⩽WCO⩽ 1.
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The dominant scale s̃(t) is defined for every time instance t as the scale parameter
that has maximum WCO at time t over all scales in a prefixed band [s1,s2]. The stat-
istical significance of the WCO is tested against red noise using Monte Carlo (MC)
methods [52, 53]. Surrogate time series (N =1000) are generated with the same first-
order autoregression coefficients as the original time series. For each pair, the WCO is
calculated and then the significance level is estimated for each scale from the ensemble of
MC results, using a 95% significance level. As a coherent oscillation regime, we define a
maximum contiguous time interval for which the dominant scale s̃(t) is inside a statistic-
ally significant area (95% significance level) in the time-scale plane. Inserting dominant

scale s̃(t) into the WCS yields the dominant phase difference ∆̃(t) between the two
signals at every time instance.
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