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In this paper we propose an efficient and simple method for the band structure calculation of
semiconductor quantum dashes. The method combines a coordinate transformation (mapping) based on
an analytical function and the finite differences method (FDM) for solving the single-band Schrödinger
equation. We explore suitable coordinate transformations and propose those, which might simultaneously
provide a satisfactory fit of the quantum dash heterointerface and creation of an appropriate computa-
tional domain which encloses the quantum dash structure. After mapping of the quantum dash and the
rest of computational domain, the Schrödinger equation is solved by the FDM in the mapped space.
For the proposed coordinate transformations, we investigate and analyze applicability, robustness and
convergence of the method by varying the FDM grid density and size of the computational domain. We
find that the method provides sufficient accuracy, stability and flexibility with respect to the size and
shape of the quantum dash and above all, extreme simplicity, which is promising and essential for an
extension of the method to the multiband Schrödinger equation case.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Presently, there is a strong interest in self-assembled semicon-
ductor quantum nanostructures due to their new and advanced
electronic and optical properties. From the technological point
of view, their significant advantage is self-assembling process of
growth, which doesn’t require any additional lithographic steps.
The most interesting applications of these structures are usually re-
lated to semiconductor lasers and optical amplifiers [1–5], where
self-assembled quantum nanostructures are used as an active re-
gion, providing for low threshold current [6], low chirp and small
linewidth enhancement factor [7].

One of the most recent and intriguing representatives of
the self-assembled quantum nanostructures are quantum dashes
(QDHs), which are wire-like semiconductor nanostructures. The
self-assembling growth process leads to an ensemble of QDHs with
significant size fluctuation with respect to their widths, heights
and lengths [8–10]. The size fluctuation considerably affects the
QDHs band structure and consequently electronic and optical char-
acteristics [2,8,11,12]. In order to theoretically analyze an ensemble
of QDHs it is important to develop an efficient, accurate and sim-
ple method for the band structure calculation, which can handle
arbitrary profile of a single QDH.
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Although there is a group of methods (e.g. empirical pseudo-
potential method, tight-binding method [13,14], etc.) which can
be used for calculation of the QDH band structure by including
the potentials of individual atoms, these methods are computa-
tionally very demanding. The more efficient method, which has
been widely used during several decades, is the envelope function
approximation (EFA). An essential assumption in the derivation of
the EFA is that potential is slowly varying on the scale of the lat-
tice constant. The advantage and numerical efficiency of the EFA
come from the fact that one can avoid the explicit inclusion of the
cell periodic potential and that only the slowly varying perturba-
tion enters the Hamiltonian. In this case, the Schrödinger equation
involves the slowly varying part of the wavefunction.

The most commonly used numerical method for implemen-
tation of the EFA in calculation of the band structure for one-
and zero-dimensional irregular nanostructures is the finite element
method (FEM) [15–17]. This method provides high flexibility and
it can be implemented even when heterointerfaces are such that
it is difficult to describe them by analytical functions. Since basis
functions in the FEM are relatively simple, the discretization ma-
trix can be easily set and efficiently evaluated. Although, in this
case, the discretization matrix is sparse, its size is usually very
large, depending on the computational domain size and the mesh
density. However, the major drawback of the FEM is that in addi-
tion it requires specialized routines for automatic or manual mesh
generation. The mesh itself, if not carefully generated, can affect
the accuracy of the calculation and lead to unnecessarily large dis-
cretization matrices and eigenvalue problems.
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On the other hand, the expansion methods [18–20] are more
suitable for Hamiltonians which complexity overcomes the simple
elliptic interface problems. Good examples of complex Hamiltoni-
ans are those implemented in the multiband Schrödinger equa-
tion [18,20] or those which include bulk-inversion-asymmetry
terms [21]. The size of the Hamiltonian matrix for the expansion
methods depends on the quality and number of basis functions
involved in the expansion. However, the density of Hamiltonian
matrices is usually large and does not depend significantly on the
Hamiltonian complexity, making the method suitable for complex
Hamiltonians. Although, these Hamiltonian matrices might be of
moderate size, due to their large density, they require long compu-
tational time for the diagonalization, which is usually proportional
to the third power of the matrix size. In addition to that, evalu-
ation of the Hamiltonian matrix may take a lot of computational
power if it is performed by numerical integration.

The method which is generally very popular due to its simplic-
ity, even in the case of complex Hamiltonians, and which provides
a high order convergence rate and sparse discretization matrices,
is the finite differences method (FDM) [22]. However, the FDM
in principle requires that the heterointerfaces are flat or polygo-
nal, since otherwise they may not be aligned with the grid, but
rather crossing between the grid points, causing low approxima-
tion accuracy [23]. This limits the class of problems which can be
considered by the FDM. From that point of view, the band struc-
ture analysis of nanostructures such as quantum dots and dashes
might look beyond capabilities of the FDM, since their shape is
rarely described by flat heterointerfaces, but rather with various
lens-like curves.

It is well known that in some cases coordinate transforma-
tions may simplify geometry of the structure and computational
domain, leading to the flat interfaces of the structure and compu-
tational domain, and enabling implementation of the FDM within a
new coordinate space [24–26]. In the case of nanostructures where
confinement is two dimensional (2D), the most efficient coordi-
nate transformations are based on conformal mapping [19], since
the kinetic part of the Hamiltonian in the mapped space has the
form of the Laplacian multiplied by the determinant of the Ja-
cobian matrix, while the mixed derivatives do not appear in the
Hamiltonian. On the other hand, in some cases, the computational
domain may consist of several subdomains [25], requiring more
than one function to achieve flat boundaries in the mapped space.
In these cases, the subdomains must be cautiously connected in or-
der to avoid the loss of accuracy, requiring additional programming
efforts. Moreover, the flat computational domain obtained after
mapping, might be of inadequate size with respect to the wave-
function distribution or grid density. In other words, the equidis-
tant grid in the mapped space may correspond to a dense grid in
the region of the original space where the wavefunction changes
relatively slowly, while a coarse grid may cover the region char-
acterized by rapid change of the wavefunction, affecting in such a
manner the accuracy of calculation. Similarly, it may happen that
a large computational domain in the mapped space corresponds
to a small domain in the original space, insufficient to accommo-
date the wavefunctions. However, a large computational domain in
the mapped space may lead to the huge discretization matrices,
which are demanding for the diagonalization or which, in spite of
their size, may not provide a sufficient accuracy of the calculated
eigenenergies.

In this paper, we propose a numerical method based on the
combination of coordinate transformation and the FDM, which
provides an efficient and simple approach for the band structure
and wavefunction calculations of quantum dash nanostructures,
with various cross-section shapes, widths and heights. We focus
our research on the quality of the coordinate transformation with
respect to simultaneous heterointerface fitting and definition of
Fig. 1. (Color online.) Schematic of InAs lens-like quantum dash embedded in GaAs
infinite host matrix.

the computational domain. In other words, we search for map-
pings which can provide suitable computational domains, sufficient
to accommodate wavefunctions, and simultaneously enabling suc-
cessful fitting of the well-barrier heterointerface. A special atten-
tion is given to QDHs with the lens-like cross-section profile rep-
resenting the most frequently adopted approximation for the QDH
shape [4,12,27]. However, we additionally extend our approach to
the case in which the QDH cross-section profile can be approxi-
mated with a trapezoidal shape [10,28,29].

In Section 2 we define geometry of the quantum dash pro-
file and based on it, we present the theory behind the numerical
method. In Section 3 we consider the most important features
which have to be satisfied by the coordinate transformation and
propose several possible fitting solutions for different profiles of
QDH cross-sections. In Section 4, we investigate the influence of
the discretization step and domain size on the convergence of the
method and investigate two coordinate transformations for two
different QDH profiles. Finally, in Section 5 we present our con-
clusions.

2. Description of the method

In order to give a detailed description of the theory be-
hind our numerical method, we shortly discuss and analyze ge-
ometrical and compositional structure of a single QDH based
on InAs well material, which is embedded in GaAs host matrix
(cf. Fig. 1). The effective mass for InAs (m∗

InAs = 0.0221m0) and
GaAs (m∗

GaAs = 0.0623m0), as well as the conduction band offset
(�Ec = 858.7 meV), are taken from [30], where m0 is the free
electron mass. Since QDH is an elongated InAs island [9], the well
material has almost a quantum-wire nature. Therefore, the band
structure of the QDH is mainly dependent on the two-dimensional
(2D) carrier confinement in the transversal direction (xy plane
in Fig. 1). This confinement, on the other hand, is defined by
the profile of QDH cross-section. The most common geometrical
approximation of the QDH’s cross-section is the lens-like profile
[4,12,27], which is shown in Fig. 1. The profile may slightly dif-
fer from the lens-like shape depending on the material system
and growth conditions. Other common shapes used for the pro-
file approximation are triangular [2,31,32], trapezoidal [10,28,29]
and rectangular [8,33,34]. In the case of rectangular and triangular
shapes, the FDM can be directly applied, without using the coordi-
nate transformation [23]. The coordinate transformations proposed
in our paper are capable to fit lens- and trapezoidal-like shapes.
It should be noted that there are more sophisticated coordinate
transformations, which can additionally include wetting layer into
computation, but they will be considered elsewhere.
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The method proposed in this paper consists of four major steps:

1. Selection of a coordinate transformation, which can provide
satisfactory fit of the well-barrier heterointerface and size of
the computational domain.

2. Mapping of the Hamiltonian into new coordinate space by
using the Jacobian matrix for the selected coordinate trans-
formation.

3. The Hamiltonian discretization according to the finite differ-
ences scheme and setting of the discretization matrix.

4. Evaluation of the eigenvalues representing the bound states in
the QDH. This is done by using specialized routines for eigen-
value computation (LAPACK).

Before we deal with a deeper investigation of suitable coor-
dinate transformations and their features (step 1), we give de-
scription of the Hamiltonian mapping and the FDM discretization
(steps 2 and 3). We start from the EFA Schrödinger equation for
electrons in the conduction band:
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where ψ = ψ(x, y) is the slowly varying part of the total wave-
function, U = U (x, y) is the 2D potential profile determined by the
QDH’s cross-section and the conduction band offset, m∗ = m∗(x, y)

is the electronic effective mass, while E is the confinement en-
ergy, referenced to the conduction band edge of the QDH barrier
material. Due to the elongated geometry of the QDH, the quanti-
zation in the longitudinal direction (z-direction) leads to a quasi-
continuous subband structure, the energy of which is well approx-
imated with parabolic dependence on corresponding wavevector
(kz). In our analysis we are interested in eigenenergies correspond-
ing to the subband bottom, for which kz = 0.

By imposing the continuity of the probability density and the
probability current, it is shown that ψ(x, y) and its gradient per-
pendicular to the interface divided by the effective mass, must
be continuous at the material heterointerfaces. Since we imple-
ment the finite differences scheme, the boundary conditions are
naturally built in into the discretization and need not be enforced
explicitly.

Once the coordinate transformation x = x(u, v), y = y(u, v) is
chosen, where ξ = ξ(x, y) represents the old coordinate space, the
Schrödinger equation can be mapped into new w = w(u, v) space:
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In Eq. (2) ψ[x(u, v), y(u, v)] = ψ(u, v), U [x(u, v), y(u, v)] =
U (u, v), while ux, vx, u y , and v y are the elements of the Jacobian
matrix J xy representing partial derivatives of the inverse functions
u = u(x, y) and v = v(x, y) with respect to x and y. Since we
want to set the Schrödinger equation in the w-space we need el-
ements of J xy matrix to be expressed as functions of u and v , i.e.
ux = ux(u, v), vx = vx(u, v), u y = u y(u, v), v y = v y(u, v). Thus, we
start from the transformation x = x(u, v), y = y(u, v) and its cor-
responding Jacobian matrix Juv , which is explicit function on u
and v given by:

Juv =
[

xu xv
]

, (3)

yu yv
where subscripts denote the partial derivatives with respect to u
and v . As the Jacobian matrix J xy for the inverse mapping u =
u(x, y), v = v(x, y) is given by J xy = J−1

uv , we finally derive J xy as:

J xy =
[
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]
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]−1

, (4)

which is now an explicit function on u and v .
The elements of matrix J xy depend on the selected coordinate

transformation. The general form of the transformation used for
fitting the heterointerface and definition of the computational do-
main is given by:

x = Cu, (5a)

y = C f (u, v), (5b)

where C is a scaling factor, expressed in nanometers. This type of
coordinate transformation leads to simpler forms of the Jacobian
matrices Juv and J xy :

Juv =
[
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yu yv

]
=

[
C 0

C fu C f v

]
, (6a)

J xy =
[

ux u y

vx v y

]
=

[
1/C 0

− fu/(C f v) 1/(C f v)

]
= 1

C

[
1 0
μ ρ

]
, (6b)

where fu and f v are derivatives of f (u, v) with respect to u and v ,
respectively, μ = μ(u, v) = C · vx = − fu/ f v and ρ = ρ(u, v) =
C · v y = 1/ f v . It is important to note that function f (u, v) is such
that the determinant of the Jacobian matrix is different than 0,
i.e. | Juv | = | J xy |−1 = C2 · f v �= 0. In this case, the transformation is
“one to one” in the neighborhood of a point and it has the inverse
transformation in all domain points. In the case of transformation
given by (5), Eq. (2) is simplified and becomes:
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If we use standard central differences, we can discretize Eq. (7) as
follows:
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Table 1
A set of functions g(u),h(v), and γ (v) which satisfy conditions required for coor-
dinate transformation, where n,m and p are positive integers.

Suggested functions for g(u): (G + B · u2m)−1; exp(−B · u2m); sech(B · um);
sech(G + B · u2m)

Suggested functions for h(v): v2n+1; sinh(A · v2n+1)

Suggested functions for γ (v): (F + K · v2p)−1; sech(K · v p); sech(F + K · v2p)

where i and j denote indices of the discretization points, while
hu and hv are discretization steps, along u and v coordinate, re-
spectively. It can be seen from Eq. (8) that the implemented dis-
cretization method preserves continuity of the probability density
and the probability current, since the effective masses remain un-
der the derivative. By imposing the Dirichlet boundary conditions
at the boundary of the computational domain, where the wave-
function is equal to zero, we evaluate the discretization matrix by
using relation (8). It is important to note that for an accurate calcu-
lation of eigenenergies the effective mass at mid-points (i + 1/2 or
j + 1/2) has to be calculated as an average of the effective masses
in adjacent points, rather than the average of their reciprocal val-
ues, as one may expect by inspection of relation (8).

3. Coordinate transformation

There are several coordinate transformations which can fit the
heterointerfaces of the QDH shown in Fig. 1. Thus we can con-
sider f (u, v) as a family of functions. This family is not uniquely
defined, but rather has to fulfill certain conditions. Although trans-
formations defined by the function family may lead to similar
cross-section profiles, they may differ significantly depending on
the fitting parameters defining function f (u, v). It means that in
spite of the fact that functions are not the same, for properly
adopted fitting parameters, they provide same or similar cross-
section profiles. Having in mind the profile of the QDH, it is ob-
vious that in order to fit the well-barrier heterointerface, f (u, v)

has to be Gaussian-like with respect to u, i.e. an even function,
decaying with |u| and with the maximum at u = 0. On the other
hand, for the outer dash region, i.e. the barrier, f (u, v) has to pro-
vide similar profile as for the well-barrier heterointerface, which
for larger |v|, has to be wider with respect to u, and enabling,
in such a way, enclosure of the QDH structure and determination
of the computational domain. This reasoning leads to possible so-
lutions for the function f (u, v), which can be represented as a
product of two functions, where one depends on u and the other
on v , i.e. f (u, v) = h(v) · g(u). In f (u, v), g(u) is a Gaussian-like
function, while h(v) is any odd function, which modulo is mono-
tonically increasing with |v|. In such a manner, h(v) modulates
the magnitude of g(u), and enables enlargement of the domain
which surrounds the well material of the QDH, either for posi-
tive and negative values of v . The description of functions h(v)

and g(u) offers several possible solutions and some of them are
given in Table 1, where A, B , G , n and m are fitting parame-
ters.

Fig. 2 shows various profiles, which can fit the QDH heteroin-
terface, obtained as combination of the first three functions g(u)

and function h(v) = sinh(A · v). However, the most of the proposed
solutions lead to domains which size, for large u, very slowly or al-
most negligibly increases with |v|, causing rapid shrinking of the
computational domain, for which y(u, v) ≈ 0. As a matter of fact,
this shrinking is suitable for the fitting of the upper QDH heteroin-
terface, but not for the computational domain. The requirement
for a relatively opened computational domain in the x-direction
comes from the fact that wavefunctions may significantly “spill
out” in the vicinity of the QDH corners, where the upper and
Fig. 2. (Color online.) The Gaussian-like cross-section profiles obtained for some
combinations of the functions h(v) and g(u) given in Table 1, and for v = 2.5,
A = 1.2, B = G = 1, C = 1 nm and m = 1.

lower heterointerface join. Thus, it is necessary to preserve suitable
Gaussian-like features of the function g(u) and to add a new one,
which reduces decay of the function g(u), preventing collapse of
the computational domain for large u. This can be achieved by in-
troducing an additional, even function γ (v), which monotonically
decays with respect to |v| and modulates the argument of function
g(u), reducing it for larger |v|. Finally, we end up with the func-
tion f (u, v) = h(v) · g[γ (v) ·uq], where q stands for 2m or m, while
m is a positive integer. Since the function γ (v) has the same fea-
tures as the function g(u) proposed in Table 1, g(u) can be used
as a model for the function γ (v). According to Table 1, γ (v) is de-
rived from g(u), after parameters G , B and m in the function g(u)

are replaced with F , K and p, respectively.
Starting from the previous consideration, we construct a sim-

ple coordinate transformation, which provides fit for the lens-like
cross-section profile of the QDH and a reasonably small computa-
tional domain, which can accommodate the wavefunctions of the
bound states:

x = Cu, (9a)

y = C sinh(Av)

cosh[Bu/ cosh(K v)] . (9b)

In Fig. 3 we show how each of the parameters in coordinate trans-
formation (9) influence the shape of the function f (u, v), for a
fixed value of v = 3.5. It can be seen that A affects the maxi-
mum of the curve, which exponentially increases with A, while
B and K control the width of the Gaussian-like shape. An increase
in B leads to decrease in the curve width, while the increase in
K leads to its increase. Moreover, the curve shape and its width
are more dependent on K than on B . Since f (u, v) depends on
the products A · v and K · v , the previous consideration indicates
that for a fixed A and K , an increase in v is equivalent to the
increase in A and K for a fixed v . Thus, the increase in v si-
multaneously increases the maximum of the curve and its width,
allowing expansion of the computational domain for large |u|. It
means that the chosen function enables successful fitting of the
upper QDH heterointerface, while for a larger |v| leads to a wider
curve which might represent the boundary of the computational
domain.

However, the excellent fitting features of the chosen func-
tion (9) do not necessarily correlate with the function invertibility.
As it is mentioned in the previous chapter, these features de-
pend on the Jacobian determinant, which has to be different from
zero at all points of the computational domain. Thus, we need
to analyze the elements of the Jacobian matrix Juv , especially
yv = yv(u, v), which in this case, represents the Jacobian deter-
minant (cf. Eq. (6a)) divided by C :
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Fig. 3. (Color online.) Influence of the fitting parameters on the coordinate transformation given by relation (9).

Fig. 4. (Color online.) The cross-section profile of QDH and the computational domain in the (a) ξ - and (b) w-space.
yv = ∂ y

∂v

= C
A cosh(Av) + B K u sinh(Av) sinh(K v)

tanh[Bu/ cosh(K v)]
cosh2(K v)

cosh[Bu/ cosh(K v)] .

(10)

The functions which determine the elements in the Jacobian matri-
ces Juv and J xy are given in Appendix A. Relation (10) determines
| Juv |/C , which is different from zero for any argument u and v ,
providing the existence of the inverse coordinate transformation
and J xy matrix. Although | Juv | has no zeros within the computa-
tional domain, the determinant decreases with |u| and approaches
the zero for large |u| and small |v| and may affect the accuracy of
computation. However, this situation does not occur in the practice
for common sizes of the computational domain. From the previous
discussion, we conclude that the chosen transformation satisfies
the most important requirements for successful implementation of
the FDM including a significant domain enlargement for small vari-
ation in v .

As it is already mentioned, the profile of the QDH cross-section
in some cases can be approximated with a trapezoidal shape,
which can be fitted by the proper combination of the functions
enlisted in Table 1. One possible solution is to use the following
coordinate transformation:

x = Cu, (11a)

y = C sinh(Av)

cosh[Bu2/(F + K v2)] . (11b)

Although this mapping leads to the trapezoidal cross-section pro-
file, in the case of very wide structures (large |u|), the Jacobian
determinant is too small (≈ 0) and the mapping becomes inef-
ficient. Thus, for such structures we adopt a modified mapping,
for which the argument in denominator saturates for large |u|. In
order to fit experimentally found trapezoidal cross-section profile
given in [10], we use following coordinate transformation:

x = Cu, (12a)

y = C sinh(Av)

cosh[G tanh(Buq)/ cosh(K v p)] , (12b)

where p and q are positive integers. The corresponding elements
of the Jacobian matrices Juv and J xy for the coordinate transfor-
mation given by relation (12) are given in Appendix B. The con-
clusions concerning the coordinate transformation features derived
for the lens-like approximation are also valid in this case.

4. Computational results and discussion

In order to characterize and explore our method, we analyze
the influence of the grid density and the computational domain
size on the calculated eigenenergies. The first step in this analysis
is to find a computational domain, for which the wavefunctions,
corresponding to the eigenenergies of the QDH, can completely ac-
commodate in the domain. The dimensions of the QDH given in
Fig. 4 (W ≈ 14 nm, H = 3.5 nm) are typical for InAs/GaAs material
system. For this QDH structure, we find two bound states in the
conduction band. As shown in Fig. 4(b), the upper heterointerface
is mapped into v1 = 1.5, while the lower corresponds to v2 = 0.
The selected domain size in the mapped space is Du = ±17 and
D v = ±3.5, while the fitting parameters are C = 1.3 nm, A = 1.2,
B = 1, K = 0.7.
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Fig. 5. (Color online.) The ground and the 1st excited state energy versus the total
number of discretization points.

For the selected domain, we proportionally and gradually
change the grid density in both directions and calculate eigen-
values for the QDH in Fig. 4. The discretization steps are equal in
both directions, i.e. � = hu = hv . Since the domain is fixed and
the discretization steps are same in both directions, mutual ratio
of the number of points in both directions is kept fixed. Thus, in
further consideration, we do not consider the number of points in
each direction (Nu, Nv ), but rather the total number of grid points
(Nuv = Nu × Nv ), corresponding to the size of the discretization
matrix. We use this quantity as a figure of merit for the computa-
tional time and memory resources required by the method.

Fig. 5 shows dependence of the calculated eigenenergies for
both bound states versus the total number of grid points Nuv . It
can be seen that for small number of the grid points, the eigenen-
ergies rapidly decay and then gradually saturate with further in-
crease in the grid density. The threshold of saturation is not clearly
noticeable, although it can be seen that the difference between
the eigenvalues for the largest (≈ 4 · 106) and any other grid den-
sity, becomes smaller than 1 meV, when the total number of grid
points is larger than 6 ·105, for the ground state, and 3 ·105, for the
Fig. 6. (Color online.) Energy of the ground (a) and the 1st excited state (b) versus computational domain size in the w-space.
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Fig. 7. (Color online.) Contour plot of the wavefunctions for the ground and 1st excited state in the ξ - and w-space for the QDH structure given in Fig. 4.
1st excited state. It means that the 1st excited state is less sensi-
tive on the grid density than the ground state. Moreover, the total
variation in the energy of the 1st excited state (from −86.3 meV
to −87.8 meV) with the number of discretization points is almost
four times smaller than for the ground state (from −415 meV to
−421.2 meV). In order to achieve a trade-off between the accu-
racy and the computational time, we set a criterion for the optimal
number of grid points. If the deviation of calculated eigenener-
gies from the eigenenergy obtained for the largest number of dis-
cretization points is smaller than 1 meV, for all eigenstates, we
consider the number of discretization points sufficient and accept-
able for further computation. According to Fig. 5 we find that
the minimum number of total discretization points for the given
computational domain and accurate calculation is 6 · 105. In other
words, this number of points is the optimal one, for the adopted
domain size and accuracy of 1 meV.

By using the dependence shown in Fig. 5, we are able to cal-
culate the convergence rate of our method, which is ≈ 1 for the
ground state and ≈ 1.3 for the first excited state [25]. This is an
expected result, having in mind that the standard version of the fi-
nite differences has been implemented. However, the convergence
rate can be improved by implementation of more sophisticated
discretization methods, which we do not study here.

In order to make a fair comparison with the FEM, we perform
the FEM calculation on the computational domain in
ξ -space, which fully corresponds to domain used by our method
in w-space. At the same time, we keep the number of elements
in the FEM computation approximately equal to the number of
points Nuv . However, a direct correspondence between number of
points in our methods and elements in the FEM is not fully jus-
tified since the mesh in the FEM is not homogeneous as in the
FDM. We find a fairly good agreement with our calculation, for
which the eigenenergies differ less than one tenth of 1 meV from
the eigenenergies calculated by the FEM. Regarding the computa-
tional time, we find our method more favorable than the FEM. As
an illustration, we present the test of two methods performed on
a desktop computer using 64-bit Windows 7 platform with Intel
Core2Quad@2.66 GHz processor and 8 GB DDR2 memory (available
physical memory 6.47 GB). After setting the number of discretiza-
tion points (or FEM elements) to Nuv = 0.55, 1.27, 1.87 millions,
our method completes calculation in 2.3, 13, and 34.1 min, while
the FEM runs for 15.5, 82.3, and 179.6 min, respectively. This in-
dicates that our method is at least 5 times faster than the FEM.
Although our method is still superior for larger number of points,
the comparison is not further reliable since both methods start to
use virtual memory.

In Fig. 6 we show the energies of the ground and the first
excited state versus the domain size in the u and v direction,
for a fixed discretization step � = 0.013. As one may expect, if
the domain size is too small either in the u or v direction, the
wavefunction cannot accommodate properly in the computational
domain. In this case, a narrow domain acts as an additional infi-
nite potential, raising the eigenenergies of both bound states. The
domain for which the energy of the excited state reaches the sat-
uration is not easy to recognize, although one can roughly adopt
the region 2Du � 20 and 2D v � 5.8, for which variation in the
eigenenergy is smaller than 0.5 meV. The situation is much more
favorable for the ground state, which is less sensitive on variations
in the domain size. In this case, the order of magnitude of the
ground state energy variation is 10−2 meV for all considered di-
mensions of the computational domain, which is almost negligible
in comparison with the first excited state. It can be seen that the
saturation region is much more pronounced than for the excited
state and comprises region 2Du � 18 and 2D v � 5.7, in which the
energy variation is smaller than 10−3 meV. It should be noted that
the sufficient domain size in w-space does not depend on actual
QDH size but rather on its shape i.e. its width and height ratio.
This feature is enabled by scaling factor C , which is used to set all
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dashes of the same shape, regardless to their size, into the same
domain in w-space.

In Fig. 7 we show the distribution of the wavefunction in the
ξ = ξ(x, y) and w = w(u, v) space. It can be seen that in the w-
space the wavefunctions for both states (Fig. 7(a)) are compressed
along the v-direction in the middle of the computational domain.
This is a consequence of implemented mapping, which in the w-
space expands the region in the vicinity of the QDH corners and
simultaneously compresses the space in the middle of the QDH.
After implementation of the inverse mapping from the w- to the
ξ -space, both wavefunctions nicely fit in the chosen computational
domain.

In the case of trapezoidal QDH given in Ref. [10], we use the co-
ordinate transformation (12) and find following fitting parameters:
p = 2, q = 6, A = 1, C = 1.5 nm, G = 20, B = 10−5, and K = 1. The
corresponding fit of the QDH cross-section profile and the compu-

Fig. 8. (Color online.) The trapezoidal QDH profile and corresponding computational
domain.
tational domain in the ξ -space are shown in Fig. 8. The form of
the computational domain in the mapped space is the same as in
Fig. 4(b). It should be noted that the mapping given by relations
(11), although simpler, can reproduce narrower and higher trape-
zoidal shapes.

By implementing the same procedure as before, we calculate
the corresponding discrete energies and wavefunctions shown in
Fig. 9, which nicely accommodate into the selected computational
domain. However, the problem in this case is the elongated shape
of the QDH profile, which in comparison with the height of the
QDH is one order of the magnitude larger and thus very difficult
to fit with a simple combination of functions. Relation (12) pro-
vides not only a very broad and flat upper heterointerface of the
QDH, but also the proper angle of the lateral sides of the trapeze.
This angle is very important since it significantly affects the wave-
function distribution and indicates that approximation of the QDH
by simple rectangular shape is not an adequate replacement for
the trapezoidal profile. Moreover, the proposed coordinate transfor-
mation and the method simplify the implementation of the FDM,
compared to the case when the problem is solved in the original
ξ -space.

5. Conclusion

The paper presents an efficient and simple method for the band
structure and wavefunction calculation of quantum dashes. The
method is based on the coordinate transformation of the QDH
structure, the computational domain and the Hamiltonian, fol-
lowed by implementation of the FDM in the new computational
space. The method versatility comes from a broad set of function
families which can fit the upper QDH heterointerface and gener-
ate the computational domain of the proper form and size. Some
of these functions are proposed in the paper and their features are
studied. We find that the coordinate transformation (9) provides
simple and flexible fitting of the most common, lens-like QDH pro-
file, while the transformation (12) is very suitable for trapezoidal
QDH cross-section shape. Our numerical investigation showed that
there is a sufficient computational domain size, for which the vari-
ation of the eigenenergies with domain size can be reduced below
a certain limit, in our case 10−2 meV. For the considered lens-
like profile, the sufficient domain size is 2Du � 20 and 2D v � 5.8.
The limits of the sufficient domain, and consequently the total
Fig. 9. (Color online.) Contour plot of the wavefunctions for the ground (a) and the first three excited states (b–d) in the ξ -space for the trapezoidal QDH structure in Fig. 8.
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number of discretization points, do not depend on QDH size, but
rather on their shape and dimensions ratio. Thus, the domain is
the universal domain for QDHs with same shape and different
sizes. For given QDH lens-like profile and the optimal total number
of points (approximately 6 · 105) or even larger, the method pro-
vides stable eigenvalue solutions. The proposed method exhibits
solid stability and flexibility with respect to the size and shape
of the QDH and the computational domain. Due to its simplicity,
it is very promising for implementation in the case of multiband
Schrödinger-equation.
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Appendix A. The elements in the Jacobian matrices J uv and Jxy
for QDHs with the lens-like cross-section profile

For the coordinate transformation given by Eq. (9), the elements
of the Jacobian matrix Juv are:

yu = ∂ y

∂u
= −C

B sinh(Av) sinh
[ Bu

cosh(K v)

]
cosh(K v) cosh2[ Bu

cosh(K v)

] , (A.1)

yv = ∂ y

∂v

= C
A cosh(Av) + B K u sinh(Av)

sinh(K v)

cosh2(K v)
tanh

[ Bu
cosh(K v)

]
cosh

[ Bu
cosh(K v)

] ,

(A.2)

while, the elements of Jacobian matrix J xy are:

vx = ∂v

∂x

= 1

C

B sinh(Av)
cosh(K v)

tanh
[ Bu

cosh(K v)

]
A cosh(Av) + B K u sinh(Av)

sinh(K v)

cosh2(K v)
tanh

[ Bu
cosh(K v)

] ,

(A.3)

v y = ∂v

∂ y

= 1

C

cosh
[ Bu

cosh(K v)

]
A cosh(Av) + B K u sinh(Av) · sinh(K v)

cosh2(K v)
tanh

[ Bu
cosh(K v)

] .

(A.4)

Appendix B. The elements in the Jacobian matrices J uv and Jxy
for QDHs with the trapezoidal cross-section profile

For the coordinate transformation given by Eq. (12), the ele-
ments of the Jacobian matrix Juv are:

yu = ∂ y

∂u
= −C BGquq−1 sinh(Av) tanh

[
G tanh(Buq)

cosh(K v p)

]
cosh2(Buq) cosh(K v p) cosh

[
G tanh(Buq)

cosh(K v p)

] ,

(B.1)

yv = ∂ y

∂v
= C

(
A cosh(Av) + K Gpv p−1 sinh(Av)

× tanh(Buq)
tanh(K v p)

cosh(K v p)
tanh

[
G

tanh(Buq)

cosh(K v p)

])

×
(

cosh

[
G

tanh(Buq)

p

])−1

, (B.2)

cosh(K v )
while the elements of the Jacobian matrix J xy are:

vx = ∂v

∂x
= BGquq−1 sinh(Av) tanh

[
G tanh(Buq)

cosh(K v p)

]
C cosh2(Buq) cosh(K v p)

×
{

A cosh(Av) + G Kpv p−1 sinh(Av)

× tanh(Buq)
tanh(K v p)

cosh(K v p)
tanh

[
G

tanh(Buq)

cosh(K v p)

]}−1

, (B.3)

v y = ∂v

∂ y
=

(
1

C
cosh

[
G

tanh(Buq)

cosh(K v p)

])

×
(

A cosh(Av) + G Kpv p−1 sinh(Av)

× tanh(Buq)
tanh(K v p)

cosh(K v p)
tanh

[
G

tanh(Buq)

cosh(K v p)

])−1

. (B.4)
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