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Experiments with ultracold atoms

Nobel prize for physics in 2001 for the experimental
achievement of BEC
Cold alkali atoms:
Rb, Na, Li, K . . .
T ∼ 1nK, ρ ∼ 1014cm−3

Cold bosons, cold fermions
Harmonic trap, optical lattice
Short-range interactions,
long-range dipolar interactions

Tunable quantum systems concerning dimensionality, type
and strength of interactions
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Mean-field description of a BEC

BEC ⇒ all atoms occupy the same state: ψ(~r, t) is a
condensate wave-function
Gross-Pitaevskii equation assuming T = 0
(no thermal excitations)

i~
∂ψ(~r, t)
∂t

=
[
− ~2

2m
∆ + V (~r) + g|ψ(~r, t))|2

]
ψ(~r, t)

V (~r) = 1
2mω

2
ρ(ρ

2 + λ2z2) is a harmonic trap potential
effective interaction between atoms is given by g × δ(~r)
g = 4π~2Na

m , a is s-wave scattering length, N is number of
atoms in the condensate
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BEC with modulated interaction

Usually collective modes are excited by modulation of the
external trap potential
An alternative way of excitation - recent experiment by
Hulet’s and Bagnato’s group: PRA 81, 053627 (2010)

BEC of 7Li is confined in a
cylindrical trap

Time-dependent modulation of
atomic interactions
via a Feshbach resonance

Interesting setup for studying
nonlinear BEC dynamics

300 µm
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Gaussian approximation

To simplify calculations and to obtain analytical insight,
we approximate density of atoms by a Gaussian variational
ansatz
For a spherically symmetric trap

ψG(r, t) = N (t) exp

»
−1

2

r2

u(t)2
+ ir2φ(t)

–
By extremizing corresponding action, we obtain an
ordinary differential equation, PRL 77, 5320 (1996)
In the dimensionless form

ü(t) + u(t)− 1

u(t)3
− p(t)

u(t)4
= 0

Interaction: p(t) =
q

2
π
Na(t)/l, l =

p
~/mωρ
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Linear response

Using this type of approximation and relying on the linear
stability analysis, frequencies of low-lying collective modes
have been analytically calculated
The equilibrium width

u0 =
1

u3
0

+
p

u4
0

Linear stability analysis

u(t) = u0 + δu(t)⇒ δü+ ω2
0δu = 0

ω0 =

s
1 +

3

u4
0

+
4p

u5
0
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Beyond linear response - motivation

Due to the nonlinear form of the underlying GP equation,
we have nonlinearity induced shifts in the frequencies of
low-lying modes (beyond linear response)
Our aim is to describe collective modes induced by
harmonic modulation of interaction

p(t) ' p+ q cos Ωt

q - modulation amplitude, Ω - modulation frequency
For Ω close to some BEC eigenmode we expect resonances
- large amplitude oscillations and role of nonlinear terms
becomes crucial
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Condensate dynamics

ü(t) + u(t)− 1
u(t)3

− p

u(t)4
− q

u(t)4
cos Ωt = 0

p = 0.4, q = 0.1, u(0) = u0, u̇(0) = 0, ω0 = 2.06638

Dynamics depends on Ω
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Excitation spectra (1)

We look at the Fourier transform of u(t),
p = 0.4, q = 0.1 and Ω = 2
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Excitation spectra (2)

Frequency of the breathing mode is significantly shifted in
the resonant region
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Analytic perturbative approach (1)

Linear stability analysis yields zeroth order collective mode
ω0 of oscillations around the time-independent solution u0:

u0 −
1

u3
0

− p

u4
0

= 0, ω0 =

s
1 +

3

u4
0

+
4p

u5
0

To calculate the collective mode to higher orders, we
rescale time as s = ωt:

ω2 ü(s) + u(s)− 1

u(s)3
− p

u(s)4
− q

u(s)4
cos

Ωs

ω
= 0

We assume the following perturbative expansions in q:

u(s) = u0 + q u1(s) + q2 u2(s) + q3 u3(s) + . . .

ω = ω0 + q ω1 + q2 ω2 + q3 ω3 + . . .
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Analytic perturbative approach (2)

This leads to a hierarchical system of equations:

ω2
0 ü1(s) + ω2

0 u1(s) =
1

u4
0

cos
Ωs

ω

ω2
0 ü2(s) + ω2

0 u2(s) = −2ω0 ω1 ü1(s)− 4

u5
0

u1(s) cos
Ωs

ω
+ αu1(s)2

ω2
0 ü3(s) + ω2

0 u3(s) = −2ω0 ω2 ü1(s)− 2β u1(s)3 + 2αu1(s)u2(s)− ω2
1 ü1(s)

+
10

u6
0

u1(s)2 cos
Ωs

ω
− 4

u5
0

u2(s) cos
Ωs

ω
− 2ω0 ω1 ü2(s)

where α = 10p/u6
0 + 6/u5

0 and β = 10p/u7
0 + 5/u6

0.

We determine ω1 and ω2 by imposing cancellation of
secular terms - Poincaré-Lindstedt method
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Results

Frequency of the breathing mode vs. driving frequency Ω
Result in the second order of the perturbation theory

ω = ω0 + q2 Polynomial(Ω)
(Ω2 − ω2

0)2 (Ω2 − 4ω2
0)

+ . . .
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Experimental setup - results

p = 15, q = 10, λ = 0.021,
ωQ0 = 2π × 8.2 Hz, ωB0 = 2π × 462 Hz

ωB >> ωQ, Ω ∈ (0, 3ωQ),
large modulation
amplitude
Strong excitation of
quadrupole mode
Excitation of breathing
mode in the radial
direction
Frequency shifts of
quadrupole mode of about
10% are present
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Conclusions

Motivated by recent experimental results, we have studied
nonlinear BEC dynamics induced by harmonically
modulated interaction
We have used a combination of an analytic perturbative
approach, numerics based on Gaussian approximation and
numerics based on full time-dependent GP equation
Relevant excitation spectra have been presented and
prominent nonlinear features have been found: mode
coupling, higher harmonics generation and significant shifts
in the frequencies of collective modes
Our results are relevant for future experimental designs
that will include mixtures of cold gases and their
dynamical response to harmonically modulated interactions
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Analytic perturbative approach (3)

Secular term - explanation

ẍ(t) + ω2x(t) + C cos(ωt) = 0

x(t) = A cos(ωt) +B sin(ωt)− C

2ω
t sin(ωt)︸ ︷︷ ︸

linear in t

In order to have properly behaved perturbative expansion,
we impose cancellation of secular terms by appropriately
adjusting ω1 and ω2

Another way of reasoning

u(t) = A cosωt+A1t sinωt ≈ A cosωt cos ∆ωt+
A1

∆ω
sin ∆ωt sinωt

u(t) ≈ A cos[(ω −∆ω)t]⇒ ∆ω = A1/A
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