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Abstract. The irreversible random sequential adsorption of polydisperse mix-
tures of ‘lattice animals’ on a three-dimensional cubic lattice is investigated using
Monte Carlo simulations. A ‘lattice animal’ is defined as a 3D object composed
of a group of points connected as nearest neighbors on a lattice. Polydisperse
mixtures consist of n objects of varying sizes but sharing the same basic shape.
This study analyzes the influence of polydispersity and the geometrical proper-
ties of the shapes on the jamming density 65 and the temporal evolution of the
density 0(t). The approach of the coverage to the jamming limit 6y is found to
be exponential, expressed as 0(t) = 0y — Ae~'/?, both for the mixtures and their
individual components. The values of relaxation time o are determined by the
number of different orientations m that the lattice animals can take when placed
on a cubic lattice. It is observed that the parameter ¢ increases linearly with
the number of mixture components n of the same basic shape. Additionally, the
partial jamming densities and corresponding relaxation times o decrease as the
size of the mixture components increases.
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1. Introduction

Packings consisting of various objects are of great scientific and technological import-
ance, ranging from agriculture, ecology, biology, material science, nanotechnology [1-8],
etc. Depositing objects could be granular particles, polymer chains, globular proteins,
DNA segments, nanoparticles, such as nanotubes, nanoribbons, or nanoplates, making
an inexhaustible research base. The packing structure is still not able to be predicted
by a general model that takes into account various controlling parameters, such as geo-
metric and material properties of objects. Describing the packing processes is among
the most persistent problems in science [9].

Deposition processes where microscopic events occur essentially irreversibly on the
time scales of interest are broadly studied as random sequential adsorption (RSA) on
a lattice [10, 11]. The RSA model considers sequential addition of particles of various
shapes at randomly chosen places on the D-dimensional substrate. Overlapping of the
particles is not allowed, and there is no diffusion of the deposited objects. The kinetics of
the deposition process are described by the time evolution of the coverage (or the density
of the system), 0(t), that is the fraction of the substrate occupied by the deposited
objects at time ¢. Once an object is placed, it affects the geometry of all later placements
so that the dominant effect in RSA is the blocking of the available substrate space. At
sufficiently large times the coverage 6(t) approaches the jamming value 5, where only
gaps too small to place new particles are left on the substrate and the limiting (jamming)
coverage 0y is less than the corresponding density of closest packing.

Depending on the system of interest, RSA models can differ in substrate dimension-
ality, while the substrate can be continuum or discrete. Analytical results are available
mostly for one-dimensional problems [12]. Due to the complexity of deposition processes
in higher dimensions, Monte Carlo simulations represent the main tool for describing
such systems. The long-term behavior of the coverage fraction 6(t) is known to be
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asymptotically algebraic in the case of continuum substrates [13, 14]. For the lattice
model approach to jamming coverage, 05 is exponential [15-17], of the form:

0(t) =0y — Ae™7. (1)

The jamming coverage 6y, the relaxation time o, and the parameter A depend on the
shape of depositing objects and their orientational freedom, on the substrate dimension-
ality, on the type of depositing particles (monodisperse or mixtures), and other specific
conditions.

RSA models have been extensively studied during the last few decades. Influence of
the particle shapes on the packing density was investigated for continuum [18-21] and
discrete models [22-25]. Deposition of objects of various sizes and rotational symmetries
that can be made by self-avoiding random walks on a triangular lattice was studied in
[24]. Tt was found that shapes with the symmetry axis of a higher order have lower values
of relaxation time o, i.e. they approach their jamming limit more rapidly. The jamming
coverage 03 decreases with the object size regardless of their shape. Nevertheless, for
sufficiently large objects it turns out that changing the shape has considerably more
influence on the jamming density than increasing the object size. In the case of the RSA
of lattice animals on a 3D cubic lattice [25] it was shown that the relaxation time o
is equal to the number of different orientations m that lattice animals can take when
placed on a cubic lattice.

Real physical systems often consist of polydisperse particles, i.e. particles of different
shapes and sizes. Irreversible deposition in polydisperse systems was studied for binary
mixtures [26-29], and for mixtures of particles obeying various size distributions [30-32].
Numerical simulations of the deposition of two-component mixtures of line segments on
a square lattice [26] showed that the mixtures cover the lattice more efficiently than
either of the species separately. RSA of polydisperse mixtures containing depositing
objects of various shapes and sizes was studied by Monte Carlo simulations, and the
mixtures were made of objects formed by self-avoiding random walks on a triangular
lattice [33]. It was found that the symmetry properties of the objects have a decisive
influence on the adsorption rate of each mixture component. Both the partial jamming
coverage and the corresponding relaxation time decrease very rapidly with the size of the
objects making the mixture. Jamming coverage for the mixture was found to increase
with the number of components n for mixtures of more symmetric objects, contrary to
the mixture of less symmetric objects where jamming coverage decreases.

Much attention has been paid to the RSA on 1D and 2D lattices, but there are
significantly fewer studies of irreversible deposition in 3D [25, 34, 35]. In this paper, we
present the results of Monte Carlo simulations for the irreversible RSA of polydisperse
mixtures of lattice animals on a 3D cubic lattice. RSA of lattice animals on 3D lattices
is a complex problem in itself. Introducing polydispersity increases the complexity of
the studied systems, and the aim of this work is to investigate these processes in a
systematic way.

The paper is organized as follows. Section 2 describes the model and the details of the
simulations. The kinetics of the process and the dependence of the jamming coverage on
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the number of mixture components are analyzed in section 3. Finally, section 4 contains
some additional comments.

2. Definition of the model and the simulation method

Depositing objects are ‘lattice animals’ which are connected graphs on a grid. A site
animal can be seen as a finite set of lattice sites connected by nearest-neighbor bonds. In
mathematics, and particularly in combinatorics, the terms polyominoes and polycubes
are commonly used. A polyomino of size N is an edge-connected set of N squares on
the square lattice. A polycube of size N is a face-connected set of N cubes in the
cubic lattice. Since the square (cubic) lattice is self-dual, polyominoes (polycubes) are
equivalent to site animals on the dual lattice.

Lattice animals can be categorized as ‘fixed’ or ‘free’. ‘Fixed’ lattice animals are con-
sidered different if they have different shapes or orientations. On the other hand, ‘free’
lattice animals are distinguished only by shape, not by orientation. Fixed polycubes are
most commonly discussed in the context of enumeration, which determines the number
of polycubes corresponding to a specific parameter, usually their size or perimeter. There
is no known analytic formula for calculating the number of fixed D-dimensional poly-
cubes of size N, A;(NN), d > 1. The only known methods for computing A4(N) are based
on enumerating all the polyominoes or polycubes using various numerical algorithms
(36, 37].

In this work, we focus on the ‘free’ lattice animals on a 3D cubic lattice. The
term ‘free’ will be omitted in the following text. Lunnon [38] analyzed polycubes by
considering the symmetry groups and computed the number of 3D polycubes of size
up to N =6. Most polycubes are asymmetric, but many have more complex sym-
metry groups. A polycube without symmetry has 24 different orientations. The number
of orientations m that a polycube may take varies with the symmetry of the poly-
cube. There are seven classes of lattice animals with different numbers of possible ori-
entations on a cubic lattice, and the corresponding values of the parameter m are
m € {1,3,4,6,8,12,24} [25].

Table 1 shows all polycubes of size N =1, 2, 3, and 4 and equivalent lattice animals on
the dual lattice. Polycubes of size N = 1,2,3 are planar with a maximum of 12 different
orientations (object V3). There is only one shape of size N =1 (monomer (M)), and
also one shape of size N =2 (dimer (D)). Three connected lattice sites can form two
different lattice animals. There are eight tetracubes (fourth-order polycubes), five of
which are planar. A tetracube A4 and its mirror image B4 (chiral twins) are considered
distinct because there is no rigid motion that transforms one onto the other. Monomer
has the lowest number (m = 1), while the shape (L4) has the highest number (m = 24)
of possible orientations. An overview of all lattice animals of size NV <5 is given in our
previous works [25, 39] (see, e.g. large tables 1 and 2 in [39]).

Polydisperse mixtures are composed of n objects of various sizes but of the same
basic shape. The basic objects used for generating larger objects in simulations are the
monomer (M), dimer (D), objects (V3), (A4), (L4), (04), (P4), (S4), (T4), and the
cubes (C8). Objects larger than the basic ones are created through isotropic scaling.
Uniform scaling is a linear transformation that enlarges or shrinks objects by a scale
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Table 1. Shown here are all polycubes of size N =1, 2, 3, 4 together with the
equivalent lattice animals (z) on the dual lattice. For each lattice animal (z) with
m possible orientations, Ggr) is the jamming coverage. The numbers in parentheses
are the numerical values of the standard uncertainty of 95@ referred to the last
digits of the quoted values.
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Table 2. Larger objects of the same shape are made by repeating each bond of the
basic shape the same number of times, as illustrated for the k-mers, objects (V3),
and (L4). Number of lattice sites occupied by the object is N.

(D) N (V3) N (L4) N

3 4

7

| ]
_ ]

factor that is the same in all directions. The results of uniform scaling are similar to the
original. Similarity is a transformation that preserves angles and changes all distances in
the same ratio, called the ratio of magnification r. Actually, objects of larger sizes than
the basic ones are created in simulations by repeating each bond of the basic shape the
same number of times r. The process of forming larger objects is illustrated in table 2
for k-mers and basic shapes (V3) and (L4). Objects created from the primary object
(A4) by uniform scaling with factors » = 1,2,3,4 are shown in figure 1. A polydisperse
mixture with n components, corresponding to a chosen basic object (X), contains the
basic object (X) and all objects similar to it obtained through isotropic scaling with
scale factors k=2,...,n.

A mixture of objects of various shapes but the same size is made of objects covering
four lattice sites from table 3.

The numerical algorithm used to deposit a lattice animal at randomly chosen
places on the 3D substrate was already described in detail in previous papers [25,
39]. Therefore, we shall present it briefly, giving the algorithm additions necessary for
mixture deposition. At each Monte Carlo step, a lattice site is selected randomly. If the
chosen site is unoccupied, one of the objects making the mixture is selected at random,
and deposition of the object is tried in one of the 24 possible orientations that are
also chosen at random. Then, the head of the object is fixed at the selected site, and
it is searched whether all necessary sites are unoccupied. If so, the object is placed,
and the corresponding sites are denoted as occupied. If the attempt fails, then a new
site, object, and orientation are selected randomly, and so on. The jamming density is
reached when neither of the objects from the mixture can be placed in any position on
the lattice. During the simulation, we record the total number of inaccessible sites in the
lattice. Inaccessible sites include both occupied and unoccupied sites that cannot serve
as the starting point for depositing the object in any of the 24 possible orientations.
We determine that the jamming limit is reached when the number of inaccessible sites
equals the total number of sites in the lattice. After each kL? attempt to deposit the
object, we check this condition, starting from a later time point established in previ-
ous simulations on smaller lattices. Depending on the size of the object, the value of
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Y X Y X

Figure 1. The process of forming larger objects from the primary object (A4) by
uniform scaling with factors r =1,2,3,4.

Table 3. Relaxation time ¢ and the jamming density 85 for objects of the same size
but various shapes making the eight-component mixture. The objects are illustrated

in table 1.

Shape m o 05
(A4) 12 90.99 0.1110
(B4) 12 90.66 0.1110
(14) 3 18.59 0.1048
(L4) 24 191.20 0.1173
(04) 3 19.24 0.1090
(P4) 8 62.97 0.1045
(S4) 12 90.58 0.1109
(T4) 12 90.74 0.1071
MIXTURE 184.84 0.8755
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parameter k£ can be 20, 50 or 100. If this condition is met, we terminate the current
simulation run and move on to the next one.

The Monte Carlo simulations are performed on a 3D cubic lattice of size L =128.
Periodic boundary conditions are used in all directions. The time is counted by the
number of attempts to select a lattice site and scaled by the total number of lattice
sites. The data are averaged over 100 independent runs for each of the investigated
mixtures.

3. Results and discussion

The simulations were performed for mixtures containing n objects of different sizes,
which were created by scaling the same base object. It is important to note that in each
deposition attempt the objects are selected from the mixture with equal probability.
We can imagine that we randomly choose one object from a large reservoir of objects
containing all components of the mixture with equal fractional concentrations. At the
same time, we assume that the fractional concentrations of the mixture components in
the reservoir do not change due to adsorption events. Number of mixture components
is increased up to n =10 for smaller basic shapes (k-mers and objects (V3)), and up to
n =>5 for other basic objects from table 1.

Example results for the time dependence of In(f; — 6(t)) are shown in figure 2 for the
five-component mixtures containing various sizes of basic objects from table 1. For the
late stages of the process these plots are straight lines, suggesting that the approach to
the jamming limit is exponential in the form equation (1). Five sets of lines with different
slopes are distinguished, corresponding to different numbers of possible object orienta-
tions m = 1,3,8,12, and 24. The steepest slopes are obtained for the cubes (C8) having
only one possible orientation, and they reach the jamming coverage for the shortest
time. The process slows down with the number of possible object orientations, and it is
the slowest for the objects without symmetry, having m = 24 possible orientations.

Values of the parameter o (equation (1)) are determined from the slopes of the plots
of In(fy —6(t)) vs t in the late stage of the deposition process, and their dependence
on the number of mixture components n is shown in figure 3. It can be seen that the
value of the relaxation time o increases linearly with the number of mixture components
of the same basic shape. The values of the parameter o are generally larger, and the
relaxation time o increases more sharply for the objects with a larger number of possible
orientations m.

Plots of In(f; —0(t)) vs t are shown in figure 4 for the five-component mixtures,
and their components for k-mers, objects (P4), (V3), and (L4), having m = 3,8,12, and
24 possible orientations, respectively. In the late stages of the process these plots are
straight lines not only for the mixtures but also for each of their components. This
indicates that the approach to the jamming limit follows an exponential pattern for
both the mixture and its components. Plots for the smallest mixture components align
with those for the mixtures because the small unoccupied areas left at the end of the
deposition process are mainly filled with the smallest components.

Dependence of the parameter ¢ on the size N of the mixture components for the
ten-component mixtures of k-mers and for the ten-component mixtures of objects (V3)
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T4
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In(0 -0(t))

T T T
200 400 600

t

Figure 2. Plots of In(6y — 0(t)) vs t for the five-component mixtures containing vari-
ous sizes of basic objects: cubes (C8) with m =1 orientation, (D), (O4) with m =3
orientations, (P4) with m = 8 orientations, (V3), (A4), (S4), (T4) with m =12 ori-
entations, and (L4) with m =24 orientations.

is shown in figure 5(a)). Similarly, this dependence is shown for the five-component
mixtures of (L4), (P4), and (T4) in figure 5(b)). The relaxation time o decreases rapidly
with the size of the mixture components, so that at late times the kinetics of the
deposition process is determined mostly by the smallest objects in the mixtures.

Jamming densities 05 for the examined mixtures are presented in figure 6. Values of
the jamming densities are determined up to ten-component mixtures for k-mers and for
objects (V3), while for basic objects covering four lattice sites and for the cubes (C8)
simulations are performed up to five-component mixtures. It is interesting to note that
the jamming density of the mixture increases with the number of mixture components
n, except for the objects (P4) and (S4). For most of the objects the jamming density
increases despite the fact that the number of the mixture components is always increased
by adding objects of a larger size. This increase is most prominent for mixtures of cubes.

During the RSA process leading to the jamming limit, each of the mixture compon-
ents reaches its own jamming density. In order to gain a better insight into the deposit
structure, partial jamming densities are determined and presented in figure 7. These
partial jamming densities decrease with the object size N, and this decrease is more
pronounced for smaller object sizes. Smaller objects fill the empty spaces left by the
larger ones, and the smallest ones dominate in the final jamming configurations.

The smallest objects give the most significant contribution to the final jamming
density. The difference in the behavior of the mixture jamming density for various
object shapes can be understood by having this in mind. Larger objects leave areas of
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Figure 3. Dependence of the parameter o (equation (1)) on the number of mixture
components n for the five-component mixtures of basic objects from table 1. The
number of mixture components n is always increased by adding an object of a
larger size.

unoccupied sites that are filled with smaller ones. Final jamming density is predomin-
antly determined by deposition of the smallest objects in the mixtures. Figure 8 shows
the normalized partial jamming densities of the smallest objects for the n-component
mixtures of various basic objects covering four lattice sites. These values are obtained
by dividing the partial jamming density of the smallest object by the jamming density
of the single basic shape. Results are shown for mixtures made of two, three, four, and
five components. The difference between these normalized partial jamming densities
increases with the number of mixture components n. Decrease is faster for the shapes
(P4) and (S4), resulting in a reduction of the total jamming density with the number
of mixture components.

An eight-component mixture of various shapes of the same size N =4 is also
examined. The kinetics of the deposition process is illustrated in figure 9 for the mixture
and the mixture components. Four sets of lines with different slopes correspond to four
different numbers of possible object orientations, m = 3,8,12, and 24. At late enough
times, when the coverage fraction is sufficient to make the geometry of the unoccupied
lattice site complex, the number of possible orientations m substantially influences the
objects’ adsorption rate. Objects with a lower number of possible orientations reach
their partial jamming density in a shorter time. Consequently, in the late stage of the
process, the kinetics of the mixture deposition is determined practically by the depos-
ition of the component with the highest value of m. At late times, deposition events
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Figure 4. Plots of In(6y —6(t)) vs t for the five-component mixtures and their
components. (a) k-mers with m =3 orientations; (b) objects of basic shape (P4)
with m =8 orientations; (c) objects of basic shape (V3) with m =12 orientations;
(d) objects of basic shape (L4) with m = 24 orientations.
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Figure 4. (Continued.)
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Figure 6. Dependence of the jamming density 6; on the number of mixture com-
ponents n for the mixtures of various sizes of basic shapes from table 1: (a) (D)
and (V3); (b) (A4), (L4), (O4), (T4), and (C8); (c) (P4) and (S4). The number of
components n is always increased by adding an object of a larger size.
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occur on small islands of unoccupied sites. There is only a restricted number of pos-
sible orientations in which an object can reach a vacant location, provided the location
is small enough. For a shape with a larger number of possible orientations, it takes a
longer time to examine all possible ways of placement in these small free areas. Values
of the relaxation time ¢ and the jamming density 6y for the eight-component mixture
and for the mixture components are given in table 3.

Partial jamming densities of mixture components depend on their packing facil-
ities with other objects. The number of possible orientations m is also one of the
factors affecting the partial jamming density. The highest partial jamming density in the
examined composite has the object (L4) with m =24, and the lowest partial jamming
densities are observed for the objects (P4) and (I4) with m =8 and m = 3, respectively.
Objects with larger m have enhanced abilities for filling the small empty regions left at
late times of the process, which contributes to higher partial densities. A similar depend-
ence of the jamming density on the number of possible orientations can be observed
for the deposition of single objects [25], and for the two-component mixtures [39] on a
three-dimensional cubic lattice. In the case of polydisperse mixtures, the relative dif-
ference in the jamming density of the object shapes with various numbers of possible
orientations is even more pronounced.
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Figure 7. Dependence of the partial jamming density on the component size N
for the: (a) ten-component mixtures of objects (D) and (V3); (b) five-component
mixtures of objects (A4), (L4), (P4), (S4), and (T4); (c) five-component mixtures
of objects (O4); (d) five-component mixtures of objects (C8).
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Figure 8. Normalized partial jamming densities of the smallest objects for the n-
component mixtures. These values are obtained by dividing the partial jamming
density of the smallest object by the jamming density of the single basic shape.

4. Conclusion

We have performed extensive numerical simulations of the irreversible deposition of
polydisperse mixtures composed of extended objects on a 3D cubic lattice. The impact
of the geometric properties of the objects, as well as their polydispersity, on the kinetics
of the deposition process has been studied.

We have analyzed polydisperse mixtures in which the size of shapes making the
mixture gradually increases with the number of mixture components n. Basic shapes
were all lattice animals covering two, three, and four lattice sites that can give different
behavior, and a cube covering eight lattice sites. Special attention was paid to the
dependence of the densification kinetics on the number of mixture components n. The
deposition process slows down with the number of possible basic object orientations,
and it is the slowest for the objects without symmetry. The relaxation time o increases
linearly with the number of mixture components of the same basic shape. For most
objects the jamming density increases despite the fact that the number of mixture
components is always increased by adding objects of a larger size. This behavior is
predominantly determined by the ability of the smallest objects in the mixture to fill
the small accessible areas left at late times of the process.

A similar effect was observed in the RSA of polydisperse mixtures on a triangular
lattice [33]. In mixtures of more symmetrical shapes, such as line segments and triangles,

https://doi.org/10.1088/1742-5468 /ada257 18


https://doi.org/10.1088/1742-5468/ada257

Random sequential adsorption of polydisperse mixtures on a cubic lattice

------- mixture
—A4
— B4

14
— L4

04
— P4

S4
— T4

In(6 -0(t))

y T y T
0 500 1000
t

Figure 9. Plots of In(6; —6(t)) vs t for the eight-component mixture of various
objects covering N =4 lattice sites. The plots are also shown for the mixture com-
ponents, as indicated in the legend.

jamming coverage increases with the number of components. In contrast, mixtures of
less symmetrical shapes exhibit a decrease in jamming coverage as n increases.

We have also performed a detailed analysis of the contribution to the densification
kinetics coming from each mixture component. Both the partial jamming densities and
the corresponding relaxation times decrease rapidly with the size of the objects making
the mixture. Hence, the asymptotic behavior of the density is dominated by the smallest
particles. For mixtures of lattice animals with different numbers of possible orientations
m, but of the same number of segments, the relaxation time is smaller for components
with lower m.
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