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Present calculations of electrical transport properties of materials require evaluations of electron-phonon coupling 
constants on dense predened grids of electron and phonon momenta and performing the sums over these 
momenta. In this work, we present the methodology for calculation of carrier relaxation times and electrical 
transport properties without the use of a predened grid. The relaxation times are evaluated by integrating out 
the delta function that ensures energy conservation and performing an average over the angular components of 
phonon momentum. The charge carrier mobility is then evaluated as a sum over appropriately sampled electronic 
momenta. We illustrate our methodology by applying to the Fröhlich model and to a real semiconducting material 
ZnTe. We nd that rather accurate results can be obtained with a modest number of electron and phonon 
momenta, on the order of one hundred each, regardless of the carrier eective mass.

1. Introduction

Electron-phonon interactions play a crucial role in determining var-
ious physical properties and processes in materials [1], such as elec-
trical and thermal conductivity [2–5], relaxation of hot carriers [6], 
conventional superconductivity [7,8], temperature dependence of the 
band gap [9–12], and spin relaxation [13,14]. Density functional the-
ory (DFT) [15–17] and density functional perturbation theory (DFPT) 
[18,19] provide a framework for calculating electron-phonon cou-
pling constants. However, calculating physical properties that depend 
on electron-phonon interactions remains challenging. This is because 
electron-phonon coupling constants often vary rapidly within the rel-
evant parts of the Brillouin zone, and physical properties are typically 
described by sums over phonon and/or electron momenta. One there-
fore needs to know the electron-phonon coupling constants on a rather 
dense grid of electron and phonon momenta - much denser than the one 
that is needed to perform converged DFPT calculations.

In last two decades, a methodology for obtaining the electron-
phonon coupling constants on a dense grid from DFPT calculation on a 
coarse grid was developed [20] and improved [21,22]. It is based on rep-
resentation of electronic wave functions in Wannier basis and phonon 
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displacements in a local basis, followed by their transformation to Bloch 
function and plane wave basis. It is thus usually referred to as the 
Fourier-Wannier interpolation procedure. Various physical properties 
were then computed using this methodology [4,23–39]. For example, 
to obtain carrier mobility in semiconducting materials, a coarse grid on 
the order of ∼83 is typically used, while dense grids ranging from ∼453
up to ∼6003 were reported [3,4,40–42]. Due to the need to compute the 
electron-phonon coupling constants and perform their summation on 
such a dense grid, the methodology is rather computationally demand-
ing and it is a signicant computational eort to apply it to a particular 
material. Hence, there are on-going research activities aimed at making 
such calculations less computationally demanding [42–45].

In this work, we demonstrate a grid-free procedure for calculation 
of relaxation times and electrical transport properties. The relaxation 
times involve the sum/integral over phonon momenta of a term that 
contains a delta function that ensures energy conservation in the phonon 
emission or absorption process. We perform this integral by integrating 
out the delta function and reducing it to a two-dimensional sum that is 
evaluated using a Monte Carlo procedure. Electrical transport proper-
ties such as carrier mobility or Seebeck coecient then involve the sum 
over electronic momenta. We perform this summation by sampling the 
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electronic momenta using a Monte Carlo procedure. The computation of 
electron-phonon coupling constants for given electron and phonon mo-
menta (usually referred to as the  and  points, respectively) is still 
performed using the Fourier-Wannier interpolation procedure. How-
ever, it turns out that in our approach a rather modest number of 
and  points (around 100 each) is sucient to get converged results 
for relaxation times and carrier mobility in contrast to the need to use 
rather dense grids of  and  points in usual approaches with uniform 
or nonuniform grids. Such an advantage comes from the way our pro-
cedure is designed as it samples the most relevant  and  points in 
contrast to the straightforward use of predened grids.

The paper is organized as follows. In Sec. 2.1 we present the method-
ology for calculation of relaxation times and in Sec. 2.2 we present the 
method for evaluation of transport properties such as the carrier mobil-
ity. In Sec. 3.1, we rst illustrate the methodology by applying it to the 
Fröhlich model where exact solutions are known and the results can be 
compared with them. Subsequently, in Sec. 3.2 we apply the methodol-
ogy to a real semiconducting material ZnTe and evaluate the electron 
and hole momentum relaxation times and mobility. We nalize the pa-
per with the discussion and the conclusions in Sec. 4.

2. Methods

2.1. Calculation of relaxation times

Carrier momentum relaxation time  of a carrier in band  whose 
wave vector is  is given by the expression [2,5,46,47]
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In Eq. (1) the energy of electronic state in band  whose wave vector is 
 is denoted as , the energy of a phonon in mode  with wave vec-
tor  is denoted as ℏ, the occupation number of that phonon state 
determined by the Bose Einstein distribution at a temperature  is de-
noted as  =


exp ℏ

 − 1
−1

. The delta function in the expression 
ensures energy conservation in the phonon absorption (the plus sign in 
the expression) or emission (the minus sign in the expression) process. 
,± are the electron-phonon coupling constants between the elec-
tronic states  and ±  due to phonon state , while  = 1 

ℏ

 is the electronic band velocity of state . The summation is performed 

over all possible  phonon momenta , phonon modes , bands of 
the nal electronic state , including the possibility of phonon absorp-
tion (the plus sign in the sum) and emission (the minus sign in the sum) 
processes.

The main challenge in evaluating the expression given by Eq. (1)
comes from performing the summation over phonon momenta of the 
function that contains a delta function. Namely one has to perform the 
sum of the following type

 = 2 



 
 ()


()


, (2)

which is in the same time equal to

 =


(2)2  d ()

()


, (3)

where  is the volume of the unit cell of the crystal.
Dierent approaches have been employed so far to evaluate the 

sums or integrals of the type given by Eqs. (2) or (3). One possibil-
ity is to broaden the delta function by replacing it with a Gaussian 
or a Lorentzian function and perform the summation, which is an ap-
proach that has been so far widely used in the literature [3,48,49]. The 

challenge in such an approach is to properly choose the broadening pa-
rameter. If a large value of broadening is chosen, the summation can be 
straightforwardly performed but the result does not correspond to the 
result of the expression that involves a delta function. If a small value 
of broadening is chosen, one then needs a rather dense grid of  points 
to faithfully represent the broadened delta function and the summation 
might become impossible in practice due to extremely large number of 
 points in the summation.

Another possibility is to use the tetrahedron method [5,41,50,51]. In 
this approach the  space is divided into tetrahedra and contributions 
to the integral from each tetrahedron are evaluated. To approximately 
evaluate the integral over the volume of the tetrahedron, the functions 
and  are evaluated at the vertices of the tetrahedron and it is assumed 
that their values inside the tetrahedron can be obtained from linear in-
terpolation of their values at the vertices. The integral over the volume 
of the tetrahedron can then be performed analytically. In this approach, 
the challenge is that the grid has to be dense enough so that the linear 
interpolation approximation becomes accurate. In practice, one has to 
increase the grid size until convergence is reached.

In this work, we exploit the fact that the delta function in the inte-
gral in Eq. (3) can be integrated out. This gives signicant benets as 
diculties with proper representation of the delta function are avoided 
and the dimensionality of the integral is reduced. We obtain
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where ,  ,  are spherical coordinates of the vector . By performing 
analytically the integration over  we obtain
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where ()


 , 

 is the -th zero of the function ,  , 
 regarded 

as a function of  for given  and .
In our implementation, we calculate the integral from Eq. (5) using a 

Monte Carlo procedure. Namely, we select Ω pairs 

 , 

 as random 
points on a unit sphere and calculate the average
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To evaluate the function ℎ using Eq. (6) one needs to nd the zeros 
of the function ,  , 

 regarded as a function of  (for xed 
and ). We accomplish this as follows. We search for the zeros in the 
interval min, max

, where min is some rather small value (typically 
min = 10−4 bohr−1) and max is the maximal value that still keeps the 
vector  = ( = max,  , ) within the rst Brillouin zone. We divide 
this interval into 1 (typically 1 = 20) subintervals in such a way 
that the subinterval boundary values form a geometric progression. For 
each of these subintervals, we check if the signs of the function  at the 
boundaries are opposite. When this is the case, we search for the zeros 
of the function  in the interval using the bisection method, where we 
typically apply 2 = 10 iterations of the method.

2.2. Calculation of charge carrier mobility

With carrier momentum relaxation times at hand, one can calculate 
various carrier transport properties, such as the charge carrier mobil-
ity, the Seebeck coecient or the electronic thermal conductivity. Here 
we present our procedure for the case of charge carrier mobility. It 
is straightforward to apply the same procedure to calculate the other 
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mentioned transport properties. The components of the charge carrier 
mobility tensor are given as [2,5,46,47]

 = −0

∑
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where  is the occupation of electronic state  and the indices  and 
 take the values ,  or , while 0 is the elementary charge. In the 
typical scenario of low carrier concentration these occupations are at 
equilibrium given by the Maxwell-Boltzmann distribution  ∝  =
exp

{
− −

 
}
.  is the reference energy that can be chosen arbitrarily, 

whereas it is most natural to choose it as the extremum of the most 
populated band (for example, the bottom of conduction band when we 
are interested in the mobility of electrons). The mobility is then given as
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The components of the mobility tensor  can then be calculated as 
the average of the quantity 
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. This average is calculated using a Monte Carlo procedure as fol-
lows. A random point  in the Brillouin zone is selected. A random band 
number  is selected [from few (typically one to four) bands in the rel-
evant energy range]. The state  is accepted with a probability . 
The procedure of selection of  states is repeated and  is eventually 
calculated as the average over all  accepted  states.

The described Monte Carlo procedure for evaluation of  gives 
the result at a single given temperature  . In practice, one is usually 
interested in temperature dependence of the mobility. By repeating the 
procedure at a dierent temperature, dierent  states would be sam-
pled and hence one would need to obtain new sets of electron-phonon 
coupling constants to calculate  . This is not desirable due to the cost 
of calculation of electron-phonon coupling constants. It would be desir-
able to use the same electron-phonon coupling constants for calculation 
at all temperatures. This can be accomplished as follows. Eq. (9) can be 
rewritten as

 ( ) =
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where  is some reference temperature that can be arbitrarily chosen. 
To evaluate  ( ) we sample the states  in accordance with the dis-
tribution 


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 and evaluate the ratio of the averages of quantities 
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 that appear in previous equations can be 

considered as correction factors that take into account the fact that the 
state sampling temperature  is dierent than the system temperature 
 .

We also make use of the symmetry of the crystal as follows. We 
rewrite Eq. (9) as follows
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where  is the number of elements of the point symmetry group  of 
the crystal,  are its elements and () are their matrix representations. 
Making use of the equalities ,() =,, ,() = , and
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we arrive at
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This symmetrization ensures that the nal result for the mobility tensor 
 is compatible with crystal symmetries.

3. Results

3.1. Fröhlich model

In this section, we apply the methodology developed to a simplied 
model of the material. The assumptions of the model are as follows. 
There is a single electronic band with parabolic electronic dispersion 
 = ℏ22

2ef f
, where eff is the eective mass of the electron. There is 

a single dispersionless phonon mode of energy ℏLO. Electron-phonon 
coupling is of Fröhlich type

|||,±
|||
2
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20ℏLO

20

(
1 
∞

− 1 
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)
1 
2

(14)

where 0 is the vacuum permittivity, ∞ is the high-frequency relative 
dielectric constant and st is the static relative dielectric constant. For 
brevity, we will refer to this model as Fröhlich model in what follows.

We choose to study this model to benchmark our methodology since 
for the Fröhlich model analytic expressions for relaxation times exist 
and the expression for mobility reduces to one-dimensional integrals 
that can be straightforwardly evaluated. Hence, accurate results for re-
laxation times and mobility in this model are known and it can serve as 
a reliable reference. Fröhlich model is also a rather good approximation 
for electrons at room temperature in polar semiconducting materials. 
In that case, relevant states are the states at the bottom of conduction 
band and the dominant electronic scattering mechanism is due to po-
lar coupling to longitudinal optical phonons which is well described by 
coupling constants given in Eq. (14). Hence, by applying our methodol-
ogy to the Fröhlich model and comparing it to the reference results for 
the Fröhlich model we can identify typical values of  and Ω that 
are necessary to obtain accurate results.

Within the Fröhlich model, the momentum relaxation time is given 
as

 =
1 

 +
, (15)

where (see, for example, Supplemental Material in Ref. [5])

 =
1 
2

LOeff
ℏ3 

⎡
⎢⎢⎢⎣
1−


−

√
1

2

2
√
1

ln
||||||
+

√
1

−
√
1

||||||

⎤
⎥⎥⎥⎦

(16)

is the term that comes from phonon absorption process and
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comes from phonon emission process. The symbol LO denotes the 
average number of phonons of energy ℏLO ,  =

ℏ20LO
20


1 
∞

− 1 
st


, 

1 = 2 + 2ef fLO
ℏ , 2 = 2 − 2ef fLO

ℏ and Θ denotes the step function. 
The mobility in the case of Fröhlich model then reads

 =
0


ℏ2

32
eff

∫ ∞
0 d 4
∫ ∞
0 d 2

. (18)

Unless otherwise stated, we perform the tests for the following pa-
rameters of the Fröhlich model: eff = 0.117 0 (with 0 being the free 
electron mass), ℏLO = 25.66 meV, st = 9.4, ∞ = 6.9. These parame-
ters correspond to ZnTe semiconducting material [52], where the chosen 
value of eective mass corresponds to conduction band electron in that 
material.

We start with calculations to determine necessary values of Ω . 
In Fig. 1 we present the dependence of momentum relaxation time 
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Fig. 1. Dependence of momentum relaxation time on electronic energy in the 
case of Fröhlich model at  = 300 K for three dierent values of the number 
of points Ω used in the calculation. Full lines denote the reference analytical 
result.

Fig. 2. The dependence of the standard deviation  of relaxation time on the 
number of points Ω used in its calculation. The results are presented for dif-
ferent energies of the electronic state  and  = 300 K.

on electronic energy for three dierent values of Ω at  = 300 K. 
The results are compared to analytical results that are calculated us-
ing Eqs. (15)-(17) and presented in full lines in the gure. The results 
obtained using Ω = 10 are rather inaccurate, while the results for 
Ω = 100 already follow nicely the analytical result and the results for 
Ω = 1000 almost fully agree with it.

We describe the role of Ω more quantitatively by presenting the 
standard deviation of  obtained from simulations with dierent ran-
dom number seeds. The dependence of  on Ω for dierent values 
of electron energy  and  = 300 K is presented in Fig. 2. As expected 
 decays as ∝ 1 √

Ω
. On the other hand, the dependence on  for a 

xed Ω is more complicated. It turns out that standard deviation is the 
largest at energies around  = 30 meV, which is the energy just above 
the threshold energy for phonon emission (since ℏLO = 25.66 meV). 
At these energies, the volume of the phase space of  , 

 pairs for 

Fig. 3. Temperature dependence of the mobility within the Fröhlich model for 
dierent numbers of sampling points  and with reference temperature  =
300 K. Full line denotes the accurate reference result.

Fig. 4. Dependence of the standard deviation of mobility  on the number of 
points  used. The results are presented for dierent values of the temperature 
 and reference temperature for sampling  points . Horizontal dashed lines 
denote the values of the mobility at these temperatures. The line that describes 
the dependence ∝ 1 √


is given as a guide to the eye.

phonon emission is smallest and it is most dicult to sample this vol-
ume with a random choice of the  , 

 pair.
Next, we perform tests to understand the role of  on uncertainty 

of the mobility results. For this purpose, we calculate relaxation times 
using analytical formulas from Eqs. (15)-(17) and then perform the sum-
mation using Eq. (10). That way, we isolate the eect of nite  on 
the result. The result for the temperature dependence of mobility when 
the reference temperature of  = 300 K is used is presented in Fig. 3 for 
three dierent values of . Results suggest that  = 1000 is fully suf-
cient to get accurate results, while  = 10 is clearly insucient. For 
 = 100 the results are quite accurate up to  = 300 K.

To describe the role of  more quantitatively, we repeat the cal-
culation for dierent random number seeds and evaluate the standard 
deviation of the mobility  . The results for dierent temperatures 
and for dierent value of the reference temperature  are presented 
in Fig. 4. An expected ∝ 1 √


dependence of  is obtained for most 

 ,
 pairs [the exception for  ,


= (500,300) K will be discussed 

in what follows] and we see that already at  ∼ 100 the standard de-
viation is about an order of magnitude smaller than the mobility.

Next, we discuss the choice of the reference sampling temperature 
. While it is most natural that this temperature is equal to the system 
temperature  , for reasons discussed in the previous section, it is bene-
cial to use a single  for the whole interval of system temperatures of 
interest. While the nal mobility result in the limit of large  should 
not depend on , the convergence towards that result with an increase 
of  does depend on the choice of . It is therefore of interest to un-
derstand the eect of the parameter , that is, if it should be chosen 
from the middle or from the ends of the interval of interest. We see from 
Fig. 4 that as long as  ≤  there is only a modest eect of  on 
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Fig. 5. Temperature dependence of mobility for the Fröhlich model obtained by 
sampling  -points using the sampling temperature  and using Ω points 
for evaluation of relaxation times. The results are presented for ten calculations 
with dierent initial random number seeds. Full line denotes the accurate ref-
erence result.

[compare the results for  ,

= (100,300) K to  ,


= (100,500) K

or the results for  ,

= (300,300) K to  ,


= (300,500) K]. On 

the other hand, when  <  [the result for  ,

= (500,300) K in 

Fig. 4] standard deviation becomes signicantly larger [comparing to 
the case when  =  is used, see the result for  ,


= (500,500) K in 

Fig. 4] and the ∝ 1 √


dependence is present only at high values of 

[on the order of  ∼ 1000 for  ,

= (500,300) K in Fig. 4]. Such 

a behavior suggests that the sampling temperature  <  may not e-
ciently sample the region of higher electronic energies. This discussion 
therefore leads to the conclusion that for the calculation of mobility in 
an interval of temperatures, the temperature  should be chosen as the 
highest temperature from that interval.

In Fig. 5 we present the nal calculation result for the mobility ob-
tained both by sampling Ω points for the evaluation of relaxation 
times and by sampling   points for the evaluation of the mobil-
ity. The results are presented for ten calculations with dierent initial 
random number seed. It can be seen that the result for a rather mod-
est number of points Ω = 100,  = 100 already closely follows the 
exact result with reasonably small deviations for dierent calculations. 
The result for a larger number of points Ω = 1000,  = 1000 (and 
 = 500 K) matches the exact result almost perfectly (see middle part 
of Fig. 5). The result with the same number of points but using a smaller 
 = 300 K deviates from the exact result for temperatures that exceed 
. This demonstrates again that the largest temperature from the inter-
val of interest should be chosen for .

We have thus established that, for the parameters of the Fröhlich 
model used, rather modest values of  and Ω are sucient in our 
methodology to get accurate values of the mobility. We would like to 
establish if this conclusion can be extended regardless of the parameters 
of the model. We note rst that the change in electron-phonon interac-
tion only scales the relaxation times and the mobility and can therefore 
not change the convergence properties with respect to  and Ω. The 

two remaining parameters of the model are the eective mass eff and 
the phonon energy ℏLO. The phonon energy can be set as unit of en-
ergy and therefore we further discuss the role of eff on convergence 
properties.

In grid-based approaches to the problem, the eective mass cru-
cially determines the size of the grid. This comes due to two eects: 
(i) A smaller eective mass leads to a larger band curvature and hence 
a denser grid of  points is needed to faithfully represent the elec-
tronic dispersion. For this reason, previous calculations have reported 
grids ranging from 453 up to 6003 [3,4,40,41] depending on the mate-
rial considered; (ii) If an energy cut-o is introduced to consider only 
the electronic states up to some energy above/below the band mini-
mum/maximum, a smaller eective mass leads to smaller volume of 
relevant -space. While the eect (i) tends to increase the needed num-
ber of  points for smaller eective mass, the eect (ii) tends to decrease 
it. Hence, it is generally not a priori known which of these two eects 
will prevail. We have therefore performed the calculations for a dierent 
value of the eective mass eff = 0.62 0 which corresponds to a spher-
ically averaged mass of heavy holes in ZnTe [52]. The gures analogous 
to Figs. 3-5 are presented in Supplementary Material as Figs. S1-S3. By 
comparing the two sets of gures, one nds that convergence properties 
are essentially the same for both values of the eective mass. Such a be-
havior can be understood as follows. Since  points are sampled based 
on their energies, for a parabolic dispersion  = ℏ22

2ef f
, the  vectors and 

the distances Δ between them will be proportional to ∝√
eff . Maxi-

mal typical intensities of  vectors that are sampled  can be estimated 
from the relation  ∝ ℏ22

2ef f
, which implies  ∝

√
eff . The volume 

of the -space that is sampled is  ∝ 3 ∝ 3∕2
eff . The number of  points 

that is sampled is then  ∝ ∕(Δ)3 ∝3∕2
eff ∕

√
eff

3
= 1, that is, it 

is not dependent on eective mass.
In fact, within our implementation of the procedure, when the cal-

culations for eective masses (1)
ef f and 

(2)
ef f are performed with the same initial random number seed, the relation between  points that 

are sampled is (1)
[
(2)
ef f

]1∕2
= (2)

[
(1)
ef f

]1∕2
and the mobilities obtained 

are exactly related as (1)
[
(1)
ef f

]3∕2
= (2)

[
(2)
ef f

]3∕2
. This can also be seen 

by comparing Figs. 3-5 to Figs. S1-S3 since the latter are simply scaled 
versions of the former with a factor equal to 


(2)
ef f∕

(1)
ef f

3∕2
.

3.2. Real semiconductor material - ZnTe

In this section, we apply the methodology to a realistic semiconduc-
tor material - ZnTe. As a rst step in the calculation procedure, standard 
DFT calculation of the ZnTe material was performed. The material ex-
hibits a zincblende crystal structure with room temperature experimen-
tal lattice constant of 6.0882 A [53]. This crystal structure was used as 
an input to our calculation. The Perdew-Burke-Ernzerhof (PBE) gener-
alized gradient approximation (GGA) [54] for the exchange-correlation 
potential was used. The eects of core electrons were modeled using 
norm-conserving fully relativistic pseudopotentials [55,56]. The eect 
of spin-orbit interaction was included. Plane waves with kinetic energy 
cut-o of 35 Ha were used to represent the electronic wave functions, 
while an 8 × 8 × 8 grid of points in reciprocal space was used. Calcula-
tions were performed using the ABINIT code [57–60].

We next describe the construction of Wannier functions. These were 
constructed starting from 36 Bloch wave functions from 18 highest va-
lence bands and 18 lowest conduction bands. 18 Wannier functions 
were constructed. The procedure for construction of localized Wannier 
functions for entangled energy bands [61] was used. In the band dis-
entanglement procedure, the Bloch states that are within the energy 
window (so called frozen energy window [62]) containing the highest 
six valence bands and the two lowest conduction bands were left un-
changed. WANNIER 90 code [62] used as a library within the ABINIT 
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Fig. 6. Band structure of ZnTe along several relevant directions in the Brillouin 
zone. Valence band maximum energy is set as zero energy.

code was used in the construction of the unitary matrices that connect 
the Bloch and the Wannier functions. These matrices are then used to 
obtain the electronic energies and wave functions at arbitrary point in 
the Brillouin zone. The obtained band structure of ZnTe along several 
relevant directions in the Brillouin zone is presented in Fig. 6.

The electron-phonon coupling constants and phonons (phonon ener-
gies and displacements of phonon modes) were calculated using DFPT. 
The same kinetic energy cut-o and reciprocal space grid as for DFT cal-
culation was used. The ABINIT code was used for these calculations as 
well.

Interpolation of electron-phonon coupling constants and phonons to 
arbitrary wave vectors was performed using the Fourier-Wannier inter-
polation procedure, with proper treatment of long-ranged part of the 
electron-phonon coupling constants [21,22] and the dynamical matri-
ces [18,19]. These calculations and subsequent calculations of carrier 
relaxation times and mobility were performed using our in-house code, 
which is an extension of the code used in Ref. [5].

As in the case of the Fröhlich model, we start by investigating the 
role of Ω on the accuracy of the results. For this purpose we calcu-
late the dependence of conduction band electron momentum relaxation 
time on energy of the carrier for dierent values of Ω. In the calcu-
lation, we consider only the two lowest nearly degenerate conduction 
bands (see Fig. 6) since these are the only ones relevant for relaxation 
of electrons at the bottom of the conduction band. In Figs. 7(a), (c) and 
(e) we present this dependence for a conduction band electron whose 
momentum is along the Γ− direction for three dierent values of Ω
at  = 300 K. For Ω = 1000 [Fig. 7(e)] one sees a clear dependence 
of  on  with very little stochastic deviation from the trend implying 
that these results can be considered to be rather accurate. The results 
for Ω = 100 [Fig. 7(c)] are overall similar to the ones for Ω = 1000
[Fig. 7(e)], yet some deviations from the main dependence of  on 
are noticeable. The results for Ω = 10 [Fig. 7(a)] are clearly inaccurate 
since large deviations from the main trend are noticeable.

To quantify the comments from the previous paragraph, we repeated 
the () calculation ten times with dierent initial random number 
seed. We then calculated the average and the standard deviation of these 
ten realizations. The standard deviation then serves as a measure of ac-
curacy of calculated  . The results of these calculations are presented in 
Figs. 7(b), (d) and (f). The results for Ω = 1000 [Fig. 7(f)] are highly 
accurate with typical standard deviation being only 3% of the result. 
The results for Ω = 100 [Fig. 7(d)] are also of rather good accuracy 
with typical standard deviations equal to around 10% of the result. For 
Ω = 10 [Fig. 7(b)] the results are not of sucient accuracy, as typical 
standard deviation is around 30% of the result in this case.

We proceed next to analyze the inuence of the number of  pairs 
 and the number Ω on the results for the mobility. We thus calcu-

Fig. 7. Dependence of momentum relaxation time on the energy of an electron 
in conduction band of ZnTe for three dierent values of the number of points 
Ω used in the calculation at  = 300 K. The electronic momentum is along the 
Γ− direction. The values shown in parts (a), (c) and (e) are the results for one 
realization. The values shown in parts (b), (d) and (f) are the averages over ten 
dierent realizations, while the error bars are the standard deviation from these 
realizations. When error bars cannot be seen they are smaller than the symbol 
size.

lated the temperature dependence of the mobility for dierent ,Ω


pairs. Based on previous experience with the Fröhlich model we choose 
 = 500 K in all calculations. In Fig. 8 we present the results for dif-
ferent values of  and Ω. For each 


,Ω

 pair we perform the 
calculation for ten dierent initial random number seeds. The results 
for these realizations are presented as dots in the gures.

We discuss rst the inuence of Ω on the results. We consider the 
results for  = 1000, Ω = 1000 as accurate reference results. Hence, 
we vary Ω while keeping  = 1000 and analyze Figs. 8(c) and 8(e). 
It can be seen from Fig. 8(e) that variations of the results for dierent 
realizations are rather small for Ω = 10, yet there is a systematic error 
due to small Ω. This systematic error becomes rather small already at 
Ω = 100, as can be seen from Fig. 8(c).

Next, we consider the inuence of  on the results by keeping Ω =
1000. The results in Fig. 8(f) suggest that variations for  = 10 are 
quite signicant. When  = 100 these variations fall to a relatively 
small level, with standard deviation being equal to 10-13% of the results 
[Fig. 8(d)].

Overall, we thus nd that modest values of  and Ω of 100 are 
sucient to get rather accurate results for the mobility. This can be 
seen from Fig. 8(b) where standard deviation of the result is below 20% 
for  < 200 K and below 10% for higher temperatures. We consider 
the accuracy of 10-20% as sucient at present development of elec-
tronic structure methods. Namely, the eective masses calculated using 
standard functionals such as PBE can introduce errors on the order of 
30-50% with respect to experimental values (see Ref. [5] for the case 
of II-VI semiconductors or [63] for a broader group of semiconductors) 
while these errors can be reduced to 10-20% [63] when hybrid function-
als (such as the HSE06 functional [64,65]) or more advanced methods 
such as the many-body perturbation theory in GW approximation [66] 
are used. Hence, there is presently no need to perform  and  summa-
tions with accuracy higher than the accuracy of electronic structure that 
is used as input. In our implementation, the calculation time for eval-
uation of mobility when  = 100 and Ω = 100 (excluding previous 
DFPT calculation and transformation from plane wave to local represen-
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Fig. 8. Temperature dependence of electron mobility in ZnTe for dierent values 
of the number of  pairs  and the number Ω . The dots present the results 
for ten (three when  = 1000, Ω = 1000) dierent initial random number 
seeds. The rectangles denote the range ( − , + ) where  is the average 
value and  is the standard deviation. Full line denotes the result for  = 1000, 
Ω = 1000.

tation) is on the order of an hour using 64 CPU cores on a cluster with 
Intel Xeon E5-2670 Processors.

Finally, we consider holes in the valence band of ZnTe. In Supple-
mentary Material, we present gures analogous to Figs. 7-8 as Figs. 
S4-S5. In these calculations, we consider the four highest bands - two 
nearly degenerate heavy hole (HH) and two nearly degenerate light hole 
(LH) bands (see Fig. 6). The dispersion of valence band holes is markedly 
dierent than the dispersion of conduction band electrons. Namely, the 
dispersion near the bottom of conduction band is isotropic with eec-
tive mass of eff = 0.085 0 (extracted from band structure calculation 
using the PBE functional). On the other hand, the top of the valence 
band accommodates anisotropic HH and LH bands (that are degener-
ate at the Γ point) with PBE eective masses of approximately 0.89 0
and 0.41 0 in [111] and [100] directions for HH, and 0.088 0 and 
0.098 0 in [111] and [100] directions for LH (Fig. 6). Hence, calcula-
tions in the valence band of ZnTe present a rather dierent test for our 
calculation methodology. Despite such a dierent dispersion, after anal-
ysis of Figs. S4-S5 we reach essentially the same conclusions regarding 
the inuence of the parameters  and Ω on the results. Namely, we 
nd again that typical standard deviations of  are 10% for Ω = 100
and 3% for Ω = 1000. When the mobility is concerned, we nd again 
that modest values of  = 100, Ω = 100 are sucient to get rather 
accurate results for the hole mobility - its standard deviation is between 
10% and 15% in this case.

4. Discussion and conclusions

Next, we discuss typical grid sizes and the number of  and  points 
that are required in other approaches for calculation of relaxation times 
and carrier transport properties and compare and contrast them to our 
approach. The need for a dense grid of  points comes from the fact that 
the carriers at energies of several  from the bottom of the conduc-
tion band (or the top of the valence band) are the ones that are relevant 
for transport properties. One then needs to faithfully represent the elec-
tronic dispersion of carriers in this energy range, calling for a dense 

point grid. To faithfully describe phonon-assisted transitions between 
the states in this energy range, a  point grid comparably dense to the 
 point grid is then needed.

As already mentioned, the use of grids ranging from ∼453 up to 
∼6003 were reported in the literature [3,4,40,41]. Full grids of such 
sizes would typically imply millions of  and  points and summations 
over grids with such a large number of points would be impossible in 
practice.

In practice, one reduces the number of  and  points by considering 
only the ones that lead to states in the relevant energy window and the 
number of  points is reduced by exploiting the symmetry of the crystal. 
For example, in Ref. [40], for the case of cubic BN, the 2503 -point 
grid was reduced to 12,390 by selecting a 0.3 eV wide energy window 
and exploiting the symmetry, whereas 814,981  points were necessary. 
In Ref. [49], for silicon, nonuniform grids with 85,000 inequivalent 
points and 200,000 inequivalent  points were used.

In the studies of Refs. [40,49] the summation was performed by re-
placing the delta function with its broadened version. A more favorable 
reduction in the number of  points can be accomplished when the tetra-
hedron method is used to perform the summation. In this case, one can 
reduce the summation only to tetrahedra intersecting one of the possi-
ble isosurfaces () = 0 [41]. By combining this reduction with previous 
ideas (energy windows and symmetry), converged results were obtained 
in Ref. [41] with relatively small number of  and  points. In case of 
electrons in silicon, it was reported that 453  points grid with only 29 
irreducible  points, combined with 903  point grid (with less than 2% 
of it selected, implying around 15,000  points), was sucient [41]. 
Somewhat larger grid was needed for electrons in GaP, while the cal-
culation appeared to be most challenging for GaAs [41] that has a low 
eective mass, implying the need for a rather dense grid. In our pre-
vious study [5] where we used the tetrahedron method, we obtained 
converged results for electrons in ZnTe with the 1203 grid, the energy 
window of 0.25 eV, which lead to around 100 inequivalent  points and 
around 2000 to 5000  points for each  point. Previous studies using 
the tetrahedron method thus suggest that the required grid size is heav-
ily dependent on the band curvature (eective mass). We also nd that 
it is rather challenging to apply the tetrahedron method in the case of 
holes when both HH and LH bands with rather dierent eective masses 
exist. In that case, the LH band with small eective mass calls for the 
dense grid, while the HH band with large eective mass leads to larger 
volume of the relevant part of the Brillouin zone. Combining these two 
requirements leads to the need for a rather large number of  and 
points. Interestingly, we are not aware of a study where the tetrahedron 
method was used in the case of holes when both HH and LH bands exist.

In the approach presented in this work, we nd that the number 
of required  and  points is much smaller or in worst case compara-
ble to what was required in previous approaches. Our selection of 
points based on the weights  selects the relevant states at the bot-
tom of conduction band (top of valence band) and produces a similar 
eect as the selection based on an energy window. The dierence is that 
there is no sharp cut-o energy in our approach and therefore there is 
no need for a convergence study with respect to that cut-o parameter. 
The main advantage of our approach comes from the way the summa-
tion/integration over  points is performed. Energy conservation in the 
delta function eectively determines  - the modulus of  and one is 
left with the integral over angular components  and . This makes 
the number Ω of necessary 


 , 

 pairs signicantly smaller than the 
number of  points in other approaches. Another advantage of our ap-
proach is that convergence properties appear to be insensitive to band 
curvature and hence the approach can be applied with equal success to 
dierent materials, in contrast to grid-based methods where the number 
of required  and/or  points is heavily dependent on band curvature 
near the band extremum.

In conclusion, we presented a procedure for calculation of relaxation 
times and transport properties without the use of predened  and 
points grids. Numerical tests show that converged results for carrier mo-
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bility with 10-20% accuracy can be obtained with only 100  points and 
100  points, regardless of band curvature at the extremal point. The 
procedure described should enable signicantly more ecient ab-initio 
calculations of electrical transport properties of semiconducting materi-
als.
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1Institute of Physics Belgrade, University of Belgrade, Pregrevica 118,

11080 Belgrade, Serbia

S1. Results for the Fröhlich model with meff = 0.62 m0
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Figure S1: Temperature dependence of the mobility within the Fröhlich model with meff =
0.62m0 for different numbers of sampling points Nk and with reference temperature Tr =
300 K. Full line denotes the accurate reference result.
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Figure S2: Dependence of the standard deviation of mobility σµ on the number of k

points Nk used for the Fröhlich model with meff = 0.62m0. The results are presented for
different values of the temperature T and reference temperature for sampling k points Tr.
Horizontal dashed lines denote the values of the mobility at these temperatures. The line
that describes the dependence ∝ 1
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is given as a guide to the eye.
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Figure S3: Temperature dependence of mobility for the Fröhlich model withmeff = 0.62m0

obtained by sampling Nk k-points using the sampling temperature Tr and using NΩ points
for evaluation of relaxation times. The results are presented for ten calculations with
different initial random number seeds. Full line denotes the accurate reference result.
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S2. Results for holes in the valence band of ZnTe

0.05 0.10 0.15
E (eV)

0
25
50
75
100
125 (e)

LH, NΩ = 1000

HH, NΩ = 1000

0
25
50
75
100
125

τ
(f
s)

(c)
LH, NΩ = 100

HH, NΩ = 100

0
25
50
75
100
125 (a)

LH, NΩ = 10

HH, NΩ = 10

0.05 0.10 0.15
E (eV)

(f)
LH, NΩ = 1000

HH, NΩ = 1000

(d)
LH, NΩ = 100

HH, NΩ = 100

(b)
LH, NΩ = 10

HH, NΩ = 10

Figure S4: Dependence of momentum relaxation time on the energy of a valence band
HH and LH in ZnTe for three different values of the number of points NΩ used in the
calculation at T = 300 K. The hole momentum is along the Γ − L direction. The values
shown in parts (a), (c) and (e) are the results for one realization. The values shown in
parts (b), (d) and (f) are the averages over ten different realizations, while the error bars
are the standard deviation from these realizations. When error bars cannot be seen they
are smaller than the symbol size. The results are presented for two nearly degenerate HH
and two nearly degenerate LH bands.
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Figure S5: Temperature dependence of hole mobility in ZnTe for different values of the
number of nk pairs Nk and the number NΩ. The dots present the results for ten (three
when Nk = 1000, NΩ = 1000) different initial random number seeds. The rectangles de-
note the range (µ− σ, µ+ σ) where µ is the average value and σ is the standard deviation.
Full line denotes the result for Nk = 1000, NΩ = 1000.
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