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Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases



Introduction
Effective actions
Ideal Bose gases

Concluding remarks

General properties of path integrals
Formulation of the path integral formalism
Monte Carlo method
Discretized effective actions

General properties of path integrals

Basic ideas on path integral formalism can be found in: P.
A. M. Dirac, Physikalische Zeitschrift der Sowietunion 3,
64 (1933) - Lagrangian formulation of quantum mechanics
Richard Feynman developed the formalism we use today
[R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948)]
Contrary to the classical physics, where (usually) there is
only one trajectory of the system for a given set of initial
(boundary) conditions, in path integral formalism of the
quantum theory we have to take into account all possible
evolutions
Each of possible trajectories contributes to the transition
amplitude through the additive factor exp( i~S), where
S =

∫
Ldt is the action corresponding to the given

trajectory
Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Formulation of the path integral formalism (1)

Path integrals originally introduced in quantum mechanics,
where the amplitude for transition from some initial state
|α〉 to some final state |β〉 during a time interval T can be
written as

A(α, β;T ) = 〈β|e− i
~ ĤT |α〉

The same approach can be used in statistical physics, where
partition function Z can be written in a similar fashion
Path integrals in statistical physics / condensed matter are
usually called imaginary-time path integrals, since they can
be formally obtained from quantum-mechanical expressions
through the formal replacement

i

~
T → βt =

1
kBTt

where Tt is the (thermodynamic) temperature of the system
Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Formulation of the path integral formalism (2)

For technical reasons, usually we use imaginary time even
in quantum mechanical problems ( i~T → − 1

~T )
The standard derivation of the formalism starts from the
identity

A(α, β;T ) =
∫
dq1 · · · dqN−1A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

which is obtained by dividing the evolution into N steps of
the lenght ε = T/N , and by insertion of N − 1 resolutions
of the identity operator between short-time evolution
operators. This expression is exact.
Next step is approximate calculation of short-time
amplitudes up to the first order in ε, and we get (~ = 1)

AN (α, β;T ) =
1

(2πε)N/2

∫
dq1 · · · dqN−1 e

−SN

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Illustration of the discretization of trajectories
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Formulation of the path integral formalism (3)

Continual amplitude A(α, β;T ) is obtained in the limit
N →∞ of the discretized amplitude AN (α, β;T ),

A(α, β;T ) = lim
N→∞

AN (α, β;T )

Discretized amplitude AN is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action
For a theory defined by the Lagrangian L = 1

2 q̇
2 + V (q),

(naive) discretized action is given by

SN =
N−1∑

n=0

(
δ2
n

2ε
+ εV (q̄n)

)
,

where δn = qn+1 − qn, q̄n = qn+1+qn
2 .

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Monte Carlo method

Monte Carlo (MC) can be defined as a method for solving
mathematical problems by using (pseudo-)random numbers
If implemented properly, MC is guaranteed to converge to
the exact value being calculated
MC allows estimation of errors for calculated quantities,
with clear statistical interpretation
Calculation of integrals is the most common mathematical
problem solved using MC method

I =
∫ β

α
f(x) dx =

∫ β

α

f(x)
p(x)

p(x) dx =
〈
f

p

〉

p

,

where p is some given probability distribution function,

p ≥ 0 ,
∫ β

α
p(x) dx = 1

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Numerical approach to the calculation of path
integrals (1)

Path integral formalism is ideally suited for numerical
approach, with physical quantities defined by discretized
expressions as multiple integrals of the form

∫
dq1 · · · dqN−1 e

−S
N

Monte Carlo (MC) is the method of choice for calculation
of such intergals
However, although multiple integrals can be calculated
very accurately and efficiently by MC, there still remains
the difficult N →∞ limit
This is what makes the outlined constructive definition of
path integrals difficult to use in practical applications

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Numerical approach to the calculation of path
integrals (2)

Discretization used in the definition of path integrals is not
unique; in fact, the choice of the discretization is of
essential importance
Naive discretized action (in the mid-point prescription)
gives discretized amplitudes converging to the continuum
as slow as 1/N
Using special tricks we can get better convergence (e.g. left
prescription gives 1/N2 convergence when partition
function is calculated)
However, this cannot be done in a systematic way, nor it
can be used in all cases (e.g. left prescription cannot be
used for systems with ordering ambiguities)

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Typical 1/N convergence of naively discretized
path integrals

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0 20 40 60 80 100

N

AN

A
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Discretized effective actions (1)

Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum
values
It is possible to introduce different discretized actions
which contain some additional terms compared to the naive
discretized action
These additional terms must vanish in the N →∞ limit,
and should not change continuum values of amplitudes, e.g.

N−1∑

n=0

ε3V ′(q̄n)→ ε2
∫ T

0
dt V ′(q(t))→ 0

Additional terms in discretized actions are chosen so that
they speed up the convergence of path integrals

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Discretized effective actions (2)

Improved discretized actions have been earlier constructed
through several approaches, including

generalizations of the Trotter-Suzuki formula
improvements in the short-time propagation
expansion of the propagator by the number of derivatives

This improved the convergence of general path integrals for
partition functions from 1/N to 1/N4

Li-Broughton effective potential

V LB = V +
1
24
ε2 V ′2 .

in the left prescription gives 1/N4 convergence
Derivation of the above expression from the generalized
Trotter formula makes use of the cyclic property of the
trace, hence 1/N4 convergence is obtained for partition
functions only

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Improving effective actions

We present here an approach enabling a substantial
speedup in the convergence of path integrals through
studying the connection between different discretizations of
the same theory
Using this approach we have derived the integral equation
connecting discretized effective actions of different
coarseness, which allows their systematic derivation. This
leads to improved 1/Np convergence of path integrals for
one-particle systems in d = 1 - Gaussian halving
We also present the generalization of this method to
many-body systems, based on solving the recursive
relations for discretized effective action, which are derived
from Schrödinger equation for short-time amplitudes -
recursive approach

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Ideal discretization (1)

Ideal discretized action S∗ is defined as the action giving
exact continual amplitudes AN = A for any discretization
N

For the free particle, the naive discretized action is ideal
From the completeness relation

A(α, β;T ) =
∫
dq1 · · · dqN−1 A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

it follows that the ideal discretized action S∗n for the
propagation time ε is given by

A(qn, qn+1; ε) = (2πε)−
1
2 e−S

∗
n

Ideal discretized action S∗ is the sum of terms S∗n
Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Ideal discretization (2)

In general case, the ideal discretized action can be written
as

S∗n =
δ2
n

2ε
+ εWn ,

where W is the effective potential which contains V (q̄n)
and corrections
From the definition of the ideal discretized action it follows

Wn = W (δn, q̄n; ε)

From the reality of imaginary-time amplitudes, i.e. from
the hermiticity of real-time amplitudes we obtain

W (δn, q̄n; ε) = W (−δn, q̄n; ε)

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Relation between different discretizations (1)
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Relation between different discretizations (2)
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Relation between different discretizations (3)

If we integrate out all odd-numbered coordinates, for a
given discretized 2N -action we get the effective N -action

e−
eSN =

(
2
πεN

)N
2
∫
dx1 · · · dxN e−S2N

However, if we use the ideal discretized action, then we get

e−S
∗
N =

(
2
πεN

)N
2
∫
dx1 · · · dxN e−S

∗
2N

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Integral equation for the effective action

From previous relation we obtain integral equation for the
effective potential in the form

e−εNW (δn,q̄n;εN ) =
(

2
πεN

) 1
2
∫ +∞

−∞
dy e

− 2
εN

y2 ×

G
(
q̄n + y; qn, qn+1,

εN
2

)
,

where function G is defined as

− 2
εN

lnG(x; qn, qn+1, εN ) =

W

(
qn+1 − x,

qn+1 + x

2
; εN

)
+W

(
x− qn,

x+ qn
2

; εN

)

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases



Introduction
Effective actions
Ideal Bose gases

Concluding remarks

Gaussian halving
Euler’s summation formula
Recursive approach
Diagrammatic form of effective actions

Euler’s summation formula (1)

For ordinary integrals Euler’s summation formula reads

I[f ] =
∫ T

0
f(t)dt =

N∑

n=1

f(tn)εN −
εN
2

N∑

n=1

f ′(tn)εN +

ε2N
6

N∑

n=1

f ′′(tn)εN + . . .

I[f ] is now written as a series in time step εN ,

I[f ] = IN [f (p)] +O(εpN ) ,

where f (p) is the corresponding initial part of the ideal f∗

Using W , we will derive Euler’s summation formula for
path integrals

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Euler’s summation formula (2)

When we expand function G in a series in the first
argument around q̄n, we get the following equation for W

W (δn, q̄n; εN ) = − 1
εN

ln

[ ∞∑

k=0

G(2k)
(
q̄n; qn, qn+1,

εN
2

)

(2k)!!

(εN
4

)k
]

Further application of asymptotic expansion makes use of
the expansion of the ideal effective potential in a series

W (δn, q̄n; εN ) =
∞∑

k=0

δ2k
n gk(q̄n; εN )

From the equation for W we get a system of differential
equations for functions gk

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Euler’s summation formula (3)

If we expand functions gk into series in the time step ε

gk(q̄n; εN ) =
p−k−1∑

m=0

εmN gkm(q̄n) (k = 0, . . . , p− 1)

we obtain a system of equations that is easily decoupled
and can be solved in functions gk
Note that in the above expression the sum is limited
according to the consistency condition which follows from
the diffusion relation δ2 ∝ ε
Boundary condition for the above system is g00 = V ,
obtained from limits δ2

n → 0 and εN → 0, in which W
reduces to

W (0, q̄n; 0) = V (q̄n)

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Euler’s summation formula (4)

To level p = 3 we get

g0(q̄n; εN ) = V (q̄n) + εN
V ′′(q̄n)

12
+ ε2N

[
−V

′(q̄n)2

24
+
V (4)(q̄n)

240

]

g1(q̄n; εN ) =
V ′′(q̄n)

24
+ εN

V (4)(q̄n)
480

g2(q̄n; εN ) =
V (4)(q̄n)

1920
Ideal effective action on the convergence level p is given as

S
(p)
N =

N−1∑

n=0

[
δ2
n

2εN
+ εN

p−1∑

k=0

δ2k
n gk(q̄n; εN )

]

This ensures the improved convergence
A

(p)
N (α, β;T ) = A(α, β;T ) +O(εpN )

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Recursive approach

Gaussian halving is developed and applicable for
one-particle one-dimensional systems only
For many-body systems in arbitrary dimensions we have
developed two equivalent approaches
First is based on direct calculation of ε-expansion of
short-time amplitudes, expressed as expectation values of
the corresponding free theory

following the original idea from the book by H. Kleinert

Here we present second approach, based on solving
recursive relations for the discretized action, derived from
Schrödinger’s equation for amplitudes.
This approach is by far the most efficient, both for
many-body and one-body systems.

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Effective actions for many-body systems

We start from Schrödinger’s equation for the amplitude
A(q, q′; ε) for a system of M non-relativistic particles in d
spatial dimensions

[
∂

∂ε
− 1

2

M∑

i=1

4i + V (q)

]
A(q, q′; ε) = 0

[
∂

∂ε
− 1

2

M∑

i=1

4′i + V (q′)

]
A(q, q′; ε) = 0

Here 4i and 4′i are d-dimensional Laplacians over initial
and final coordinates of the particle i, while q and q′ are
d×M dimensional vectors representing positions of all
particles at the initial and final time.

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Equation for the ideal effective potential

If we express short-time amplitude A(q, q′; ε) by the ideal
discretized effective potential W

A(q, q′; ε) =
1

(2πε)dM/2
exp

[
−δ

2

2ε
− εW

]

we obtain equation for the effective potential in terms of
x = δ/2, x̄ = (q + q′)/2, V± = V (x̄± x)

W + x · ∂ W + ε
∂W

∂ε
− 1

8
ε∂̄2W − 1

8
ε∂2W +

1
8
ε2(∂̄W )2+

+
1
8
ε2(∂W )2 =

V+ + V−
2

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Recursive relations (1)

As before, the effective potential is given as a series

W (x, x̄; ε) =
∞∑

m=0

m∑

k=0

Wm,k(x, x̄) εm−k

where
Wm,k(x, x̄) = xi1xi2 · · ·xi2kci1,...,i2km,k (x̄)

Coefficients Wm,k are obtained from recursive relations

8 (m+ k + 1)Wm,k = ∂̄2Wm−1,k + ∂2Wm,k+1−

−
m−2∑

l=0

∑

r

(∂̄Wl,r) · (∂̄Wm−l−2,k−r)−

−
m−2∑

l=1

∑

r

(∂Wl,r) · (∂Wm−l−1,k−r+1)

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Recursive relations (2)

Diagonal coefficients are easily obtained from recursive
relations

Wm,m =
1

(2m+ 1)!
(x · ∂̄)2m V

Off-diagonal coefficients are obtained by applying recursive
relations in the following order

0

1

2

3

...

m

0 1 2 3 . . . k

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Effective actions for many-body systems

To level p = 3, effective action is given by

W0,0 = V

W1,1 =
1
6

(x · ∂̄)2V

W1,0 =
1
12
∂̄2V

W2,2 =
1

120
(x · ∂̄)4V

W2,1 =
1

120
(x · ∂̄)2 ∂̄2V

W2,0 =
1

240
∂̄4V − 1

24
(∂̄V ) · (∂̄V )

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Diagrammatic form of effective actions (1)

Derived recursive relations can be represented in a
diagrammatic form if we introduce

δij = i j , xi = i .

. . .

∂̄i1 ∂̄i2 · · · ∂̄il
V =

i1
i2

il

, . . .}

Wm,k =

2k

m, k
.

Diagrammatic form of diagonal coefficients

. . .} }. . .
Wm,m = = 1

(2m+1)!

2m2m

m, m
.

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Diagrammatic form of effective actions (2)

Diagrammatic form of recursive relations

. . .

. . . . . .

. . .

. . . . . .

. . .}
} }

}
} }

}

8(m + k + 1)

2k2k2k

m, k
=

m− 1, k
+ (2k + 2)(2k + 1)

m, k + 1 −

−
m−2∑

l=0

∑

r

l, rl, r

2r

m− l − 2, k − r

2k − 2r

−
m−2∑

l=1

∑

r

2r(2k − 2r + 2)

2r − 1 2k − 2r + 1

m− l − 1, k − r + 1
.

Solutions to level p = 3
W0,0 = ,

W1,1 = 1
6

= 1
6 (1)2 ,

W1,0 = 1
12 = 1

12 (11) ,

W2,2 = 1
120 = 1

120 (1)4 ,

W2,1 = 1
120 = 1

120 (1)2(11) ,

W2,0 = 1
240 − 1

24

= 1
240 (11)2 − 1

24 (12) ,

W3,3 = 1
5040 = 1

5040 (1)6 ,

W3,2 = 1
3360 = 1

3360 (1)4(11) ,

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Ideal Bose gases (1)

Good approximation for weakly-interacting dilute gases
Bose-Einstein condensates usually realized in harmonic
magneto-optical traps
Fast-rotating Bose-Einstein condensates extensively studied
- one of the hallmarks of a superfluid is its response to
rotation
Paris group (J. Dalibard) has recently realized critically
rotating BEC of 3 · 105 atoms of 87Rb in an axially
symmetric trap - we model this experiment
The small quartic anharmonicity in x− y plane was used to
keep the condensate trapped even at the critical rotation
frequency [PRL 92, 050403 (2004)]
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Ideal Bose gases (2)

We apply the developed discretized effective approach to
the study of properties of such (fast-rotating)
Bose-Einstein condensates
We calculate large number of energy eigenvalues and
eigenvectors of one-particle states
We numerically study global properties of the condensate

Tc as a function of rotation frequency Ω
ground state occupancy N0/N as a function of temperature

We calculate density profile of the condensate and
time-of-flight absorption graphs
VBEC = M

2 (ω2
⊥ − Ω2)r2

⊥ + M
2 ω

2
zz

2 + k
4r

4
⊥, ω⊥ = 2π × 64.8

Hz, ωz = 2π × 11.0 Hz, k = 2.6× 10−11 Jm−4
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Ideal Bose gases (3)

Within the grand-canonical ensemble, the partition
function of the ideal Bose gas is

Z =
∑

ν

e−β(Eν−µNν) =
∏

k

1
1− e−β(Ek−µ)

The free energy is given by

F = − 1
β

lnZ =
1
β

∑

k

ln(1−e−β(Ek−µ)) = − 1
β

∞∑

m=1

emβµ

m
Z1(mβ)

where Z1(mβ) is a single-particle partition function
The number of particles is given as

N = −∂F
∂µ

=
∞∑

m=1

(emβµZ1(mβ)− 1)
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Ideal Bose gases (4)

The usual approach to BEC is to treat the ground state
separately, and fix µ below the condensation temperature
µ = E0

Below the condensation temperature we have

N = N0 +
∞∑

m=1

(emβE0Z1(mβ)− 1)

The condensation temperature Tc is thus defined by the
condition:

N0 = N −
∞∑

m=1

(emβcE0Z1(mβc)− 1) = 0

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Energy eigenvalues and eigenstates (1)

Single-particle eigenvalues and eigenstates are sufficient for
the calculation of BEC condensation temperature
The most efficient approach for low-dimensional systems is
direct diagonalization of space-discretized propagator e−εĤ ,
where ε is appropriately chosen artificial short-time of
propagation (N = 1 approximation)
On a given space grid, matrix elements of the propagator
are just short-time aplitudes
If ε is chosen so that ε < 1, such amplitudes can be directly
(analytically) calculated using previously derived effective
actions with the high convergence level p
The obtained eigenvalues are e−εEn , and the obtained
eigenvectors are space-discretized eigenvectors ψn

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Energy eigenvalues and eigenstates (2)
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Calculation of the condensation temperature (1)
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critical rotation, obtained with p = 18 effective action.
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Calculation of the condensation temperature (2)
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Calculation of the ground-state occupancy
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Details on the calculation of global properties of
BECs

En can be obtained by the direct diagonalization of the
space-discretized propagator, and single-particle partition
functions Z1(mβ) can be the calculated as

Z1(mβ) =
∑

n

e−mβEn

This is suitable for low temperatures, when higher energy
levels (not accessible in the diagonalziation) are negligibe
For mid-range temperatures, Z1 can be numerically
calculated as a sum of diagonal amplitudes, and then E0

may be extracted from the free energy

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Density profiles of Bose-Einstein condensates (1)

Density profile is given in terms of the two-point
propagator ρ(~r1, ~r2) = 〈Ψ̂†(~r1)Ψ̂(~r2)〉 as a diagonal element,
n(~r) = ρ(~r, ~r)
For the ideal Bose gas, the density profile can be written as

n(~r) = N0|ψ0(~r)|2 +
∑

n≥1

Nn|ψn(~r)|2

where the second term represents thermal density profile
Vectors ψn represent single-particle eigenstates, while
occupancies Nn are given by the Bose-Einstein distribution
for n ≥ 1,

Nn =
1

eβ(En−E0) − 1

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Density profiles of Bose-Einstein condensates (2)

Using the cumulant expansion of occupancies and spectral
decomposition of amplitudes, the density profile can be
also written as

n(~r) = N0|ψ0(~r)|2 +
∑

m≥1

[
emβE0A(~r, 0;~r,mβ~)− |ψ0(~r)|2

]

where A(~r, 0;~r,mβ~) represents the (imaginary-time)
amplitude for one-particle transition from the position ~r in
t = 0 to the position ~r in t = mβ~
Both definitions are mathematically equivalent
The first one is more suitable for low temperatures, while
the second one is suitable for mid-range temperatures
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Density profiles of Bose-Einstein condensates (3)
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Density profile in x− y plane for the condensate without
rotation. T = 50 nK < Tc = 110.4 nK (β = 6.2× 10−2). The
linear size of the profile is 20 µm.
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Density profiles of Bose-Einstein condensates (4)
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Density profile in x− y plane for the condensate at critical
rotation. T = 50 nK < Tc = 63.1 nK (β = 6.2× 10−2). The
linear size of the profile is 54 µm.
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Density profiles of Bose-Einstein condensates (5)
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Density profile in x− y plane for the condensate at overcritical
rotation (Ω/ω⊥ = 1.05). T = 50 nK < Tc = 55.5 nK
(β = 6.2× 10−2). The linear size of the profile is 67 µm.
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Time-of-flight graphs for BECs (1)

In typical BEC experiments, a trapping potential is
switched off and gas is allowed to expand freely during a
short time of flight t (of the order of 10 ms)
The absorption picture is then taken, and it maps the
density profile to the plane perpendicular to the laser beam
For the ideal Bose condensate, the density profile after time
t is given by

n(~r, t) = N0|ψ0(~r, t)|2 +
∑

n≥1

Nn|ψn(~r, t)|2

where

ψn(~r, t) =
∫

d3~k d3 ~R

(2π)3
e−iω~kt+i

~k·~r−i~k·~R ψn(~R)

Free University of Berlin, 24 February 2009A. Balaž: Ultra-fast Converging Path Integral Approach for Ideal Bose Gases
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Time-of-flight graphs for BECs (2)

For mid-range temperatures we can use mathematically
equivalent definition of the density profile

n(~r, t) = N0|ψ0(~r, t)|2 +
∑

m≥1

[
emβE0

∫
d3~k1 d3~k2 d3 ~R1 d3 ~R2

(2π)6
×

e
−i(ω~k1−ω~k2 )t+i(~k1−~k2)·~r−i~k1·~R1+i~k2·~R2 A(~R1, 0; ~R2,mβ~)− |ψ0(~r, t)|2

]

In both approaches it is first necessary to calculate E0 and
ψ0(~r) using direct diagonalization or some other method
FFT is ideally suitable for numerical calculations of
time-of-flight graphs
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Time-of-flight graphs for BECs (3)
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Time-of-flight graph at t = 0 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (4)
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Time-of-flight graph at t = 2 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (5)
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Time-of-flight graph at t = 4 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (6)
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Time-of-flight graph at t = 6 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (7)
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Time-of-flight graph at t = 8 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (8)
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Time-of-flight graph at t = 10 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (9)
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Time-of-flight graph at t = 12 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (10)
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Time-of-flight graph at t = 13 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (11)
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Time-of-flight graph at t = 14 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (12)
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Time-of-flight graph at t = 15 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (13)
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Time-of-flight graph at t = 16 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (14)
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Time-of-flight graph at t = 17 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (15)
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Time-of-flight graph at t = 18 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Time-of-flight graphs for BECs (16)
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Time-of-flight graph at t = 20 ms in x− y plane for the
condensate at overcritical rotation (Ω/ω⊥ = 1.05). T = 50 nK
< Tc = 55.5 nK (β = 6.2× 10−2). The linear size of the profile
is 67 µm.
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Conclusions (1)

We have presented a new method for numerical calculation
of path integrals for a general non-relativistic many-body
quantum theory
We have derived discretized effective actions which allow
deeper analytical understanding of the path integral
formalism

Gaussian halving
ε-expansion of the short-time propagator
recursive approach

In the numerical approach, discretized effective actions of
level p provide substantial speedup of Monte Carlo
algorithm from 1/N to 1/Np

For single-particle one-dimensional theories we have derived
discretized actions up to level p = 35, while for a general
non-relativistic many-body theory up to level p = 10
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Conclusions (2)

For special cases of potentials we have derived effective
actions to higher levels (p = 140 for a quartic anharmonic
oscillator in d = 1, p = 67 in d = 2, p = 37 for modified
Pöschl-Teller potential)
We have developed MC codes that implement the newly
introduced approached, as well as Mathematica codes for
automation of symbolic derivation of discretized effective
actions for higher values of level p
The derived effective actions are used for the numerical
study of properties of (fast-rotating) ideal Bose-Einstein
condensates

Eigenvalues and eigenstates
Condensation temperature and ground-state occupancy
Density profiles and time-of-flight graphs
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Further applications

Ground states of low-dimensional quantum systems
Properties of interacting Bose-Einstein condensates

Gross-Pitaevskii (mean field) equation
Effective actions for time-dependent potentials

Quantum gases with disorder (Anderson localization)
Improved estimators for expectations values (heat capacity,
magnetization etc.)
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Effective discretized p=4 action

S(p=4)
N

=
∑{

ε

(
1
2
δiδi
ε2

+ V

)

+
ε2

12
∂2

k,kV +
εδiδj
24

∂2
i,jV

− ε3

24
∂iV ∂iV +

ε3

240
∂4

i,i,j,jV +
ε2δiδj
480

∂4
i,j,k,kV +

εδiδjδkδl
1920

∂4
i,j,k,lV

+
ε4

6720
∂6

i,i,j,j,k,kV −
ε4

120
∂iV ∂

3
i,k,kV −

ε4

360
∂2

i,jV ∂
2
i,jV

− ε3δiδj
480

∂kV ∂
3
k,i,jV +

ε3δiδj
13440

∂6
i,j,k,k,l,lV −

ε3δiδj
1440

∂2
i,kV ∂

2
k,jV

+
ε2δiδjδkδl

53760
∂6

i,j,k,l,m,mV +
εδiδjδkδlδmδn

322560
∂6

i,j,k,l,m,nV

}
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