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Overview

o Effective actions for path integrals

e Numerical approach to path integrals

o Discretized effective actions

o Effective actions for many-body systems
o Rotating ideal BECs

o Energy eigenvalues and eigenstates
e Calculation of global properties of BECs
o Calculation of density profiles of BECs
o Time-of-flight graphs for BECs
o Numerical results
Energy eigenvalues and eigenstates
Global properties of BECs
Density profiles of BECs
Time-of-flight graphs for BECs

e Concluding remarks
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Path integral formalism

e Continual amplitude A(a, 3;T) is obtained in the limit
N — oo of the discretized amplitude Ayx(a, 5;7),

o Discretized amplitude Ay is expressed as a multiple
integral of the function eV, where Sy is called
discretized action

e For a theory defined by the Lagrangian L = 3 ¢* + V(q),
(naive) discretized action is given by

N—-1 52
SN = Z <2—z +6V((jn)> )
n=0

_ —  _ gnt1tg
where 6, = ¢ni1 — G, Gn = PEFE
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Discretized effective actions

Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum

o It is possible to introduce different discretized actions
which contain additional terms compared to the naive
action, substantially speeding up the convergence

o We have derived, in a systematic way, an approach for
obtaining higher level discretized effective actions for
general non-relativistic many body systems

e Discretized effective actions of level p lead to 1/NP
convergence of discretized amplitudes to the continuum
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Effective actions for many-body systems

o We start from Schriodinger’s equation for the amplitude
A(q,q';€) for a system of M non-relativistic particles in d
spatial dimensions

M
[%—% ZAH—V(Q)

=1
M
g 1
[a ~3 D LI+ V()
i

e Here A; and A are d-dimensional Laplacians over initial
and final coordinates of the particle 7, while ¢ and ¢’ are
d x M dimensional vectors representing positions of all
particles at the initial and final time.

A(g,qd'5e) = 0

Alg,qd5¢) = 0
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Equation for the ideal effective potential

o If we express short-time amplitude A(q, ¢’; €) by the ideal
discretized effective potential W

b 1 52
Alq,q'5€) = WEXP o —eW

we obtain equation for the effective potential in terms of
$:5/27 T = (Q+q1)/27 Vi :V(Zf'ﬂ:l‘)

W+ 8W—|—686 868W 868W+86(3W)+
+é62(8W)2=¥
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Recursive relations

o As before, the effective potential is given as a series

W(x,z;€) = i i Wonn(z,z) ek

m=0 k=0

where

=\ e o 1,082k (4
Wi (x, &) = x4, T4 S Tig Ok (Z)
o Coeflicients Wy, ;. are obtained from recursive relations

8(m—+k+1) Wm = W1k + Wy 1~

_ZZaVVlr anl2k3 r)

—Z Z W) - (OWi—i—1 k—r+1)

=1 r
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L) Rotating ideal BECs

Rotating ideal Bose gases (1)

Weakly-interacting dilute gases

o Bose-Einstein condensates usually realized in harmonic
magneto-optical traps

o Fast-rotating Bose-Einstein condensates - one of the
hallmarks of a superfluid is its response to rotation

e Paris group (J. Dalibard) has recently realized critically
rotating BEC of 3 - 10° atoms of 8’Rb in an axially
symmetric trap - we model this experiment

@ The small quartic anharmonicity in x — y plane was used to

keep the condensate trapped even at the critical rotation
frequency [PRL 92, 050403 (2004)]
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Rotating ideal BECs

Rotating ideal Bose gases (2)

o We apply the developed discretized effective approach to
the study of properties of such (fast-rotating)
Bose-Einstein condensates

o We calculate large number of energy eigenvalues and
eigenvectors of one-particle states
@ We numerically study global properties of the condensate

o T, as a function of rotation frequency 2
o ground state occupancy No/N as a function of temperature

We calculate density profiles of the condensate and
time-of-flight absorption graphs

VBEC = M(u)l Q?)r? + ]\gw z¢ + 717 UJJ_ =27 x 64.8
Hz, w, =27 x 11.0 Hz, k = 2.6 x 10~ ot Jm—*
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L) Rotating ideal BECs

Rotating ideal Bose gases (3)

o Within the grand-canonical ensemble, the partition
function of the ideal Bose gas is

1
_ _B(EV—NNV) .
zZ= Zy:e o 121 1 — e B(Er—p)

The free energy is given by

f——Ban— Zlnl e PEr— “) Z

where Z1(mp) is a single—particle partition function
@ The number of particles is given as

Zl (mpB)
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Rotating ideal Bose gases (4)

@ The usual approach to BEC is to treat the ground state
separately, and fix p below the condensation temperature
pw=Eo

o Below the condensation temperature we have

N =N+ Y ("2 (mp) —1)

m=1

@ The condensation temperature T, is thus defined by the
condition:

NO 1 - mfB.Eo _
N =1 Nmz::l(e Zi(mB:) —1) =0

DY1.4: Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases



SCIENTIFIC
COMPUTING
LABORATORY

Rotating ideal BECs

Energy eigenvalues and eigenstates

e Single-particle eigenvalues and eigenstates are sufficient for
the calculation of BEC condensation temperature

e The most efficient approach for low-dimensional systems is
direct diagonalization of space-discretized propagator e <,
where € is appropriately chosen artificial short-time of
propagation (no time-slices approximation)

@ On a given space grid, matrix elements of the propagator
are just short-time aplitudes

o If € is chosen so that € < 1, such amplitudes can be directly
(analytically) calculated using previously derived effective
actions with the high convergence level p

o The obtained eigenvalues are e~»_ and the obtained
eigenvectors are space-discretized eigenvectors 1,
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Rotating ideal BECs

Details on the calculation of global properties of
BECs

e FE,, can be obtained by the direct diagonalization of the
space-discretized propagator, and single-particle partition
functions Z;(mf) can be the calculated as

Zi(mp) =Y e

n

@ This is suitable for low temperatures, when higher energy
levels (not accessible in the diagonalziation) are negligibe

o For mid-range temperatures, Z; can be numerically
calculated as a sum of diagonal amplitudes, and then Ej
may be extracted from the free energy
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L) Rotating ideal BECs

Density profiles of Bose-Einstein condensates (1)

o Density profile is given in terms of the two-point
propagator p(7,7) = (W1 (7 )W (7)) as a diagonal element,
n(r) = p(7,7)

o For the ideal Bose gas, the density profile can be written as

n() = Nolto(F)* + Y Naltp (7|
n>1
where the second term represents thermal density profile

e Vectors v, represent single-particle eigenstates, while
occupancies IV, are given by the Bose-Einstein distribution
forn>1,
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L) Rotating ideal BECs

Density profiles of Bose-Einstein condensates (2)

e Using the cumulant expansion of occupancies and spectral
decomposition of amplitudes, the density profile can be
also written as

n(7) = Nolto(F)? + Y [0 A(, 037, mOR) — ()
m>1
where A(7,0; 7, mfh) represents the (imaginary-time)
amplitude for one-particle transition from the position # in
t = 0 to the position 7 in t = mGh
o Both definitions are mathematically equivalent

o The first one is more suitable for low temperatures, while
the second one is suitable for mid-range temperatures
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L) Rotating ideal BECs

Time-of-flight graphs for BECs (1)

o In typical BEC experiments, a trapping potential is
switched off and gas is allowed to expand freely during a
short time of flight ¢ (of the order of 10s of ms)

@ The absorption picture is then taken, and it maps the
density profile to the plane perpendicular to the laser beam

e For the ideal Bose condensate, the density profile after time
t is given by

n(7,t) = Nolvo (7 )* + D Naltoa(7, )|

n>1

where

@n)?
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Rotating ideal BECs

Time-of-flight graphs for BECs (2)

o For mid-range temperatures we can use mathematically
equivalent definition of the density profile

n(Fv t) = N0|¢0(Fa t)’2 + Z

m>1

s / A3k; d3ky B3Ry d3 Ry
(2m)°

e—i(‘%l _“’E2)t+i(/_51—/;2)'77—i1;1~ﬁ1+i52~ﬁ2 A(ﬁl,o; ﬁg,mﬂh) — o (7, t)’Z

o In both approaches it is first necessary to calculate Ey and
¥o(7) using direct diagonalization or some other method

o FFT is ideally suitable for numerical calculations of
time-of-flight graphs
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Deviations from the exact ground-state energy vs. € for Vpge
(critical rotation). The error is proportional to €. The red
curve is the discretization error (analytically known).
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Numerical results

Calculation of the condensation temperature
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Number of particles as a function of T, [nK] for different
rotation frequencies, obtained with p = 18 effective action.
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Ground-state occupancy No/N as a function of T/T for
different rotation frequencies, obtained with p = 18 effective
action (T? = 110 nK used as a typical scale in all cases).
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Density profiles of Bose-Einstein condensates (1)

t=0ms
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Density profile in  — y plane for the condensate at
under-critical rotation Q/w; = 0.9, T =10 nK < T, = 76.8 nK.
The linear size of the profile is 54 pm.
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t=0ms
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Density profile in  — y plane for the condensate at critical
rotation Q/w, =1, T =10 nK < T, = 63.3 nK. The linear size
of the profile is 54 pm.
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t=0ms
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Density profile in x — y plane for the condensate at over-critical
rotation Q/w,; = 1.05, T = 10 nK < T, = 55.3 nK. The linear
size of the profile is 54 pm.
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t=0ms

Density profile in x — y plane for the condensate at over-critical
rotation Q/w; = 1.2, T =10 nK < T, = 49.1 nK. The linear
size of the profile is 108 pm.
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Time-of-flight graphs for BECs (1)

(Loading diag-d025-L400-r09eps02beta0311.mpg)

Evolution of the x — y density profile with the time-of-flight for
the condensate at under-critical rotation Q/w; = 0.9, T' = 10
nK < 7T, = 76.8 nK. The linear size of the profile is 54 pm.
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Time-of-flight graphs for BECs (2)

(Loading diag-d025-L400-r10eps02beta0311.mpg)

Evolution of the x — y density profile with the time-of-flight for
the condensate at critical rotation Q/w; =1, T'= 10 nK
< T, = 63.3 nK. The linear size of the profile is 54 pm.
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Numerical results

Time-of-flight graphs for BECs (3)

(Loading diag-d025-L400-r105eps02beta0311.mpg)

Evolution of the x — y density profile with the time-of-flight for
the condensate at over-critical rotation Q/w; = 1.05, T = 10
nK < T, = 55.3 nK. The linear size of the profile is 54 pm.
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Time-of-flight graphs for BECs (4)

(Loading diag-d05-L400-r12eps02beta0311.mpg)

Evolution of the x — y density profile with the time-of-flight for
the condensate at over-critical rotation Q/w; = 1.2, T =10 nK
< T, =49.1 nK. The linear size of the profile is 108 ym.
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me evolution of the density at the origin
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Time evolution [s] of the condensate density at the origin of
x — y plane for the condensate at various rotation frequencies
(r=Q/w,) for T =10 nK < T..
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Conclusions

@ A new method for numerical calculation of path integrals
applied to the study of ideal Bose gases
o High-order discretized effective actions used for efficient

numerical calculation of global and local properties of
fast-rotating BECs

e Single-particle eigenvalues and eigenstates

o Condensation temperature and ground-state occupancy
e Density profiles

o Time-of-flight graphs

@ Overcritical rotation substantially increases time scale for
free expansion after trapping potential is switched off
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ther applications

o Ground states of low-dimensional quantum systems
@ Properties of interacting BECs

o Gross-Pitaevskii equation
o Effective actions for time-dependent potentials

e Properties of rotating Fermionic gases

o Related applications: Quantum gases with disorder
(Anderson localization)
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