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Electromagnetically induced coherent effects in
laser excited Raman resonances in rubidium vapor

Abstract

This thesis presents the theoretical analysis of various coherent effects in laser ex-
cited Raman resonances in multilevel systems in rubidium atoms. Studied coherent
effects include electromagnetically induced transparency (EIT), electromagnetically
induced absorption (EIA) and Stark-chirped rapid adiabatic passage (SCRAP). EIT
and EIA resonances are examined in Hanle configuration in rubidium vapor vacuum
cells using detailed theoretical modeling of related realistic systems. Developed nu-
merical model provided excellent agreement with actual experimental results and
their successful explanation. Furthermore, existent theory of SCRAP in two- and
three-level systems is extended to the case of two and three degenerate-level mani-
folds with arbitrary number of substates.

Vacuum alkali-metal vapor cells are commonly used in quantum optics for re-
search of coherent phenomena in laser-atom interaction. One of basic properties of
laser radiation that influences the coherent atomic evolution is its local intensity.
Generally, the coherent effects depend non-linearly on the laser intensity. Immediate
consequence is that the laser beam intensity profile must affect the atomic coherent
evolution. Moreover, different parts of the same laser beam should have different
contribution to the coherent effects. Most common laser beam profile used in exper-
iments is Gaussian, while theoretical models commonly assume constant intensity
distribution (II profile). One motivation of this work was the actual lack of investi-
gation of the influence of different laser beam profiles on the coherent resonances in
vacuum alkali-metal vapor cells. This thesis gives a contribution to the examination
of Hanle EIT and EIA resonances using two common laser beam profiles, Gaussian
and II. Hanle EIT is studied on the open D; line transition F, = 2 — F, = 1 of
87Rb, while Hanle EIA is investigated on the closed transition F, = 2 — F, = 3 at
the D5 line of the same rubidium isotope.

Study of Hanle EIT resonances from selected segments of the Gaussian laser
beam cross section revealed the existence of Ramsey-like interference within a sin-
gle laser beam. As the theoretical model suggested, low intensity wings of the

Gaussian beam actually probe the coherently prepared atoms coming from intense



central parts of the laser beam. Hallmark of such scenario is the appearance of two
Ramsey-like sideband transmission minima next to the central maximum of Hanle
EIT resonances observed in the wings of the Gaussian beam. Combined with lower
power broadening, this leads to narrowing of Hanle EIT resonances in the in the
outer parts of the beam.

Hanle EIT from different parts of a Il-shaped laser beam cross section yielded
apparently similar results, but having entirely different physical background. The
sideband transmission minima appeared in EIT line shapes observed from the parts
near the IT beam center. The theoretical model showed that the occurrence of these
transmission minima is a joint effect of the coherent preparation of atoms into the
dark state and the optical pumping into the uncoupled ground level F;, = 1. The
optical pumping also caused the population-loss-induced transit time narrowing of
EIT resonances toward the II laser beam center. This study made clear that the
profile of the laser beam determines the processes governing the evolution of atomic
states during the interaction with the laser.

Hanle EIA investigations also demonstrated that the atoms experience com-
pletely different evolution depending on whether interact with one or the other
profiled laser beam. This is evidenced by the analysis of EIA resonances obtained
from small segments of the entire laser beam. Within the particular laser beam,
Hanle EIA resonances were narrower in outer regions of the Gaussian beam, while
for a Il-shaped laser beam, the narrowest resonances were obtained at the beam
center. The theoretical analysis attributed the former to the lower power broaden-
ing in the Gaussian beam wings, while the latter was due to transit-time narrowing
toward the center of the II-shaped beam. These results unambiguously imply that
it is important to take into account the real laser beam profile for proper modeling
and analysis of coherent effects in alkali-metal vapors.

SCRAP extension for the case of two and three degenerate-levels having arbi-
trary number of sublevels is given as the last part of this thesis. The used approach
represents a generalization of the Morris-Shore transformation to the case when the
removed degeneracy of the sublevels leads to detuning from two-photon Raman res-
onance. Theoretical analysis of a multilevel system is facilitated by its subdivision
into a set of smaller independently evolving subsystems related to the minimal-sized
invariant subspaces of the Hamiltonian. Adiabatic population transfer from the
starting to the final level is investigated for different types of the invariant sub-

spaces. It is shown that the complete population transfer is achievable if the initial



state is prepared into specific coherent superpositions. An application of the devel-

oped SCRAP formalism to the 8’Rb atom is presented for illustration.
Keywords: coherent effects, Hanle configuration, Raman resonances, rubidium
Scientific field: Physics

Research area: Quantum optics

UDC number: 539:535.14(043.3)



EnekTpoMarHeTcKu MHIYKOBAHN KOXepeHTHU edeKTn y
J1acepcku nodbyhmpannm PamanoBum pe3oHaHrama y
InmapamMa pyoumamjyma

Caxerak

OBa Te3a mpeJcTaB/ba TEOPUJCKY AHATU3Y PAJIUUUTUX KOXEPEHTHHX ederara
y Jlacepcku nodbyhuBanuMm PamMaHOBUM pe30oHAHIIAMa y CHCTEMIMAa Ca BUIIE HUBOA Y
aromuMa pyouaujyma. [Ipoyuasanm koxepeHTHU edEeKTH YK/bYUYjy eJeKTpOMarieT-
cku unaykoBany tpancuapennujy (EUT), esexrpomarnerckn nHIyKoBaHy ancop-
nnujy (EMA) u IlItapkoBcku 6p3u agujabarcku npenas (ewza. SCRAP). EUT u
EWA pesonanre cy ucnuruBane y XaHae KOH(MDUTYpAIUji Y BAaKyyMCKUM henjama
napa pyoujujyma JieTa/bHUM TEOPUjCKUM MOJEIUPamheM 0/roBapajyhux peajmcTu-
YHUX cucTeMa. Pa3BujeHnm HyMepHUIKH MOJIET je TOKA3a0 OJTHIHO CJIAararme ca OIro-
BapajyhuM ekcliepuMeHTAJTHUM pPe3yJTaTuMa W OMOIyhHO HHXOBO YCIeHmHO obja-
nrberbe. Jlomarno, nocrojeha teopuja SC RAP-a y cucremuma ca JiBa U TPU HUBOA
je upommpeHa Ha cjydajeBe JIBa U TPU HUBOA Ca IIPOU3BOJHHUM OpOjeM JiereHepuca-
HUX [O/THUBOA.

Bakyymcke henmje napa aqkaJHuX MeTaJia Cy 4eCTO KOpHIIheHe y KBAaHTHO] OIl-
TUIU HPUJIMKOM UCTPAKUBaha KOXePEHTHUX 110jaBa Y UHTEPAKIIU]U Jlacepa ca aTOM-
uMa. JeaHa 07 OCHOBHHX OCOOWMHA JIACEPCKOT 3paverba KOja YTHYe Ha KOXePeHTHY
eBOJIYIAjYy aTOMa je HeroB JIOKAJTHU MWHTEH3UTET. YOIIITEHO IJIeJaH0, KOXePEeHTHH
edekTn 3aBUCe HEJIMHEAPHO OJI HHTEH3UTETa Jiacepa. Hemnocpejna mocjejuna Tora
je 1a mpoduT HHTEH3UTeTa JACePCKOT CHOMA MOpPa YTHIATUH HA KOXEPEHTHY aTOM-
cky eBorynujy. IllTaBuime, pa3auduT AeJ0BH JeHOT UCTOT JTaCepCKOTr CHOMA Tpe-
6aj10 Ou Jia pa3IUYUTO JIONPUHOCE KOXEPEHTHUM edekTuma. Y eKCHePpUMEHTUMA,
je TaycoB mpodnr yacepckor cHoma Hajdernthe KOpHUIIheH, TOK TEOPUjCKU MOIETN
OOMYHO MPETIOCTaB/hajy paBHOMepHY pactojeny uarensurera (I npodur). Jenan
0/1 MOTHBA OBOT paJjia je 60 MPUCYTHHU HEJOCTATAK UCTPAKUBAIha YTHIAja PA3IUIU-
TuX TPoUIA JACEPCKOT CHOMA HA KOXEPEHTHE PE30HAHIE y BAKyyMCKUM hesjmjama
napa ankaaHuX Merasa. OBa Te3a maje gonpunoc ucnurtuBamy Xamne EMT u EMA
pe3oHaHIu KopulithemeM JIBajy decTux Jiacepckux mpoduia, laycosor u II. Xamae
ENT je npoyuaBana na oTBopeHoM npenasy by = 2 — F, = 1 qunnje D, nzorona

8"Rb, nok je Xamre EVIA ncnmtusana ma 3arsopenom npemasy Fy = 2 — F, = 3



qunauje Dy metor m3orona pyoumjyma.

Nzyuasame Xaniae ENT pezonaniu modbujenux o1 ojapehenux jejioBa mompednor
npeceka ['aycoBor jracepcKor CHOIa OTKPUJIO je MOCTOjamke HHTepdepeHIje candHe
Pem3ujeBoj m TO y OKBUpPY jeTHOT JIaCEPCKOT CHOMA. TeopHjcKu MOJesT je YKa3ao Ja
kpuJia ['aycoBor cHoma Koja Cy HUCKOI MHTEH3UTETA 3alpaBo MPo0ajy KOXePEeHTHO
HPUIIPEM/bEHE ATOME KOjH JI0J1a3€ U3 BPJIO MHTEH3UBHUX IEHTPAJJHUX JIEJIOBA Jlacep-
ckor cHoma. O3HaKa MOMEHYTHUX MPOTIeca je TojaBa /IBajy TPAHCMUCHOHUX MUHAMYMA
PemsujeBor Tuma mHemocpeHo y3 neaTpasan Makcnmym Xanne ENT pesonannnm koje
cy nobujene y kpusimma ['aycoBor cHoma. ¥ €ajejCcTBY ca yMambeHUM HIHPEHEeM YCJIel
cHare, IOMEHYTH HPOIECH JTOBOE 10 cyxKaBama Xamae EVT pesonanmnu mo6ujeHnx
y CIIOJ/bAITbUM JIEJIOBUMA JIACEPCKOT CHOIIA.

Xansie EIT nobujena o pasianyauTux JiejoBa nompedHor npeceka [l igacepckor
cHOTIA JaJa je Hamu3TJIe]l CAUYHe Pe3y/aTaTe, ajad ca CAaCBUM JPYTadnjoM (BU3NIKOM
no3aauHoM. /IBa Tpancmucmona MUHEMYMa cy ce nojasuia y EWT obaunuma jun-
nja podbujenux o meHTpasHux jeosa 1l caoma. Teopujcku Mojiest je mokasao ja je
1ojaBa TUX TPAHCMHCUOHUX MUHUMYMA HOCJIE/UIA Ca/I€jCTBA KOXEPEHTHOI HPUIIpe-
Mama aToMa y TaMHO CTalbe W ONTHYKOT MYyMIamha Yy HECIPEerHyTH OCHOBHU HUBO
F, = 1. Onrmuko mymmame je Takohe y3pokoBayio cyxkaBame BT pesomanmm
ycies rybuTka Hace/beHOCTH, TOKOM BpeMeHa Ipejiera aroMma Ka nentrpy Il jiacep-
ckor caona. (OBO HCTpakKUBarbe je jaCHO TMOKA3aJo Ja MpOodUI JacepcKkor CHOma
ojapehyje Koju mpolecu yrpaB/bajy €BOJIYIIMJOM aTOMCKHX CTamha TOKOM WHTEepaK-
nuje ca JIacepoM.

[IpoyuaBame Xamne EMA je Takolje moka3aJo ga aToMu eBOJIYHPAjy CACBUM IPY-
ravuje 3aBUCHO OJf TOTA Ja JIH HWHTEPAryjy ca JJacepCKUM CHOIOM jeTHOT HJIH JPYTOT
npodumia. To je morkpersbeno anaanzom EVA pezonanmu g1o0ujennx oy Majaux Jae-
JIOBa JIacepcKor cHoma. ¥ jegHoM oapehenom cuony, Xaniae EMA pe3sonante cy 6mme
yKe Y CIOJballlibUM JesioBuMa ['aycoBor cuoma, j1ok cy y cayd4ajy Il cnoma najyzxe
pe3oHaHIe JOOMjeHe y caMOM FheroBOM IeHTpy. Teopmjcka anaJsm3a je npebharrme
HPUITICAIA CMAEHOM IIUPEeby YCJiej cCHare y Kpuinuma ['aycoBor cHoria, JIOK je 110-
TOIE MOCJeIUIA Cy’KaBamba TOKOM BpeMeHa IpeseTa aToMma Ka meHTpy Il cmoma.
OBu pe3ysTaTn HEJBOCMHUCIECHO YKa3yjy Jla je HEeONXOJHO y3eTH y O03Up CTBApHH
npoduii Jracepckor CHONA pajii MOJE/Upama U aHaJu3e KOXepeHTHHX edekara y
napamMa aJKaJTHUX MeTaJa.

[Tpomupeme SC RAP-a na cucreme JBa WM TPW HUBOA Ca MOJHUBOWMA j€ JIATO

y mocemem jiery Tese. Kopumhenu npuctyn mpejcraBsba yorrnTeme Mopuc-



[TTopoge Tpancdopmalmje Ha ciIydaj Kajga yKJIOHeHa JereHepalnja moaIHnBoa J10BOIN
JI0 pasjeniaBama JiBo-poroncke Pamanose pe3onanie. Teopujcka aHain3a oBaKBOI
cucTeMa ca BUIIe HUBOA je oMoryheHa moie1oM Ha Marbe MO/ICUCTeMe KOji €BOJTYHPAjy
HE3aBHUCHO U MMOBE3aHU Cy Ca MUHAMAJTHAM WHBAPUjAHTHUM MOTIPOCTOPUMA XaMMUJI-
touujana. lcnuran je agmjabaTcku MPEHOC HACE/HEHOCTH OJI MOJIA3HOT JI0 KpajH-
jer HEBOA 3a paz/iMduTe BPCTE MHBApujaHTHUX mnorupocropa. [lokazano je ja ce
MOTIIYHU TMPEHOC HACE/HeHOCTH MOXKe OCTBAPUTHU YKOJUKO TTOYETHO CTabe OJAroBapa
oapeheHnM KoxepeHTHHM cyleprnosunujama. /lara je npumena passujenor SCRAP

dbopmasmzma Ha arom S'Rb pajin cJIMKOBUTOCTH.

Kipyune peun: koxepenTHu edextn, Xanjiae Koundurypaimnja, Pamanope pe3onaHIie,

pyOumjym
Hayqyna obnact: Ousnka
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1. Introduction

One of currently very attractive research areas in physics is quantum optics. It com-
bines the opportunity to cope with fundamental quantum features of matter and
the prospects of harnessing them for technological advancement. The groundwork
of quantum optics is light-matter interaction. One of the extensively investigated
aspects is the interaction of laser light and atomic vapors. That utterly rich play-
ground keeps providing an ongoing interest for many emergent electromagnetically
induced coherent effects, especially in laser excited alkali-metal-atom vapors. The
main reason for such trend is the opportunity for numerous applications. Addition-
ally, in-depth examination of coherent effects, transfer of coherence and transfer of
population, leads to better understanding of various phenomena in quantum optics
and laser-matter interaction in general.

Typical examples of coherent effects are those originating from coupling a single
atomic excited state with two long-lived ground atomic states using two laser fields,
pump and probe (so called A configuration). This system enables the realization of
the interference between the two transition pathways generated by the laser fields
and the creation of so called dark states - coherent superpositions between the long-
lived states uncoupled to the excited state having quite remarkable features. Namely,
when the pair of laser fields in Raman resonance between the ground atomic states
prepare the absorbing medium into the dark state, it becomes more transparent for
the pair of fields than it would be for each separate resonant laser field. This is
basic physical picture of coherent population trapping (CPT) [1, 2] and electromag-
netically induced transparency (EIT) [3, 4]. CPT and EIT can also be observed in
multilevel systems as those involving two atomic degenerate-level manifolds having
multiple Zeeman substates. The observation of CPT and EIT in such systems is also
a direct consequence of the existence of a dark state(s) within the ground atomic
level when F, > F, (F, and F, being the angular momenta quantum numbers of the

ground and excited state, respectively). The pump-probe spectroscopy of multilevel



systems with 0 < F, < F, also yields resonances in the laser transmission when
the Raman resonance condition between ground-state Zeeman substates is fulfilled.
However, in this case, the resonances show increased laser field absorption and have
consequently being termed as electromagnetically induced absorption (EIA) [5, 6].
Contrary to CPT and EIT, the EIA resonances cannot be related to the existence
of dark state(s) within the ground state. EIA is shown to be due to transfer of
coherence via spontaneous emission, from the excited to the ground states, and due
to transfer of population [7, 8]. Coherent effects can alternatively be studied in so
called Hanle configuration [9, 10] consisting of a single linearly or elliptically polar-
ized laser beam where external magnetic field provides detuning from the Raman
resonance. Another coherent effect related to multilevel atomic systems is rapid
adiabatic passage [11, 12] where using adiabatic evolution of the atomic states and
the avoided crossings of diabatic energies, the complete population transfer among
two atomic states can be obtained. Recently proposed technique of Stark-chirped
rapid adiabatic passage (SCRAP) [13] presents a very robust and efficient method
for producing complete population transfer between two bound states of an atomic
or molecular system.

Narrow CPT and EIT resonances have important role in optical metrology, pri-
marily in magnetometry [14, 15, 16], spectroscopy [17, 18] and frequency standards
[19]. Availability of reliable diode lasers having tunable wavelength resulted in the
expansion of the experiments and applications related to the coherent effects. Mag-
netometers based on the alkali-metal vapors are capable of measuring extremely
weak magnetic fields, i.e. magnetic fields of the heart and of the brain [20]. Atomic
clocks operating on the base of CPT and EIT effects are highly stable and can
be made chip-scale [21]. For all applications narrowing of the resonances is the
most important. For this to be achieved, it is essential thorough understanding of
coherent effects, their mechanisms and consequences. Further development of the
experimental methods for the narrowing of the emerging resonances is tied to our
knowledge of the laser-matter interaction. On the other side, examination of the
dependence of the resonance line-shapes on various experimental parameters reveals
the details of the interaction of the laser and the atomic systems. In vacuum atomic
vapor cells the resonance line-widths depend on the atomic interaction time with
the laser beam as well as on the actual laser beam profile. In order to increase
the atomic interaction time, buffer gas is added into the alkali-metal vapor cells.

Collisions with the buffer gas preserve the alkali-metal laser induced coherence and



significantly reduce their mean free path. This can lead to the resonances of the
width below 50 Hz [22]. Alternatively, vapor cells with paraffin-coated walls also
provide resonance narrowing [23]. Paraffin coating enables the alkali-metal atoms
to keep the coherence even after few thousands of collisions with the cell walls.

In the alkali-metal vapor vacuum cells the atomic motion at low pressures is rec-
tilinear and disturbed only by the collisions with the cell walls. The atomic states
continually evolve during the transient interaction with the laser beam. Therefore,
different parts of the laser beam cross section, after passing through the cell, will
carry different information about the atomic state and will yield different resonances.
Additional narrowing of CPT, EIT and EIA resonances can be obtained by proper
selection of the beam profile and the detected segment of the laser beam. There
are only a few papers dealing with the influence of the laser beam profile on EIT
resonance line-shapes. The dark resonances in cesium vacuum cell obtained using
Gaussian laser beam are studied in [24]. It is shown that whole-beam dark reso-
nance line-shapes are not Lorentzians due to inhomogeneous intensity distribution
of the laser beam and repeated interaction of Cs atoms at different positions in the
beam. CPT linewidths for open transitions in cases of Gaussian and II transverse
laser beam profile in vacuum gas cells are analyzed theoretically in [25]. Nonlin-
ear, monotonically increasing square-root-like CPT linewidth dependence on laser
intensity was obtained for both beam profiles. The linewidths were narrower for the
Gaussian than for the II transverse profile of the laser beam. The comparison of dark
resonances obtained in alkali-metal atom buffer-gas cells using Gaussian and II laser
beam profile is presented in [26, 27]. Gaussian laser beam yields non-Lorentzian, so
called Rabi-Lorentzian, whole-beam resonance line-shapes in dense ‘He vapor, while
detection of the laser beam segments using small aperture gives purely Lorentzian
resonances exhibiting Rabi broadening corresponding to the local intensities [28].
It is shown that Laguerre Gaussian beam profile provides significant narrowing in
the line shape of the Hanle EIT and EIA resonances in comparison to the Gaussian
beam [29].

The development of efficient schemes for selective population transfer and prepa-
ration of atoms and molecules in well-defined quantum states is of critical importance
for modern atomic and molecular physics, atom optics and quantum information.
Stark-chirped rapid adiabatic passage technique enables such efficient population
transfer among two atomic or molecular states using two sequential laser pulses.

The pump laser pulse transfers the population from one state to another, while an



intense far off-resonant Stark laser pulse modifies the transition probability between
the two states by Stark-shifting their energies. It has been shown that the proper
pump pulse intensity, duration, and partial overlap with the Stark pulse produce
complete population transfer from one state to another [30]. SCRAP technique was
extended for complete population transfer amongst three states [31]. In that case,
all three states have to be coupled simultaneously using three laser pulses. Near
resonant Stokes laser pulse is applied in addition to the pump and the Stark laser
pulses. Population transfer from one state to another is performed via an inter-
mediate third state while the population of the intermediate state is maintained
minimized by the proper laser pulse timing and by adiabatic evolution of the states.
SCRAP is robust against the fluctuations of Rabi frequencies and temporal shape
of the laser pulses and does not rely on the exact two-photon Raman resonance
condition. SCRAP technique was used for very successful and robust generation
of population inversion in NO molecules [32, 33]. It appears as a highly promising
building block of quantum state engineering [34] and quantum computing [35].
This thesis deals with theoretical examination of the coherent effects in laser ex-
cited rubidium vapor. Organization of the thesis is as follows. Important topic will
be the influence of the laser beam intensity profile on the line-shapes of Hanle EIT
and EIA resonances. Considered beam profiles will be Gaussian and II-shaped (hav-
ing constant intensity all-over its cross section). It will be shown that the laser beam
intensity profile strongly affects the resonance line-shapes. The same laser beam can
have twofold role: role of the pump beam that coherently prepares the atoms and
role of the probe beam that interferes with the coherently prepared atoms. Further
study will focus on the Hanle EIT resonances from selected segments of the Gaus-
sian laser beam cross section and the related appearance of the Ramsey effect in the
single-beam EIT resonances. Different positioning of the segments along the beam
radius yields markedly different resonance line-shapes, with Ramsey-like features
appearing in the wings of the Gaussian beam. Analysis of the Hanle EIT resonances
obtained from selected segments of the II-shaped laser beam will reveal joint effect
of the preparation of atoms into the dark state and the optical pumping into the
uncoupled ground level. Hanle EIA resonances obtained using both beam profiles
will also be tackled. It will be shown that outer regions of Gaussian beam, and
central regions of the Il-shaped beam generate the narrowest resonances and that
an atom experiences completely different evolution depending on whether traverses

one or the other profiled beam. This indicates that different physical processes



determine the atomic evolution depending on the used laser beam profile. Proper
understanding and interpretation of these results requires the development of the
appropriate theoretical model enabling the investigation of the interaction of the Rb
vapor with the laser beam of arbitrary intensity profile. Theoretical examination
is based on time dependent optical Bloch equations including Maxwell-Boltzmann
velocity distribution, diversity of atomic trajectories through the laser beam of a
custom cylindrical symmetric intensity profile and laser induced polarization of the
Rb vapor. The complete Zeeman sublevel structure of the involved hyperfine transi-
tions is taken into account. Results of the computer simulations will enable detailed
insight into various physical processes during the interaction of the atoms with the
laser light in the selected beam segments and the accompanying atomic state tran-
sient evolution. Comparison of the theoretical results with the actual measurements
will provide an additional support for the analysis of the related coherent effects.
Additionally, an extension of the SCRAP technique will be given. It applies to
the atomic systems having two or three levels that can be degenerated with arbi-
trary number of substates. Employed formalism relies on the decomposition of the
Hilbert space of the system into minimal invariant subspaces to which the evolution
of the system is restricted. It is a generalization of the Morris-Shore transformation
[36, 37] to the case when the removed degeneracy of the substates leads to detuning
from two-photon Raman resonance. The possibility of SCRAP population transfer
among two degenerate-level manifolds will be examined first in detail, and afterward
the case of three degenerate-level manifolds will be discussed. It will be shown that
the complete transfer is feasible if the initial state is prepared into specific coherent
superpositions. The method will be applied to the adiabatic passage among two and

three hyperfine levels in the rubidium atom.
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2. Theoretical basics

2.1 Interaction of laser radiation with two-level
atomic system

The state of a closed quantum system is described by its state vector |¥U(¢)) that is
member of some Hilbert space H. Unitary evolution of the system is described by

time-dependent Schrédinger equation (TDSE)

LAl () A
ih=— 2t = H ()W (t)), (2.1)

where H(t) is (possibly time-dependent) Hamiltonian operator of the system acting
on the space H. Schrodinger equation is linear and allows coherent superpositions.
When describing the interaction of an atomic system with the laser light, the Hamil-

tonian has two parts:
H(t) = H® + Vit(t), (2.2)

where the first, constant, part Het incorporates the unperturbed eigenenergies of

the (bare) atom in the absence of the laser radiation

Hipy) = enlthn), ne{1,2,...}, (2.3)

where |1,,) are the eigenstates corresponding to the bare atomic eigenenergies &,,.
The matrix elements of the interaction part Vi”t(t) can, in principle, be obtained
from the eigenstates of the system Vi (t) = (1, [V (t)|1b,). Usually, when dealing
with the laser excitation the laser carrier frequency w is close to some Bohr transition
frequency, i.e., w ~ wym = (6, — €n)/h. In such case, there is no any appreciable
population in quantum states other than those initially populated or excited by the
laser. Thus although there may be an infinite number of quantum states, very few

of those participate in the excitation dynamics. One can restrict attention to only a
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finite N-dimensional subspace Hy of the infinite Hilbert space H. In this subspace
the state vector |W(¢)) has the expansion

N

(1) =D eal)thn), (2.4)

n=1

where the time-varying complex numbers ¢, (t) (termed probability amplitudes) must
be chosen such that the resulting state vector satisfies the TDSE (2.1). This re-
quirement leads to the following vectorial form of the system of NV coupled ordinary
differential equations for the probability amplitudes:
zhw = H(t)C(1), (2.5)
dt

where the vector C(t) = (c1(t),...,cn(t))T and the matrix H(¢) represent the state
|U(t)) and the Hamiltonian H (t), respectively, in the basis {|t1), ..., [¥n)}.

Although only N states appear explicitly in the expansion (2.4), the influence of
other states can have important consequences. Other states are responsible for the
polarizability of the atom, i.e. for the occurrence of an induced dipole moment which,
when the laser field is present, supplements the direct transition dipole moment.
These produce multiphoton transitions and laser-induced energy (Stark) shifts.

The predominant part of the interaction of bound particles with laser light is
almost always the electric dipole interaction. In that case the interaction energy
operator is associated with the projection of the electric dipole operator d onto the
electric field Vi(t) = —d - E(t), where E(t) is the time varying electric field at the
center of mass of the particle. This applies to almost all commonly considered (i.e.
“allowed”) transitions. The interaction operator leads to selection rules such that,
for a given pair of states 1, and 1,, only one polarization direction € gives a nonzero
transition moment d,,,, = <¢m|a - €|1hy,). It is common to introduce the appropriate
Rabi frequency as Q,,,(t) = —d,n&(t)/h, where E(t) is the electric field envelope,
i.e., E(t) = E(t) cos(wt+¢). The set of nonzero moments for the interaction operator
can be viewed as a linkage pattern. The possible dipole transition moments - the
possible linkages - are characteristic for any given atom or molecule. Manipulation of
the state vector of an atom or molecule is possible through control of the magnitude
and direction of the laser electric field E(t).

Consider now a two-level system with ground state |¢)1) having the energy hw,
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and excited state |¢)9) having the energy fuws. For optical wavelengths of used laser
pulses, the Rabi frequency is typically 4 or 5 orders of magnitude smaller than
the laser carrier frequency w. That is, the photon energy Aw is much larger than
the interaction energy. Rapid oscillations associated with the carrier frequency are
not of interest. One is concerned with processes that take place over very many
optical cycles. Thus, it is necessary to focus on slow dynamics by making rotating-
wave approximation (RWA). It consists of replacing terms in the evolution equations
rotating at optical frequencies by their zero average value. In the rotating basis of

so called diabatic states

[1(8)) = e |un),

; , 2.6
[a(t)) = e ) 20

the two-level RWA Schrodinger equation has the form

o [cl(t)] :h[ 0 Q(t)
dt |cy(t) () A

where the time-dependent complex Rabi frequency is Q(t) = —do1E(t)e’® /h and the

N | =

Co (t)

“ (t)] : (2.7)

laser detuning is A = wy — wy — w.

2.2 Interaction of laser radiation with three-level
atomic system

Extension of a two-level system with another state leads to a three-level system
whose enriched complexity enables additional coherent phenomena. Let the three-
level system be composed from the states |¢)1), [1)2) and |¢3), having the energies
hwy, hws and hws, respectively. In case of the electric-dipole interaction the selection
rules require that coupled states must have opposite parity. Therefore, three-level
system can be dipole-excited by two distinct laser fields coupling two different dipole-
allowed transitions. These two laser fields, labeled by the letters p and S are often
called pump and Stokes fields, respectively. The carrier frequencies of the two fields,
wp and wg, respectively, are both taken to be close to resonance with exactly one of
the possible transitions. In that manner, each laser field can be uniquely associated
with a single transition. Let the pump field is (near) resonant only with the 1 — 3

transition, while the Stokes field is (near) resonant only with the 2 — 3 transition.
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Qp, Wp QS7 ws

1

Figure 2.1: Three-level A system. Pump field (label p) couples the transition 1 — 3,
while Stokes field (label S) couples the transition 2 — 3. €, and Qg are Rabi
frequencies of the fields, w, and wg are carrier frequencies, while A, and Ag are
transition detunings.

The transition 1 — 2 is dipole-forbidden and the states 1 and 2 are long-lived
(ground states) comparing to the state 3 (excited state). Then, the nonzero dipole

interactions are
Vo(t) = —ds1E,(t) cos(wpt + @),  Vs(t) = —ds2€s(t) cos(wst + ¢s), (2.8)

where dy3 and da3 are the dipole moments of the transitions and &,(t) and Es(t) are
slowly varying amplitudes of the laser fields. One can introduce the corresponding
Rabi frequencies as Q,(t) = —d31E,(t)/h and Qg(t) = —d32€5(t) /.

The state vector of a three-level system can be expanded as

[W(1)) = cr(8)[1(t)) + ca(t)[2(t)) + cs(t)]3(t)), (2.9)
where

[1(t)) = e |aby),
[a(t)) = e~ Wrter=es)l[y)y)
|03 (t))

(2.10)

)

e—i(w1+wp)t|w3>

are the diabatic basis states in the rotating frame. The evolution is governed by the

10
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three-level RWA Schrédinger equation which in the diabatic basis has the form

p c1(t) 0 0 10| [al
i e =h| 0 A =As 3Q)| |elt)] (2.11)
c3(t) FLM) %) A, cs(t)

where A, = w3 —w; —w, and Ag = w3 —w, —wg are appropriate single-photon detun-
ings of the pump and Stokes field, respectively. Difference between two detunings
Ar = A,—Ag is known as Raman two-photon detuning and A = 0 corresponds to
a Raman two-photon resonance condition. The type of three-level system relevant
for this thesis, called A system, is given in Figure 2.1. Other two possible types, V

and ladder, are not of present interest.

2.2.1 Electromagnetically induced transparency

Three-level A system represents the simplest system presenting two physically closely
related coherent phenomena - coherent population trapping (CPT) and electromag-
netically induced transparency (EIT). Basic physical picture of these phenomena is
based on the existence of dark states that are uncoupled to the laser fields. The
atoms trapped into the dark state cannot be further excited by the laser fields and
cannot fluorescence - they are dark.

Let us consider the case when the two fields are in Raman resonance Ag = 0,

i.e., single-photon detunings are equal A, = Ag = A. The A system Hamiltonian

0 0 10,0
WEt)=h| 0 0 3Qs(t) (2.12)
25 3 %E) A

has the following eigenstates and eigenenergies

Q5(1)
Dy (t) = % —Qé;(t) , eo(t) =0, (2.13)
. Q,(t) cos(t) .
Q_(t) = —— | Qs(t) cosb(t) | , e (t)==(A— A2+ Q(t)?), (2.14)
) —Q(t) sin 6(t) ?

11
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. Q,(t) sin 6(¢) 5
Qi(t) = ——= | Qs(t)sinb(t) | , e (t) = (A + A2+ Q(1)?), (2.15)
o) Q(t) cosO(t) ’

where the “mixing angle” (t) is introduced as cot(20(t)) = A/Q(t), with Q(t) =
V1,2 + [Q2s(¢)[2. It is important to note that the states @, (¢) retain components

of all of the atomic states. In contrast, the state ®q(¢) is composed entirely from

ground states 1 and 2 and has no contribution of the excited state 3. Moreover,
the state ®g(t) is a dark state that is effectively decoupled from the excited state 3,
since W(t)®o(t) = 0. This decoupling is consequence of destructive interference of
probability amplitude for the transition 1 — 3 with probability amplitude for the
transition 2 — 3. If the medium is prepared in this state, there is no possibility
of excitation by means of the coupling laser fields. This leads to an enhanced
transparency of the medium when the laser fields are close to Raman resonance.
Increased transparency for near resonant coupling fields is common to CPT and
EIT. Preparation into the dark state via optical pumping (via spontaneous decay
from the excited state 3) is one way to trap population into that state. Note once
again that necessary conditions for the CPT and EIT appearance are the existence
of dark states and two-photon Raman resonance of the coupling laser fields.

In a strict sense, EIT relates to the induced transparency of a weak probe field
in addition of a strong pump field, coupling one of the states of the original transi-
tion to a third state. The difference between EIT and CPT is that CPT relates to
two fields of nearly equal Rabi frequencies. EIT and CPT can be found in systems
with different types of level structures having different number of levels [2]. Pos-
sible realizations include pump-probe and Hanle configuration. The later utilizes
single linearly or elliptically polarized laser beam whose circular components couple
Zeeman sublevels of appropriate level manifolds and form A scheme(s). Detuning
from the Raman resonance is realized by an external axial magnetic field that lifts
Zeeman degeneracy. The material presented in this thesis deals with Hanle EIT in
multilevel systems in rubidium atoms. Previous exposition of EIT and CPT is very
simplistic, capturing the essence of the phenomena. Full treatment must include
the relaxation effects that are inevitable in atomic systems, like spontaneous emis-
sion. This is naturally carried out using the master equation approach where the

relaxation effects are treated via appropriate Lindblad-form terms [38, 39, 40].

12
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2.3 Interaction of laser radiation with multilevel
atomic system

Hyperfine atomic structure offers the possibility of studying coherent effects in mul-
tilevel systems. Hyperfine levels are degenerate in the absence of a magnetic field.
The Zeeman degeneracy can be intentionally lifted by applying an external magnetic
field, like in Hanle configuration experiments. Hanle EIT (EIA) resonances are usu-
ally related to hyperfine atomic transitions F, — F, = F, — 1 (F, — F. = F, + 1),
where F, and F; are angular momentum quantum numbers of the ground- and
excited-state hyperfine levels, respectively. External magnetic field B removes the
degeneracy of Zeeman sublevels of both the ground and the excited hyperfine levels
and favors the choice of quantization axis. Hence, the quantization z axis is chosen
to be parallel to the external magnetic field, i.e. B = Be,. The ground and the
excited hyperfine states are coupled by a linearly polarized laser beam propagating
along the z axis. The laser frequency wy is chosen to be resonant with the considered
atomic transition. The theoretical model is based on time-dependent optical Bloch
equations (OBEs) for the density matrix of a moving atom. Under the assumption

of purely radiative relaxation the equations are of the form [41]

dp [ ~ . dp
— = —7 | Hatom (B Vi (¢ > I ) 2.16
o =~ )+ V(.71 + () (2.16)
where
atom Z hng |g] gj| + Z hwek >|6k><€/€|7 (2'17)
j==Fy h=—Fe
is the atomic Hamiltonian related to ground (excited) states |g;) = |Fy, mgy, = j)

(lex) = |Fe, me, = k)) with Zeeman-shifted energies hw,, (B) = hwg, + ppgreBmy,
hw,, (B) = hw,, + ugpgreBme, ). g is the Bohr magneton and gr, and gp. are the
(Tiwwe, o+ 1iBg W) g grg and g

Landé factors for the appropriate hyperfine levels. Dipole laser-atom interaction is

Vin ( Z Z E(t) - djr(lg;) (ex| + lex)(gi); (2.18)

j=—Fy k=—F¢

where E(t) is the time-dependent laser electric field and dj; = (gj|d|es) is the

atomic electric dipole moment for the transition between the states |g;) and |ey).

13
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Spontaneous emission is included through the Lindblad-form term

A\ T it it i .t
(ﬁ) =5 2 (AupAL — AL Ap = pALAL), (2:19)
7,k

SE

where I" is the decay rate of each excited sublevel and fljk are Lindblad operators
corresponding to dipole transitions from the excited- to ground-state manifold. In
the rotating wave approximation the OBEs for the density matrix of a moving atom
have the form [25]

dp,. , T _ -
;;g’f = i (wg, — Wy;) Pyjor + h Z <p9jemv—em9k N VJFQjempemg’“)
m=—F,
1
, Fo 1 F F, 1 F
+ (=1 j+k 2Fe+1 FFe F Peire ¢ g ¢ I )
(=17 Jre ngzl T \kt+q —q —k) \j+q —q —j

dp r i & <

€Lg; . N

—d; I = (Z(wL + wy, — Wey) — §> Perg; + ﬁ( Z PeremV—emag; — Z Ve’“g"ag‘gj)’
m:*Fe ZZ_FQ

F

dpe;e . i (- .

ch = (z(we,c — We,) — F)pejek + 7 Z (pejgzvﬂ,zek — V_ejgepgeek), (2.20)
(=—F,

g9

where (:::) denotes Wigner 3—j symbol. Diagonal density matrix elements py,,,
(Peye,) are populations of g; (ex) Zeeman sublevels, while off-diagonal elements pg, g,
(Peje,,) are Zeeman coherences between g;gx (ejex) sublevels. Fast oscillations of the
optical coherences p,,, were eliminated by standard substitution p,,, = ﬁejgke_iwot.
wr, = wo(1 —v)/c) is the Doppler-shifted laser frequency seen by a moving atom and
v is the of the atomic velocity component parallel to the laser propagation direction.
I'r,—F, is the decay rate from each sublevel of the excited level F, to one ground
hyperfine level F, [41]

2
J, J. 1
r =L +1DC2F,+1) 9 °° T, 2.21
Fory = (21 + 1) 2F, >{Fe r In} (2:21)

where Jg, J. and I, represent the electron and nuclear angular momentum quan-

tum numbers and {: : :} represents Wigner 6 —j symbol. According to sum rule

Yo e ry = I', openness of the atomic system is quantitatively given by the ratio
g

I'r_F, /T'. The ratio is less than 1 for open and exactly 1 for closed systems. In

14
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case of an open system, one could also include the equations for the density ma-
trix elements related to the other ground levels Fy # F,. However, those equations
can be safely disregarded since those levels are not coupled by the laser. Because
a Doppler-broadened atomic vapor is considered, inclusion of higher excited levels
into the analysis may become necessary depending on the ratio of the Doppler-width
and excited level hyperfine splittings.

In a general case, the laser electric field is given by
E(r,t) = e, Eo,(r,t) cos(wot — kr) + e, Eq, (r, t) cos(wot — kr + ¢y;). (2.22)

For symmetry reasons it is suitable to express the laser electric field in terms of the

spherical basis unit vectors uy; = (Fe, — ie,)/v2

E = u (El’Jrei(wotfkr) + Elyiefi(wotfkr)) + uil(E717+€i(wotfkr) + E,L,eii(wotikr)%
(2.23)
where we used the notation Fyy 1+ = (FFEo, + ieiWWEOy)/(Q\/?). Terms Vig ., in
OBEs (2.20) are of the form

Vigier = —Hgjen—1E-12 — Hgjep 1 B+ (2.24)

Here fig.c, 4 18 the electric dipole matrix element between the ground and excited

states |g;) and |eg), respectively, and it can be calculated as [41]

Hgjera = <F97 myg, |ug - a|Fe’mek>
= (ALY (=) J(2F, + 1)2F, + 1)(2], + 1)

J . 1 F, 1 F
x4 9 / 70, (2.25)
F. F, I, Me,, q  —My;

where <JgHElHJe> is the reduced matrix element of the electric dipole operator

between the appropriate ground and excited states. Due to the relation pf, 9a =
(=1)%pg,e,,—g, the terms Vi, o are completely determined by the terms Vg, .

It is assumed that after colliding with cell walls, atoms reset into an internal
state with equally populated ground magnetic sublevels. Between collisions with cell
walls, rubidium atoms interact only with the axially oriented homogeneous magnetic

field and spatially dependent stationary laser electric field. The magnetic field is
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Figure 2.2: (a) Schematic of atomic trajectories chosen to cover the entire laser
beam cross section (horizontal straight lines). Each trajectory defines certain angle
¢. All trajectories intersecting the circle of radius r contribute to density matrix
p(B;r). (b) Two atomic trajectories 7; and 7T, related by rotation by the angle «
about the beam axis, are equivalent due to cylindrical symmetry.

taken constant during the atomic transit through the laser beam. Collisions among
Rb atoms are negligible due to very low Rb vapor pressure at room temperature, so
an atom moves through the laser beam with constant velocity v = v + v, where
v|| and v are velocity components parallel and perpendicular to laser propagation
direction, respectively. The former affects the longitudinal direction of the atomic
trajectory and Doppler shift of the laser frequency seen by a moving atom, while the
latter determines the transverse direction of the trajectory and the interaction time.
Longitudinal changes of the beam profile are negligible comparing to transverse
ones so that only the transverse direction of the trajectory matters. Therefore,
the explicit dependence on z of all physical quantities related to the Rb vapor is
dropped. From the reference frame of the moving atom, the electric field varies and
the rate of variation depends only on v . Assume that the transverse projection of
the atomic trajectory is given by r (¢) = ro, + v t, where ry, is the perpendicular
component of the atom position vector at £ = 0. The temporal variation of the laser

electric field seen by the moving atom is given by
E(t) = E(r.(t)) = E(roL + v.1), (2.26)

representing the spatial laser electric field variation along the trajectory of the atom
in the laboratory frame. When the beam profile is cylindrical symmetric, the spatial
dependence becomes purely radial dependence.

The observed resonances in EIT and EIA experiments are a probabilistic aver-

age of the contributions of many individual, mutually non-interacting atoms. Ru-
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bidium atoms traverse the laser beam at different trajectories with different veloc-
ities. Maxwell-Boltzmann velocity distribution and diversity of atomic trajectories
through the laser beam are taken into account. The trajectories having different
distances from the laser beam center are chosen so that the beam cross section is
suitably covered (Fig. 2.2(a)). Each trajectory corresponds to a certain azimuthal
angle ¢, of the atomic velocity v = (v, v1,dy). Let trajectories 7; and 73, shown
in Fig. 2.2(b), correspond to velocities vi = (v|,v1,¢v1) and vo = (v),v1, dya),
respectively. Owing to the cylindrical symmetry of the laser beam profile, atomic
density matrices p(B;vy;r ) and p(B;va;r) ) calculated along those trajectories are
the same up to a rotation by the angle v about the laser beam axis. Therefore, the
trajectories 71 and 75 may be considered as equivalent and it is enough to perform
the actual calculations only along the trajectories like those in Fig. 2.2(a).

The goal is to obtain the atomic ensemble density matrix p(B;r) across the beam
cross section. Starting step is to calculate the atomic density matrix p(B;v;r))
along a given trajectory for a representative set of atomic velocities. The calculated
density matrices are then averaged over the longitudinal and transverse parts of the

Maxwell-Boltzmann distribution of velocities yielding

o e}

p(B;dy;ry) = /dULWL(UL> / doyW) (v))p(B; v, v, dysrL), (2.27)
0 —00
with
1 2
Wy(v)) = e exp (—vﬁ/ug) , Wi(vy) = % exp (—v? /u?), (2.28)

where u = (2kpT /mgy)""? is the most probable velocity of Rb atoms at temperature
T. Final step is to average the density matrix p(B; ¢y;r ) over all azimuthal angles
¢y in the range (0,2m), i.e. over all equivalent trajectories. Due to the cylindrical
symmetry of the atomic velocity distribution, the resulting density matrix will also
be cylindrical symmetric. Thus, the angular integral appearing in the averaging over
¢, can be replaced by an angular integral over space

2T
doy
p(B;r) =
0/ 2T

2

p(B; dyiry) = /@p(B;cbv = 0;7 cos ¢, rsin ), (2.29)
0

2
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where ¢, = 0 is chosen only for convenience and does not influence the result.

The effects of the laser propagation along the cell and induced atomic polarization
of the Rb vapor are included using the following approximations. The Rb vapor
ensemble density matrix p(B;r) and polarization P are first computed assuming
the constant value of the electric field E along the z direction of laser propagation
within the cell. The polarization of Rb vapor is obtained from the ensemble density

matrix
P(B;r) = n(T)Tr(p(B;r) d) = n(T)e " “ot=k)

FQ Fe

~ Hgjer,—1 — Hgjep,1 Hgjer,—1 + Hgjer,1

X Z Z Perg; (B;T) ( e, +i e, | +c.c.,
j=—Fy k=—Fe J V2 V2

(2.30)
where the 8"Rb concentration at temperature 7T is given by [42]
133.322 4215
log,,n(T') = logy, | 0.2783 - — 2.881 +4.857 — ——. (2.31)
kgT T

Due to trace operation including dipole operator a, the polarization P depends
only on the optical coherences p., . between the excited and the ground Zeeman
sublevels. Using the computed Rb polarization, the change of the electric field due
to propagation of the laser through the Rb vapor is calculated. Let £(B;r) and
P(B;r) denote complex slowly varying envelopes of the electric field and the polar-
ization, respectively, defined by E(B;r,t) = Re(E(B;r)e “ot=*)) and P(B;r,t) =
Re(P(B;r)e i@tk = Assuming that the change of electric field along the length

L of the Rb cell is small enough, the exact relation for the slowly varying envelopes

0E(B;r,z)  iwg
0z  2¢c

P(B;r,z) (2.32)

in the first approximation takes the form

E(B;r,z=L)=&(B;r,z=0)+ ﬂ77(B;7")L, (2.33)

2¢qc

where ¢ is the vacuum dielectric constant. The laser electric field at the entrance
to the Rb cell is £(B;r, z = 0), while the transmitted electric field is £(B;r, z = L).

In the experiments, the Hanle resonances are obtained by measuring the trans-
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mitted power of the whole laser beam or of some small circular segment of the laser

beam cross section. Local intensity of the laser beam is given by

C€p

= SIEmP =5

I(r) =5

1E(r)|. (2.34)

Hence, the total transmitted power of the laser beam is
Piot(B) = /I(B; r,z = L)2mrdr = 7TC€0/ |E(B;r, 2z = L)|*rdr. (2.35)
0 0

The transmitted power in the case of detecting the light from the small circular
segment of the laser beam cross section, centered at the distance ¢ from the beam

axis and having the radius a, is

C€p

2 a
Poo(B) = 5 [ [ (B R(v.0). 2 = L)Prarao, (2.36)
0 0

where R(r, ¢) = (£* — 2{r cos ¢ + r2)1/2. The transmitted power of Eqs. (2.35) and
(2.36) is used in the calculations of Hanle EIT and EIA resonances that are compared
with the experiment.

The OBEs (2.20) represent a set of ordinary differential equations (ODEs). In or-
der to solve these equations, a Fortran program is developed that uses BiM code [43].
BiM code implements a variable order-variable stepsize Blended Implicit Methods

for (stiff) initial value problems for ODEs.
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3. Influence of laser intensity and beam
profile on Hanle resonances

All coherent phenomena strongly depend on the intensity of the applied laser field.
Laser intensity dependence of EIT line-shapes has been studied extensively. It is
shown that EIT line-widths at lower intensities have a linear dependence on the laser
electric field, i.e. laser Rabi frequency, and a linear dependence on laser intensity at
higher intensities [44, 45, 46]. The EIA line-widths, in contrast, have a maximum
near the saturation limit [47]. Theoretical models usually assume a A atomic scheme,
a steady state solution of the optical Bloch equations, and single values for the
relaxation rates of the populations and coherences between the ground hyperfine
levels. The relaxation rates for coherences are constants determined either by the
diffusion rate (buffer gas cells) or by the reciprocal of the atom transit time through
the laser beam (vacuum cells).

The term “laser intensity” is commonly used in the sense of an average beam
intensity (laser power divided by the beam area), regardless of the laser beam profile
used in the study. Since coherent phenomena are generally nonlinear, they depend
strongly not only on the average beam intensity but also on the radial intensity dis-
tribution of the used laser beam. The typical laser beam profile used in experiments
is Gaussian, while theoretical descriptions commonly assume a II-shaped beam pro-
file. The influence of different laser beam profiles has been studied only for EIT
line-shapes in a few papers [26, 28, 27, 25, 29].

In the sequel, the presented theoretical model will be applied to the investigation
of Hanle EIT and EIA resonances in 8Rb vapor vacuum cell obtained using Gaussian
and II laser beam profiles. For the interaction of the Gaussian or II laser beam
with alkali-metal atom vapor, different effects such as Ramsey and Dicke narrowing,
transit time, and Doppler broadening are examined either in vacuum [24, 48] or in
buffer gas cells [49, 50, 51, 52]. The differences in EIT line shapes for Gaussian and

IT laser beams were presented in [26, 27, 25| by considering only the entire laser
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EVOLUTION

-2 -1/ o /N 1 2 °
AN Lo !
Iy \ ;|
Iy A I V|
Iy U, \ |
A T F=1
-1 0 1 g

Figure 3.1: Zeeman sublevel scheme in 8’Rb at the D; line. The solid lines denote
coupling with ™ and ¢~ components of linearly polarized laser light. Dashed lines
represent spontaneous emission.

beam contribution without focusing on the details of laser-atom interaction within
the laser beam. However, different parts of the laser beam cross section, after
passing through the alkali-metal vapor cell, carry different information about the
atomic state and should yield different EIT and EIA resonances. The contribution
of different segments of the Gaussian laser beam to the dark resonance line-shapes
in a dense *He vapor was presented in Ref. [28] where deviation of overall resonance
profile from pure Lorentzian shape is shown and attributed to observed spatial
variation of line-shapes for different positions in the Gaussian laser beam. Therefore,
it is important to take into account the real laser beam profile for proper modeling
and analysis of coherent effects in alkali-metal vapors. Subsequent sections will
present the details of the work published in [53, 54, 55].

3.1 Influence of the laser beam profile on the tran-
sient atomic evolution

This section illustrates that the transient evolution of the atoms passing through
the laser beam is significantly affected by the beam intensity profile. Considered
atomic transition is I, = 2 — F, = 1 from D; line of 8"Rb. The transition is open
because excited states can decay to another Fj, = 1 ground state level. The energy
level diagram given in Fig. 3.1 shows hyperfine levels either coupled by the linearly
polarized laser light or populated due to spontaneous emission.

In what follows, the dependence of the laser intensity on the radial distance r
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Y

Figure 3.2: Il-shaped (blue curve) and Gaussian (green curve) intensity profiles of
the laser beam of radius ry and unit average beam intensity.

from the beam axis for the Gaussian profile is
I(r) =2l exp (—2r°/r]), (3.1)

where 79 is 1/e? beam radius and I is average beam intensity (total laser power
divided by 7r7). A TI-shaped profile of the same intensity and radius was modeled
using the equation

I(r) = Ia[1 + erf(p(r — 7’0))}2, (3.2)

where a is the normalization constant, p is a positive parameter affecting the steep-
ness of the profile near r = ry and erf(_) is the error function. The two beam profiles
are illustrated in Fig. 3.2.

Figure 3.3 presents the spatial variation of the total population of the ground and
the excited hyperfine states for the atom with specific values of the transverse v, and
of the longitudinal v velocity components, for two laser intensities. These results
were obtained for atoms traversing the laser beam along its diameter (¢ = 0), and
for an axial magnetic field B = 2 uT. As the dashed lines indicate, the left sides are
for the II while the right sides are for the Gaussian transverse laser beam profile. It is
evident that the atomic population of excited and ground states vary differently, both
qualitatively and quantitatively, along the two laser beam profiles. After entering the

laser beam, some fraction of the excited atoms decays into the uncoupled hyperfine
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Figure 3.3: Calculated spatial dependence of the total Zeeman sublevel populations
of the ground F,, = 2 (two upper curves in each figure) and the excited F, =1 (two
lower curves in each figure) hyperfine levels for a single atom entering the laser beam
from the left. (a) and (b) show the effects of the laser intensity for I = 0.5 mW /cm?
(red lines) and [ = 5 mW /cm? (blue lines). Results are for v, = 180 m/s, v = 0
m/s and B = 2 yT. Beam profiles are shown in dashed lines and have ry = 1.5 mm.
Excited level populations are multiplied by 20 in the case of a IT and by 40 in the
case of a Gaussian profile.

level F, = 1, resulting in loss of population from the transition F, = 2 — F, = 1.
The atoms decaying back to the F,; = 2 hyperfine level can populate two dark states
composed of Zeeman ground state sublevels |F, = 2,m, = m) = |2,m),. In the case

of linearly polarized laser light these dark states are

1 1
DSy) = —|2,—1 —12,1),, 3.3
| 1> \/§| >g+ \/§| >g ( a)
1 V3 1
DSy) = —=12,-2), + —|2,0), + —=12,2),,. 3.3b
| 2> 2\/§| >g 9 | >g 2\/§| >g ( )

During evolution in non-zero magnetic field B, the phase of each state |2,m), os-
cillates with frequency o m- B, so that different Zeeman states will acquire different
phases. This would alter relative phases between the states |2,m), in Eqns. (3.3)
and deteriorate the dark states. Thus, the dark states are ideally non-coupled by
the laser only when there is no magnetic field. However, when the magnetic field is
sufficiently small and the laser intensity is high enough, a quasi-steady state can be
reached, as can be seen in Fig. 3.3. In that case one part of the initial ground state
population is pumped into an uncoupled hyperfine level F; = 1 while the rest is in an
almost non-coupled dark states. Because the rate of this population redistribution

is higher for more intense laser light, the quasi-steady state is reached more rapidly
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Figure 3.4: Calculated spatial dependence of the total Zeeman sublevel populations
of the ground Fj, = 2 (two upper curves in each figure) and the excited F, =1 (two
lower curves in each figure) hyperfine levels for a single atom entering the laser beam
from the left. (a) and (b) show the effects of the transverse velocity component for
v, = 40 m/s (blue lines) and v, = 180 m/s (red lines). Results are for v = 0
m/s, B =2 uT, I =0.5 mW/cm? and r, = 1.5 mm. Excited level populations are
multiplied by 20 in the case of a II and by 40 in the case of a Gaussian profile.

for larger laser intensities. At B = 2 uT the Rb atoms can be excited from the dark
states and the populations vary continuously while an atom is illuminated by the
laser light. Changes in the populations as an atom enters the laser beam are much
more rapid for II-shaped beam profile as a consequence of steep intensity increase.
In a Gaussian beam, atoms are at first slowly pumped out from the F, = 2 level,
resulting in the total excited population peak delay until the atom reaches higher
light intensities of the Gaussian beam. Also, optical pumping is lower and the total
excited population is higher for faster atoms, as shown in Fig. 3.4. The influence
of longitudinal velocity component is presented in Fig. 3.5. Due to Doppler detun-
ing, the atoms having nonzero longitudinal velocity interact with non-resonant laser
light. Detuning from the exact resonance reduces the total excited state population
and lowers the optical pumping. In a Gaussian beam, the total excited population
peak is shifted toward more intense central parts of the Gaussian beam. It is ap-
parent that the atomic transient evolution is influenced by the atomic motion all
the time as the atom traverses the laser beam. Additional differences come from
different velocities of the traversing atoms, i.e. from different time variation of the
laser electric field as seen by the moving atom. Hence, in order to have a proper
description of atomic interaction with the laser beam of some radial profile, it is

mandatory to deal with time-dependent OBEs.
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3.2 EXPERIMENTAL SETUP
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Figure 3.5: Calculated spatial dependence of the total Zeeman sublevel populations
of the ground F,, = 2 (two upper curves in each figure) and the excited F, =1 (two
lower curves in each figure) hyperfine levels for a single atom entering the laser beam
from the left. (a) and (b) show the effects of the longitudinal velocity component
for vy = 0 m/s (red lines) and v = 5 m/s (blue lines). Results are for v, = 180
m/s, B =2 uT, I =0.5 mW/cm? and r, = 1.5 mm. Excited level populations are
multiplied by 20 in the case of a I and by 40 in the case of a Gaussian profile.

The following sections will present the theoretical results for Hanle EIT and ETA
resonances for different laser beam profiles. Theoretical results will be compared
with actual measurements done by the colleagues Aleksandar Krmpot, Senka Cuk
and Stanko Nikoli¢, members of the Photonics Center of the Institute of Physics,
University of Belgrade.

3.2 Experimental setup

This section gives an outline of the experimental setup shown in Fig. 3.6. The exter-
nal cavity diode laser is frequency locked to the appropriate transition of Rb. Laser
locking is performed in an auxiliary vacuum Rb cell using the Doppler-free dichroic
atomic vapor laser lock (DDAVLL) method [56, 57]. The variable neutral density
filter is used for laser power adjustments. Single-mode fiber was used to provide
the Gaussian laser beam. After passing through the Glan-Thompson polarizer, the
laser beam becomes linearly polarized.

For experiments with the Gaussian profile, the laser beam is expanded to 3 mm in
diameter. Laser beam diameters are determined from the 1/e? value. The II-shaped
laser beam profile was obtained after expanding the Gaussian laser beam to 20 mm

in diameter and then extracting its central part via the circular aperture placed on
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3.2 EXPERIMENTAL SETUP
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Figure 3.6: (a) Experimental setup: ECDL, external cavity diode laser; OI, optical
isolator; DDAVLL, Doppler-free dichroic atomic vapor laser lock; VNDF, variable
neutral density filter; SMF, single-mode fiber; FC, fiber collimator; P, polarizer;
BE, beam expander; PD, photodiode. Moving the aperture on the translation stage
allows only a selected part of the laser beam to reach the detector, while the rest of
the laser beam is blocked. II-shaped beam profiles were recorded by a beam profiler
placed at 3 cm (b) and 30 cm (c) from the 3-mm circular aperture. (b) The dashed
(red) curve is the profile of a Gaussian laser beam of the same power and diameter
as the II-shaped beam.
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3.2 EXPERIMENTAL SETUP

the entrance window of the cell. Diffraction affects the beam shape in the Rb cell
and one has to settle for an approximation of the II shape of the laser beam. After
experimenting with different diameters of the expanded Gaussian laser beam, sizes
of apertures, and thicknesses of the foil used for the apertures, II-shaped laser beam
whose radial intensity profiles presented in Figs. 3.6(b) and 3.6(c) is obtained. The
beam profiles measured by the beam profiler are 3 and 30 cm away from the 3-mm
aperture on 0.1-mm tick foil. The first profile is at a distance equal to the distance
between the aperture and the mid section of the Rb cell. This profile is referred to
as Il-shaped throughout the thesis. The beam profile at 30 cm from the aperture
is used to show relatively small changes in the profile with distance and to justify
use of the Il-shaped profile in the theoretical model. Together with the II-shaped
laser beam profile, the profile of the Gaussian laser beam is also presented in Fig.
3.6(b). The two beam profiles shown together have the same power and the same
diameter. The laser beam passes through the 6-cm-long vacuum Rb cell containing
a natural abundance of rubidium isotopes. The cell is placed in the solenoid used
for scanning the axial magnetic field. The cell and the solenoid are placed inside
triple-layered p-metal cylinders to eliminate Earth’s and stray magnetic fields. In
the parts of the experiment studying the effects of the laser beam profile on the
intensity dependence of whole-laser-beam EIT (EIA), the entire transmitted laser
beam was detected while scanning the external magnetic field. To measure Hanle
EIT (EIA) from only small parts of the laser beam, a movable aperture 0.5 mm
in diameter is placed in front of the large detection surface photodiode (area of 80
mm?). By moving the aperture with the fine translation stage only light from a
small segment of transmitted laser beam is allowed to reach the photodiode. The
signal obtained from the photodiode while scanning the external magnetic field is

recorded by the digital oscilloscope and transferred to the computer.
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3.3 HANLE EIT RESONANCES FROM SELECTED SEGMENTS OF THE GAUSSIAN LASER
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3.3 Hanle EIT resonances from selected segments
of the Gaussian laser beam cross section

Typical transverse laser beam profile in experiments studying EIT is Gaussian. The
intensities in the central parts and in the wings of the Gaussian laser beam are very
different. Nevertheless, the order of magnitude lower intensity in the wings can still
significantly affect the atomic coherent evolution. The lifetime of alkali-metal atomic
coherence in vacuum cell is longer then the atom transit time through the laser beam.
Thus, the light in the wings can “probe” the induced coherence of the atoms coming
from central parts of the Gaussian laser beam leading to Ramsey-like interference.
The reversed order of events, interaction of atoms with the light first in the beam
wings and afterward in the intense central parts of the laser beam, will not reveal
such effect of the coherently prepared atomic state due to overwhelming influence
of the intense light at the center of the Gaussian beam. Therefore, different Hanle
EIT resonances should be obtained from different parts of the Gaussian laser beam.
This section refers to the first confirmation that Ramsey-like repeated excitation
of atoms within the same laser beam significantly affects the resonance line-shapes
observed from the segments of the Gaussian laser beam cross section [53].

The contribution of different segments of the Gaussian laser beam to the EIT
resonance line-shapes in a dense “He vapor was presented in [28]. The results of
Ref. [28] show deviation of overall resonance profile from pure Lorentzian shape
attributed to observed spatial variation of line-shapes for different positions in the
Gaussian laser beam. However, no Ramsey-like repeated excitation of atoms was
found. This will be discussed later. There are several papers showing significance of
the repeated interaction of atoms by separated, in space and/or time, laser beams
tuned to Raman resonance of the atomic transitions. Narrowing of EIT resonances
in cells with anti-relaxation coatings [23] and in buffer gas cells [49, 50] is attributed
to repeated excitation by the laser beam after the atoms spend some time in the
“dark” part of the cell, not illuminated by the laser light.

This section presents the study of EIT resonances originating from different parts
of the Gaussian laser beam cross section, after the whole laser beam passes through
the Rb vapor cell. The investigation was performed on 8"Rb atoms at D; line
transition Fj, = 2 — F, = 1 in the Hanle configuration. Hanle resonance line-shapes
were calculated using the model introduced in the section 2.3, i.e. by including the

effects of the atomic polarization, the time evolution and the interaction of the
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Figure 3.7: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small parts of the Gaussian beam. The green, the red and the blue curves
are for r = 0 mm, 0.75 mm and 1.5 mm, respectively, where r is the radial distance
of the aperture from the beam center. The beam diameter is 3 mm and the total
intensity is 0.5 mW /cm?. Theoretical results were normalized to the experimental
results such that peak values at » = 0 mm are equal.

atomic state with light in the Gaussian laser beam. The theoretical description
distinguish the contribution to the EIT resonances from the atoms coming to the
wings from central parts of the laser beam and from the outside of the beam.

The curves in Fig. 3.7 represent theoretical and experimental resonances obtained
for different positions of the aperture along the beam diameter, with » = 0 mm
referring to the laser beam center. The laser intensity is 0.5 mW/cm?. There
is a good agreement between the theory and the experiment. Figure 3.7 reveals
significant differences in line-shapes, widths and amplitudes of the resonances at
different positions within the beam. The Hanle EIT resonances from the wings
of the beam show the two transmission minima at certain values of the magnetic
field. The origin of such line-shape is in the interaction of light in the wings of
the laser beam with the coherently prepared atoms coming from the central part of
the Gaussian beam. Namely, during the interaction with the strong laser electric
field near the center of the Gaussian beam an atom is coherently prepared into the

dark state. The dark state is coherent superposition of Zeeman sublevels of F, = 2
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ground level and is ideally non-coupled to the laser light only in the absence of
external magnetic field. Zeeman sublevel populations and coherences are subjected
to various relaxation processes. The transit time of the atoms through the laser
beam is much shorter than the relaxation times of the ground state coherences.
During the time that atom spends in the laser beam the coherences vary due to
competitive effects of the laser excitation and the external magnetic field. The
laser continuously forces the atomic coherence to be in-phase with the electric field.
The external magnetic field B causes oscillations of the coherence phase at Larmor
frequency that is proportional to B. Such oscillations can turn the dark atomic
state into the bright state and vice versa. When atoms move away from the central
to the outer parts of the beam (outgoing atoms), the oscillatory behavior prevails
when the laser field is low enough. Thenceforth the phase of the atomic coherence
oscillates and the atoms are cycling between dark and bright states. The outer
section of the Gaussian beam, where this cycling occurs, is the interference region.
Aside from outgoing atoms there are also atoms coming into the interference region
from the outside of the beam (incoming atoms). Note that the incoming atoms
are not coherently prepared and do not contribute to the interference. Consider an
outgoing atom from the certain velocity class traversing the interference region along
the certain trajectory. While passing through the laser beam the atom experiences
nearly constant magnetic field due to its slow variation in the experiment. The
phase shift of the atomic coherence at the point r along this trajectory depends on
the value of the magnetic field B. If the coherence at r is in-phase with the laser
electric field, the atom is in the dark state and the transparency at r is increased.
It is clear that B = 0 fulfills this condition since the atom is continuously in the
dark state regardless of the location in the interference region. If the magnetic field
is such that the difference between the phases of the atomic coherence and the laser
field equals to /2 + nm (n € Z) the atom is in the bright state, and the minima
of transparency at r occur. These minima and maxima of the transparency are
interference fringes. The atoms inside the cell move with different velocities and
traverse different trajectories with respect to the laser beam. The averaging over
the velocity and trajectory distributions results in the lowering of the amplitude and
in washing out the higher-than-first order interference fringes in the transmission
signal.

Previous considerations are supported by the results given in Fig. 3.8. The results

are shown the magnetic field B = 10 pT at which transmission minima appear in
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Figure 3.8: Change of the argument of atomic coherence p, , 4, during atomic pas-
sage through the 3-mm-wide Gaussian laser beam at constant magnetic field. The
dashed lines denote the positions along the beam radius where the Hanle EIT reso-
nances for the given laser intensities exhibit very pronounced transmission minima.
The transmission minima at the Hanle EIT resonances appear in the wings of the
Gaussian beam cross section when arg p, , 4, i.e., the atomic phase is equal to 7/2.
The magnetic field value 10 uT is chosen because the transmission minima in the
Hanle EIT resonances appear exactly at this value. The beam profile is presented
by the gray line.

Hanle EIT resonances. Since the laser electric field tends to keep the phase of the
coherence constant while the magnetic field tends to change the phase, when both
magnetic and electric field are present, the phase of atomic coherence depends on
the magnitudes of these two fields. The atom is coherently prepared and the phase is
kept fixed by the laser field in the central parts of the Gaussian beam. In the wings
of the Gaussian beam the phase value of the same atomic coherence depends on
the local laser intensity. When the atomic phase reaches 7/2, i.e., the atomic state
becomes bright, two transmission minima appear in Hanle EIT resonances obtained
in the wings of the Gaussian laser beam. Naturally, the distance from the beam
center where that happens increases with the laser intensity, as can be seen from
the curves in Fig. 3.8.

Figure 3.9 shows Hanle EIT resonances calculated by considering outgoing, in-

coming and both groups of atoms. The results are given for two distances from the
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Figure 3.9: Calculated contribution of outgoing (green), incoming (red) and both
outgoing and incoming (blue) atoms to the Hanle EIT resonances for two distances
from the laser beam center: r = 1.00 mm (a) and » = 1.75 mm (b). The laser
intensity is 3 mW /cm?.

laser beam center, r = 1 mm (Fig. 3.9(a)) and » = 1.75 mm (Fig. 3.9(b)). It is
evident that only outgoing atoms are responsible for the appearance of the two side-
band transmission minima. Effect of outgoing atoms on the resonance line-shape, at
certain distance r, depends on the laser intensity. Results in Fig. 3.9 show that for 3
mW /cm?, the contribution of outgoing atoms to Hanle EIT resonances is negligible
at the distance r = 1 mm, while it is very strong at » = 1.75 mm. The physical
mechanism used in the above explanation of these results is the same as in Ramsey
interference. The resulting Hanle line-shapes are similar to those obtained due to
Ramsey interference in separated pump and probe laser fields in vacuum gas cells
[58]. In this case, the extended low intensity wings of the Gaussian laser beam play
the role of the probe laser beam.

Figure 3.10 shows theoretical (a) and experimental (b) behavior of the Hanle EIT
line-widths as a function of the aperture radial position r. There are two reasons
for narrowing of the Hanle EIT resonances in the wings of the Gaussian laser beam
profile. The first is the lower power broadening in the outer parts of the laser beam.

Another reason is the Ramsey-like narrowing caused by the aforementioned physical
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Figure 3.10: Theoretical (a) and experimental (b) Hanle EIT line-widths for the
different positions r of the aperture along the laser beam diameter. The blue, the
red, and the green curves are for the intensities I = 15 mW /cm?, 2 mW /cm?, and 0.5
mW /cm?, respectively. The dashed bars in (a) represent the Hanle EIT line-widths
obtained by detecting the entire laser beam.

processes. The line narrowing at larger radial distances becomes more prominent as
the total laser intensity increases. The dashed bars in (a) denote the line-widths of
the Hanle EIT resonances for the three laser beam intensities when the whole laser
beam is detected. At this point we find suitable to compare with results of Ref.
[28]. Line-shape Rabi power broadening corresponding to local intensities within
the Gaussian beam, was also observed in [28], but without altering local resonance
Lorentzian shape due to interference effects. One possible reason for the absence of
the interference effects in such experiment is in the used experimental conditions.
Namely, the mean free path of He atoms at the pressure of 1.5 Torr is of the order
0.1 mm, while used laser beam diameter is 6 mm. Motion of *He atoms is diffusive
so that they are effectively localized and cannot freely traverse the laser beam as
in our case. Therefore, the interference effects could not occur in the experiment

performed in Ref. [28] due to frequent atom-atom collisions.
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3.4 Hanle EIT resonances from selected segments
of the II-shaped laser beam cross section

This section contains the study of time and space evolution of atomic states as the
Rb atoms traverse the II-shaped laser beam, i.e., laser electric field of nearly constant
intensity. Such studies were performed by obtaining EIT line shapes from different
circular segments of the laser beam cross section, much smaller than the laser beam
diameter, after the entire beam had already passed through the Rb cell. Hanle
configuration with the laser locked to the F; = 2 — F, = 1 hyperfine transition of
the D; line in the 8"Rb isotope in the vacuum vapor cell is used. This is similar
to the examinations presented in the previous section. Due to interaction with
a laser electric field having different distributions in the Gaussian and II-shaped
beams, the atomic state develops differently in the presence of a small external
magnetic field. Narrowing of the Hanle EIT in the wings of the Gaussian laser
beam was attributed to the interference of the laser light and coherently prepared
atoms coming from the central part of the beam. The narrowing is accompanied
by the appearance of Ramsey-like transmission minima in Hanle EIT line shapes
detected in the Gaussian beam wings. Therefore, it is expected that examination
of EIT line shapes obtained in different segments of II laser beam cross section
should reveal some details about the transient evolution of interacting atoms. It
can also help in understanding differences in line-widths and amplitudes of EIT
resonances obtained using two laser beam profiles and reported in Refs. [25, 26, 27].
Partial Hanle EIT resonances from different segments of the II laser beam were not
thoroughly investigated. The significance of using the II profile is in the elimination
of the effects due to transverse variation of the laser intensity, providing conditions
for more direct insight into the laser-atom interaction. Theoretical calculations of
the spatial dependence of EIT line shapes along the laser beam profile are compared
with the experimental results. The calculations are based on time-dependent optical
Bloch equations model presented in the section 2.3. It unveils the influence of the
optical pumping into the uncoupled ground-state hyperfine level on the obtained
Hanle EIT resonance line-shapes.

The actual beam profile used in the experiment is shown in Fig. 3.11. The beam
profiles obtained at 30 cm from the aperture are given to show relatively small
changes in the profile with distance and to justify use of the II-shaped profile in

the calculations. Theoretical and experimental Hanle EIT resonances obtained at
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Figure 3.11: Two Il-shaped beam profiles recorded by a beam profiler placed at
different distances from the circular aperture: at 3 cm (a) and 30 cm (b) for the
3-mm profile, and at 3 cm (¢) and 30 cm (d) for the 6-mm profile.

different positions of the small aperture along the beam diameter are presented in
Figs. 3.12(a) and 3.12(b), respectively. Hereafter r = 0 mm refers to the center of
the laser beam cross section. The beam diameter is 3 mm and overall intensity is
4 mW /cm?. Results in Fig. 3.12 show significant differences in shapes, widths, and
amplitudes of resonances obtained at different positions within the cross section of
the Il-profiled laser beam. The Hanle EIT resonances originating from the central
parts of the II beam cross section exhibit two transmission minima next to the
central maximum of the EIT resonance. Additionally, resonances in the center of
the laser beam cross section are narrower than those originating from the outer

parts of the beam. These results are reversed to the results obtained from different
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Figure 3.12: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small segments of the II laser beam cross section. Green, red, blue, and
orange curves are for r = 0 mm, 0.75 mm, 1.0 mm and 1.5 mm, from bottom to
top, respectively, where r is the radial distance of the small aperture from the beam
center. The beam diameter is 3 mm and the total intensity is 4 mW/cm?. The
theoretical results were normalized to the experimental results at » = 0 mm.

segments of a Gaussian laser beam cross section presented in the previous section.
In the latter case two minima appear, and the resonances are narrower, when the
small aperture is placed at the wings of the Gaussian beam cross section.
Neglecting small intensity variations of the II-shaped laser beam (see Fig. 3.11)
atoms interact with a constant electric field of the laser in the presence of constant
external magnetic field during the passage through the laser beam. The evolution of
the atomic state under these conditions is different than in the case of the Gaussian
beam. In Fig. 3.13 we present a calculated variation of the total population of the
excited state F, = 1 as a function of distance from the entrance in the laser beam
(leftmost), considering atoms with the most probable radial velocity of 180 m/s at
room temperature (300 K). When an atom enters the laser beam at zero magnetic
field (B = 0), it starts to absorb photons and the population of the excited state, i.e.,
the sum of the populations of all excited-state Zeeman sublevels, increases (red thick

line in Fig. 3.13). Shortly after entering the laser beam, atoms are prepared into
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Figure 3.13: Calculated total population ) p., ., of all Zeeman sublevels of the
F. = 1 excited level at different magnetic fields as a function of position along the
3-mm beam diameter of the II-shaped laser beam. The curves corresponding to the
magnetic fields 0 — 100 uT from the legend appear from bottom to top, respectively,
at r = —1.25 mm. The beam intensity is 4 mW /cm?. The atomic velocity is 180
m/s. The thin gray line represents the cross section of the laser beam with an
arbitrary intensity unit. The atom enters the beam from the left.

the dark state and do not absorb photons afterward yielding maximal transmission.
At small magnetic fields the preparation of atoms into the dark state is less efficient
and there is certain probability for photon absorption during the entire interaction
of the atom and the laser light. Thus, the excited-state population decreases less
rapidly than for B = 0 as atoms move through the laser beam and transmission
decreases. As Fig. 3.13 shows, the atomic total excited-state population, for atoms
near the laser beam center, is largest for a magnetic field at about 30 uT (dark
yellow thick line) when transmission reaches minimum. At larger magnetic fields
(e.g., 75 uT, orange thick line), pumping into the uncoupled F, = 1 hyperfine
level becomes considerable and transmission noticeably increases. The observed
behavior of the excited-state populations and resulting laser transmission are due to
the fact that the rates of pumping into the dark state and into the uncoupled level
depend oppositely on the external magnetic field. Therefore, the appearance of two
transmission minima at about 30 uT is a joint effect of preparation of atoms into

the dark state and optical pumping into the uncoupled ground hyperfine level.

37



3.4 HANLE EIT RESONANCES FROM SELECTED SEGMENTS OF THE II-SHAPED LASER
BEAM CROSS SECTION

r=0.00 mm r=0.00 mm
0.008- (a) r=1.00 mm 0.008 - (b) ——r=1.00mm
r=2.00 mm r=2.00 mm
0.007 r=275mm 0,007 r=275mm
0.006+ 0.006 -
0.0051 0.005
S §
@ 0.004- ‘@
£ g 0.004 -
% 0.003- 2
b © i
= & 0.003
0.002+
0.002-
0.001
0.001 -
0.000+
0.000
-0.001 1 . . : :
100 -50 0 50 100 400 50 0 50 100
Magnetic field [uT] Magnetic field [uT]

Figure 3.14: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small segments of the II laser beam cross section at four distances from
the beam center: 0, 1.0, 2.0, and 2.75 mm (from bottom to top, respectively). The
beam diameter is 6 mm and the total laser intensity is 4 mW /cm?. The theoretical
results were normalized to the experimental results at » = 0 mm. Note that the
curves for r = 0 and r = 1.0 mm almost overlap.

Behavior of the excited-level population at different magnetic fields explains the
origin of the two symmetrically placed, with respect to the central transmission
peak, transmission minima present in the Hanle EIT resonances recorded near the
center of the laser beam. For a given laser intensity, atoms have to spend a certain
time in the laser beam before these minima emerge in the Hanle EIT curves. It turns
out that if the laser beam has a 3 mm diameter, for most atoms this shape of the
EIT would only be observed in the laser beam center. If one considers a laser beam
with a diameter lager than 3 mm, under the same experimental conditions (the same
cell temperature, i.e., the most probable velocity, and the same laser intensity), it is
expected that optical pumping would significantly affect EIT line shapes at the same
distances of ~ 1.5 mm from the edge of the beam. Consequently, with the larger
beam diameter, transmission minima should occur in the wider domain around the
beam center. The curves in Fig. 3.14 present theoretical and experimental Hanle

EIT resonances obtained at different positions of the small aperture along the 6-mm
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Figure 3.15: Calculated total population ) p., ., of all Zeeman sublevels of the
F. = 1 excited level at different magnetic fields as a function of position along the
6-mm beam diameter of the II-shaped laser beam. The curves corresponding to the
magnetic fields 0 — 100 uT from the legend appear from bottom to top, respectively,
at r = —2.75 mm. The beam intensity is 4 mW/cm?. The atomic velocity is the
most probable velocity at room temperature (180 m/s). The thin gray line represents
the laser beam cross section profile. The atom enters the beam from the left.

diameter II-shaped laser beam. Overall intensity is similar as before, 4 mW /cm?.
Now, transmission minima are present in Hanle EIT resonances obtained not only
in the center of the laser beam, but also up to a certain distance away from the
center. Moreover, the resonances obtained up to that distance are almost the same,
as in the case of overlapping resonances for »r = 0 and » = 1 mm in Fig. 3.14.

The explanation for the appearance of transmission minima in Hanle EIT line
shapes in the case of a 6-mm-diameter laser beam could be made tracing the behavior
of the total excited state populations given in Fig. 3.15 and applying the same
logic as in Fig. 3.13, i.e., for the 3-mm beam diameter. It is apparent from Figs.
3.13 and 3.15 that under the same experimental conditions, the distance from the
beam edge where the total excited-state population at B = 75 uT (orange thick
line) falls down to zero is the same in both cases, approximately 1.5 mm. For the
3-mm beam diameter this point coincides with the location of the beam center,
while for the 6-mm-diameter beam this location is, of course, away from the beam

center. Therefore, for the 6-mm-diameter beam, transmission minima in Hanle EIT
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Figure 3.16: Calculated Hanle EIT resonances obtained from the small segments of
the II laser beam cross section of (a) 3 mm and (b) 6 mm diameter. It is taken
that the transition Fy;, = 2 — F, = 1 is closed. The resonances almost completely
overlap and can be barely distinguished only near B = 0 (see insets). The curves
corresponding to decreasing radial distances from the legends appear from bottom
to top, respectively. The laser intensity is 4 mW /cm?. Note a different scale for the
magnetic field than in Figs. 3.12 and 3.14 and broader resonances than in the case
of the open transition.

resonances at around B = 30 pT will occur as long as EIT resonances are taken
from the central region of 3 mm in diameter.

To further clarify the influence of optical pumping on Hanle EIT line shapes
the calculations for artificially closed transition F, = 2 — F, = 1 were performed,
i.e., the optical pumping was eliminated. Calculated Hanle EIT resonances, for
the laser intensity of 4 mW /cm?, are shown in Fig. 3.16. Obtained Hanle EIT
line shapes are broader than for the open system because there is no population-
loss-induced narrowing [59, 60]. The absence of population loss also yields the
same line shapes regardless of the distance from the beam center. There are no
transmission minima in line shapes obtained at the central regions of the beam
cross section. In this case, a slight increase of transmission at very large magnetic
fields (~ 200 uT) is due to the broad single-photon Hanle background on which

the EIT resonances are superimposed. Next, we investigate the influence of the
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Figure 3.17: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small segments of the II laser beam cross section at four distances r from the
beam center. The resonances are nearly identical except for the resonance obtained
close to rim of the beam (pointed to with the arrow). The beam diameter is 6 mm
and the total intensity is 0.5 mW /cm?. Note that the magnetic field range is smaller
than in Figs. 3.12 and 3.14.

overall laser intensity on line shapes of the EIT obtained in different segments of the
II-shaped laser beam. The curves in Figs. 3.17(a) and 3.17(b) are theoretical and
experimental Hanle EIT resonances obtained for the laser intensity 0.5 mW/cm?
at different positions of the small aperture along the beam diameter of 6 mm. At
lower laser intensity, transmission minima are barely visible (theory) or missing
(experiment) in the Hanle EIT profiles, because of the weak optical pumping. Since
there are diffraction effects between the planes of the two apertures (see Fig. 3.11)
the radial position of the collecting aperture does not map exactly the corresponding
position in the atomic cell. This introduces some averaging that may explain why
the structures are smoother in the experiments with respect to the calculations. In
Fig. 3.18 we show the total excited-state populations for an atom traversing the
beam with velocity 180 m/s as a function of the radial distance from the beam
center at different magnetic fields. Even at a very high magnetic field (75 uT),

the population is not zero as it was at high laser intensities (see Fig. 3.15) because
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Figure 3.18: Calculated total population of all Zeeman sublevels of the F, = 1
excited level at different magnetic fields as a function of position along the 6-mm
beam diameter of II-shaped laser beam. The curves corresponding to the magnetic
fields 0 — 100 uT from the legend appear from bottom to top, respectively, at r =
—2.5 mm. The curves for B 2 20 uT are almost identical. The atomic velocity
is the most probable velocity at room temperature (180 m/s). The thin gray line
represents the laser beam cross section profile.

optical pumping to the F, = 1 level is not as efficient. In this case the transmission
of the vapor will not increase at high magnetic fields and consequently there are
no transmission minima at Hanle EIT resonance profiles at any position along the
beam diameter.

As discussed above, EIT line shapes obtained in different parts of the Il-shaped
laser beam cross section are determined by evolution of the dark states and (par-
ticularly around the beam center) by the optical pumping. On the other hand, the
change of atomic coherence in the magnetic field is found to play a significant role in
the line shapes obtained in parts of the Gaussian laser beam cross section. Results
in Figs. 3.19(a) and 3.19(b) confirm that the phase of atomic coherence is almost
constant during atomic transit through the II-shaped laser beam. Here we compare
the calculated phase of the coherence, induced between the mp = —1 and mp =1
Zeeman sublevels of I, = 2 hyperfine level for atoms passing through the II laser
beam. The magnetic field during transit time of an atom is assumed constant. The

results are shown for the magnetic field of 30 yT at which transmission minima
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Figure 3.19: Change of the argument of atomic coherence p, |, during atomic
passage through the 3 mm (a) or 6 mm (b) wide II laser beam for two laser intensities
0.5 mW /cm? and 3 mW /cm?. Tt is obvious that the phase is constant during atom
passage through the II laser beam, regardless of the laser intensity. The magnetic
field value of 30 uT is chosen because the transmission minima in the Hanle EIT
resonances appear exactly at those values in corresponding laser beam profiles. The
beam profile is presented by the gray line.

appear in the related Hanle EIT resonances. Since the laser electric field tends to
keep the phase of the coherence constant while the magnetic field tends to change

the phase, when both magnetic and electric field are present, the phase of atomic
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Figure 3.20: Theoretical (a) and experimental (b) Hanle EIT line-widths at different
positions of small aperture along the 6-mm-diameter II-shaped laser beam. [ is the
laser intensity. The dashed lines in (b) denote the Hanle EIT line-widths when the
entire laser beam is detected.

coherence will depend on the magnitudes of these two fields. The atom is coherently
prepared shortly after entering the laser beam and the phase is kept fixed by the
strong laser field across the beam. Therefore, it is not the change of the phase that
affects the observed Hanle EIT line shapes for the II laser beam.

Figures 3.20(a) and 3.20(b) show theoretical and experimental results for the
dependence of line-widths of the Hanle EIT resonances on the radial position r
of the small aperture along the 6-mm diameter of the II-shaped laser beam. The
dashed lines in Fig. 3.20(b) denote the Hanle EIT line-widths when the whole laser
beam is detected. Results are given for three different laser intensities. It is obvious
that there is Hanle EIT line narrowing from the edge toward the beam center. This
is population-loss-induced transit time narrowing [59, 60]. As seen in Fig. 3.20, it
is more pronounced at higher laser intensities, when most significant Hanle EIT
narrowing apparently occurs in the region close to the beam edges, i.e., very soon
after the atom enters the beam.

At the end this section, one note is suitable. The appearance of transmission
minima, as sidebands to the EIT resonance, in the inner regions of the II laser beam

is shown to be due to strong dependence of optical pumping on the magnetic field.
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Transmission minima were also observed for Hanle EIT resonances obtained using
the Gaussian laser beam, but such EIT line shapes were only observed in the wings
of the beam. Their presence was attributed to the interference of the laser light in
the beam wings and coherently prepared atoms coming from the central part of the
beam. Thus, essentially different physical mechanisms, optical pumping (incoherent)
in IT laser beams and Ramsey-like effect (coherent) in Gaussian laser beams, yield
seemingly similar results, i.e., the appearance of the transmission minima in Hanle
EIT line shapes. Thus, it is apparent that for the proper modeling of experiments
and identification and understanding of dominant processes affecting the atomic
state evolution within the laser beam, it is essential to take into account a real

beam profile.
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3.5 Influence of laser beam profile on Hanle EIA

Electromagnetically induced absorption (EIA) [5, 6], is another coherent phenomenon
that manifests in the increase of the medium resonant absorption of a probe beam
in the presence of a pump beam. EIA appears in many different systems [8, 61,
62, 63, 64, 65]. It is shown that three different mechanisms can lead to the emer-
gence of EIA: transfer of coherence (TOC) [8, 61], transfer of population (TOP)
[8, 62] and quantum interference among competing two-photon transitions [65, 66].
EIA due to TOP between the Zeeman levels of the ground hyperfine state occurs
when pump and probe lasers have the same polarization, while EIA due to TOC
occurs for perpendicularly polarized lasers. In Hanle configuration, EIA depends on
the ground-state Zeeman coherences and on the efficiency of spontaneous coherence

transfer from the excited to the ground levels [67].

F.=3
267.1 MHz

— Fe=2
157.1 MHz

= F=1

A 4 A 4 A 4 F=2

6835 MHz

Figure 3.21: Energy level diagram for D, line transitions considered in the theoretical
model. Solid lines represent transitions induced by the laser, while dotted lines
correspond to possible spontaneous emission channels from excited levels. Frequency
differences between adjacent hyperfine levels are shown.

The goal of this section is to give a comparative study of the Hanle EIA reso-
nances obtained with two radial laser beam profiles, Gaussian and II-shaped. The
investigation was performed on 8’Rb vapor in a vacuum cell at the D, line transi-
tion Fy, = 2 — F. = 3 in the Hanle configuration. EIA obtained from two beam

profiles from the entire 3-mm-diameter laser beam and, also, obtained from the
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small segments of the laser beam cross section is examined. Studies of EIA from
selected parts of the laser beam were done by using the aperture movable along
the laser beam radius. Similar investigations for EIT presented in previous sections
have demonstrated the essential influence of different parts of the laser beam cross
section on the overall EIT resonances, that is, on the EIT from the entire laser
beam. The theoretical model gives the Hanle resonance line-shapes in accordance
with measurements. Calculations are based on the optical Bloch equations for tran-
sient evolution of the atomic state during interaction with laser light of a profiled
intensity. The details of the theoretical model are given in the section 2.3. Diagram
of energy levels taken into account in calculations is shown in Fig. 3.21. Although
the laser is locked to the F, = 2 — F, = 3 transition, the excited hyperfine levels
F, =2 and F, = 1 are also laser coupled due to the Doppler broadening and must

be considered.
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Figure 3.22: Theoretical (a) and experimental (b) Hanle EIA resonances for the
Gaussian (dashed red curves) and II-shaped (solid blue curves) beam profiles. Laser
intensity is 2 mW /cm?.

Figure 3.22 shows a comparison of Hanle EIA resonances for Gaussian and II-
shaped profiles, at a laser intensity of 2 mW /cm?. The quoted laser intensity corre-
sponds to the intensity of the whole laser beam, that is, the measured laser power at
the entrance of the cell divided by the beam area. Figure 3.22(a) shows theoretical
results and Fig. 3.22(b) corresponds to experiment. Key features of any resonance
are amplitude and line-width. It can be seen that for an intensity of 2 mW /cm?
the II-shaped beam profile yields resonances with a greater line-width. Figure 3.23

presents theoretical, and Fig. 3.24 experimental, results for the amplitudes and line-
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widths of EIA resonances as a function of the laser intensity, for both laser profiles.
EIA amplitudes are normalized to transmitted laser intensity. In each figure we give
results obtained using two radial laser beam profiles. It is shown that amplitude
intensity dependences for both profiles initially rise quite rapidly, until they reach a
maximum at approximately 0.5 mW /cm?. Further decrease with the laser intensity

is a consequence of saturation.
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Figure 3.23: Theoretical (a) amplitudes and (b) line-widths for Gaussian (red, trian-
gles) and II-shaped (blue, squares) beam profiles as a function of the laser intensity.
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Figure 3.24: Experimental (a) amplitudes and (b) line-widths for Gaussian (red,
triangles) and II-shaped (blue, squares) beam profiles as a function of the laser
intensity.

Resonance line-widths obtained from the two beam profiles have different depen-

dences on the laser intensity. For both beam profiles there is a very rapid increase
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at low intensities. However, the IlI-shaped profile gives a pronounced maximum
at about 2 mW /cm?, while the Gaussian profile provides an almost-flat line-width
dependence at these and higher intensities. EIA intensity narrowing at high laser
intensities, assuming a Il-shaped beam, was already noted in [47]. Differences in
line-widths are most notable for moderate intensities and are due to different tran-
sient dynamics of atoms passing through the laser beam. During atomic transit
through the laser beam the atomic state changes due to competitive effects of the
laser excitation and the external magnetic field. The laser continuously forces the
atom to be “aligned” with the electric field, in which case the state of the atom
relates to the appearance of EIA. The external magnetic field causes oscillations
of the atomic state at the corresponding Larmor frequency. At low laser intensi-
ties, the influence of the magnetic field is more significant, so that the atomic state
“aligned” with the electric field is degraded more easily. For the Gaussian laser
beam, the atoms experience an omnichanging laser field, while the Il-shaped beam
provides an almost-constant electric field. This difference reflects directly on the
robustness of the “aligned” atomic state with respect to the external magnetic field
because the spatial change in the laser field decreases the robustness by inducing
an extra variation of the atomic state. Under a zero external magnetic field atoms
reach an “aligned” state, and absorption reaches a maximum. A nonzero magnetic
field degrades that state, reducing the absorption. If the “aligned” state is more
robust, the absorption decreases less for the same magnetic field. Therefore, greater
robustness of the EIA with respect to the external magnetic field requires a larger
magnetic field to halve the peak absorption and hence yields larger EIA line-widths
for the Il-shaped beam, compared to the Gaussian beam. When the laser intensity
is high enough, differences in laser beam profile become less important, yielding very
similar line-widths for both profiles.

Hanle EIA obtained from only a small parts of the laser beam cross section,
as a function of the magnetic field, are also studied. When the intensity of the
light passing through the small part of the beam cross section is low, the part plays
the role of the probe beam. Therefore, throughout the text it will be referred as
quasi-probe. The rest of the laser beam can be considered as the pump. In such
case, resulting resonances are either due to coherently prepared atoms coming into
the quasi-probe from the surrounding pump region or because of EIA induced by
the quasi-probe. Relative contributions of probing and inducing EIA within the

quasi-probe depend on the overall laser intensity, shape of the beam (Gaussian or
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Figure 3.25: Theoretical results for (a) amplitudes and (b) line-widths as a function
of the radial position of the 0.5-mm aperture for Gaussian (red, triangles) and
I[I-shaped (blue, squares) beam profiles. Laser intensity is 0.2 mW/cm?. Points
correspond to different radial distances of the 0.5-mm aperture selecting the beam

sections.
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Figure 3.26: Theoretical results for (a) amplitude and (b) line-width dependence
on the radial position of the 0.5-mm aperture determining the beam segment for
Gaussian (red, triangles) and II-shaped (blue, squares) beam profiles. Laser intensity
is 1 mW/cm?.

[I-shaped), and radial distance of the quasi-probe from the laser beam center.
Figures 3.25 and 3.26 present theoretical results for amplitudes (Figs. 3.25(a)

and 3.26(a)) and line-widths (Figs. 3.25(b) and 3.26(b)) of Hanle quasi-probe EIA

resonances as a function of radial positions of the selected beam segment, at a laser

intensity of 0.2 and 1 mW /cm?, respectively. Figures 3.27 and 3.28 are corresponding

50



3.5 INFLUENCE OF LASER BEAM PROFILE ON HANLE EIA

0.007

0.006
0.005
0.004

0.003 +

Amplitudes [arb. units]

0.002

0.001

—&— I1-shaped
—A— Gauss

(a)

L L L L B B L L B R |
000204060810121416138
Radial distance r [mm]

Linewidths [uT]

14

12

-
o
| -

—&— [1-shaped
—A— Gauss

(b)

T T T T T T T T T T T T T T T T T
00020406081012141618
Radial distance r [mm]

Figure 3.27: Experimental results for (a) amplitudes and (b) line-widths of EIA
obtained from laser beam sections at different radial distances from the laser beam
center for Gaussian (red, triangles) and Il-shaped (blue, squares) beam profiles.
Laser intensity is 0.2 mW /cm?.
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Figure 3.28: Experimental results for (a) amplitude and (b) line-width EIA depen-
dence on the radial position of the 0.5-mm aperture for Gaussian (red, triangles)
and Il-shaped (blue, squares) beam profiles. Laser intensity is 1 mW /cm?.

measurements. While resonance line-widths for the II-shaped profile are largest at
the outer parts of the laser beam, line-widths for the Gaussian laser beam are larger
near the laser beam center. This can be attributed to the fact that in the region near
the beam boundary, the II-shaped profile has a higher intensity than the Gaussian.
The intensity inside the Gaussian beam increases toward the beam center, causing
EIA resonance broadening, so the situation reverses around the radial distance where

the Gaussian beam becomes more intense (note that it is two times more intense at
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the center than the II-shaped beam of the same average intensity). Note that EIA
resonances are particularly narrow in the wings of the Gaussian beam, where a very
low intensity quasi-probe really probes the “aligned” EIA state of the atoms coming
into the quasi-probe from the rest of the beam. At places closer to the beam center,
the quasi-probe simultaneously probes and induces EIA, and eventually the induced
effect dominates over probing. This leads to increased line-widths as the quasi-probe
moves toward the beam center. In a [I-shaped beam, the passing atoms experience a
very rapid increase in laser intensity only at the beam edge and a constant intensity
inside the beam. A large variation in laser intensity causes broadening of line-widths
and a resulting maximum of line-widths near the beam edge. As atoms move toward
the beam center, the constant laser intensity experienced by the atoms and the longer
average time of flight inside the II-shaped beam cause the gradual narrowing of EIA
resonances as the atoms move toward the beam center. In other words, the decrease
in line-widths upon approaching the beam center for a Il-shaped beam is a typical
transit-time narrowing.

Radial behavior of EIA amplitudes is notably different for two laser beam shapes
at higher laser intensities, as shown in Figs. 3.26 and 3.28 for 1 mW/cm?. Am-
plitudes for the II-shaped profile do not show large variations along the beam in
comparison with the Gaussian profile, where the initial rise in amplitudes turns into
a significant and constant decrease. A strong laser intensity near the center of the
Gaussian beam, above ~ 1 mW /cm?, leads to a lower amplitude in comparison to
amplitudes farther from the beam center. Similar behavior, a decrease upon ap-
proaching the center, becomes present also in II-shaped beams of a laser intensity
higher than 1 mW /cm?. This is attributed to the fact that at high intensities, the
laser field dominates over the influence of the magnetic field, so that the effect of
the beam profile on the EIA amplitudes becomes less pronounced.

ETA amplitudes and line-widths depend on ambient conditions, stray magnetic
field, and room temperature. Effects of stray magnetic field are negligible due to
shielding by the triple-layered pu-metal cylinder. The variation of room temperature
from one set of measurements to the other was within +1 °C. These temperature
variations have a negligible influence on line-widths but may result in changes in
EIA amplitudes. Ambient temperature variation shifts the amplitudes radial depen-
dencies, presented in Figs. 3.27(a) and 3.28(a), by 10 %, preserving their shape.

In the present section it is demonstrated that the atoms evolve very differently

depending on the passage through one or the another profiled beam. This is shown
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by the Hanle EIA obtained in transmission from only small segment of the entire
laser beam. In this way the quasi-probe EIA is studied, i.e., EIA due to some small
beam part that is surrounded by the rest of the laser beam having the pump role.
Since at very low laser intensities, the quasi-probe probes coherently prepared atoms
moving toward the selected region, EIA resonances are narrower in outer regions of
the Gaussian beam. At higher laser intensities the quasi-probe can also generate EIA
in atoms. Thus, near the center of the Gaussian beam, EIA resonances are widest
due to higher power broadening. For a II-shaped laser beam, the quasi-probe gives
the narrowest EIA resonances at the beam center, due to transit-time narrowing of
the coherent resonances. EIA amplitudes, in the range of applied laser intensities,
are lowest (highest) near the laser beam center for the Gaussian (II-shaped) profile.
Thus, outer regions of the Gaussian beam and central regions of the II-shaped
beam are the most valuable regions in the sense that they contribute the narrowest
line-widths and highest amplitudes to the overall EIA. The opposite variation of
quasi-probe EIA line-widths with the distance from the laser beam center for the
two beam profiles makes the line-widths of whole-beam EIA less dependent on the
laser beam profile. Only in the range of laser intensities 1 — 4 mW /cm? the overall
EIA line-widths for the Il-shaped laser beam have a maximum which exceeds the
corresponding values obtained with the Gaussian beam that yields a flat intensity
dependence.

The results of this section show that it is important to take into account the real
laser beam profile for proper modeling and analysis of coherent effects in alkali metal
vapors. Differences in EIA line-widths obtained using two laser radial beam profiles
imply that a theory with assumed Il-shaped radial dependence (common assumption
in majority of models) will not produce good agreement with experiments done
usually using a Gaussian or similar beam shape. One practical consequence of these
results is that detecting only the wings of the Gaussian laser beam will give narrower

EIA resonances than in the case of entire-beam detection.
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4. Stark-chirped rapid adiabatic passage

4.1 Adiabatic passage

SCRAP technique is a special case of a general adiabatic passage technique. Thus,
the essentials of adiabatic passage will be presented first and particularities of
SCRAP will be addressed afterward.

The realization of specific changes in the state vector by resonant excitation
requires careful control of the temporal laser pulse shape. Additionally, such excita-
tion has limited applicability when the treated ensemble has a range of detunings,
like in Doppler broadened atomic vapors. There is an alternative pulsed excitation
procedure that overcomes such difficulties. It can yield equal excitation over a dis-
tribution of Doppler-induced detunings, independent of the temporal pulse shape.
Specifically, the excitation pulse incorporates not only a variation of the Rabi fre-
quency but a monotonic sweep of the laser detuning. Rapid adiabatic passage (RAP)
[11, 12] technique requires that state vector changes must be finished during a time
interval that is shorter than any decoherence process (like spontaneous emission).
Although the overall action must be rapid on that time scale, within that time the
detuning should vary slowly with time, i.e. adiabatically. The resulting evolution
of the state vector is an example of adiabatic following in which the state vector
follows a path in Hilbert space defined by an adiabatic state.

In the simplest idealization of RAP the detuning linearly changes in time, i.e.,
A(t) = Ag + rt, where r is the rate at which the detuning varies and Ag is a fixed
detuning, e.g. corresponding to a single Doppler shift. Such situation can be realized
by varying the laser frequency linearly with time, i.e. by chirping the laser frequency.
When an atom is excited by the laser subjected to a sweep of frequency around an
atomic transition, the behavior of the population of the states coupled by the laser

can be understood with the help of an alternative Hilbert-space basis, the one chosen
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as instantaneous eigenbasis of the time varying Hamiltonian W(t)
W(t)®,(t) = €,D,(1). (4.1)

The states ®,(t) are called adiabatic states, in contrast to the diabatic states 1), ()
(2.6). The two-level RWA Hamiltonian of Eq. (2.7) that incorporates time variation
of both the Rabi frequency and the detuning is

0 10t
W) =n|, 30) (4.2)
2(t)  A(l)
The eigenvalues of the RWA Hamiltonian, the adiabatic energies, are
h ~
ex(t) = = (A@t) £ Q(t)), where Q(t) = /|Q(1)]2 + A(t (4.3)

2

The diagonal elements of the RWA Hamiltonian, 0 and 2A(t) in the case of (4.2),

are known as diabatic energies. The adiabatic states in the present case are of the

e~ sin cos
<1>+<t>=[ 9“)], <1>_<t>=[ 0s6(¢) ] (4.4

cos 0(t) —esin 0(t)

where cot(26(t)) = A(t)/|Qt)].
When the state vector is initially aligned with one adiabatic state, and the RWA

Hamiltonian changes slowly (adiabatically), then the state vector remains aligned

form

with this single adiabatic state. In other words, the state vector adiabatically follows
the adiabatic state during the adiabatic evolution. This is known as adiabatic follow-
ing. The adiabatic state varies with time, and so the state vector varies when viewed
in the basis of diabatic states. The result of the adiabatic following can be a trans-
fer of population if the followed adiabatic state initially corresponds to one of the
diabatic states and changes into another diabatic state at the end of the evolution.
This can be realized by aligning the initial state with 151 and adiabatically changing
A(t) and Q(t) so that 6(t) sweeps from 6(t;) = 0 to 6(tf) = m/2. This corresponds
to the change of the adiabatic state from ®_(t;) = ¢ (t;) to ®_(t;) = hy(ts) and
enables the adiabatic passage of the population from the state 1 to the state 2.
The adiabatic passage is often visualized by presenting plots of adiabatic energies
along with plots of diabatic energies. For a two-level system case the diabatic

energies are 0 and A(t). When there is a sweep of detuning from e.g. negative to
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Figure 4.1: Top parts: diabatic (dashed curves) and adiabatic energies (solid curves)
for two-level system. Bottom parts: corresponding population histories for state
1 (blue curve) and state 2 (red curve). Left: adiabatic evolution with constant
detuning. Right: adiabatic evolution with chirped detuning. System points on the
energy curves are related to initial and final states. Arrows indicate the motion of
the system points along adiabatic energy curves.

positive values, then the diabatic energy curves cross — this occurs when A(t) = 0.
However, the adiabatic curves 4 (t) do not cross if there is any, however small, Rabi
frequency at the moment of crossing of diabatic energy curves. The adiabatic energy
curves have so called avoided crossing. Figure 4.1 shows the behavior of these curves,
and the corresponding population histories during adiabatic evolution, for two cases
of a two-level system subject to a pulsed Rabi frequency. The left-hand pair of plots
illustrates the case when the detuning is kept fixed. The diabatic energies remain
constant, while the adiabatic energies exhibit reversible changes produced by the
Rabi-frequency variation with time. With the presented choice of parameters, there
occurs complete population return. The right-hand pair of plots shows the influence
of a chirped detuning on these curves. The diabatic curve for state 2 rises linearly
with time, crossing that of state 1 at ¢ = 0. For large values of [t|, far from ¢ = 0,

the Rabi frequency is negligible, and the adiabatic curves coincide with the diabatic
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curves 0 and A(t). However, as the Rabi frequency becomes larger, the two sets of
curves differ and avoided crossing occurs.

To explain the population histories associated with such curves let us begin by
considering the system at early times - the left-hand side of the figures. Suppose
the state vector is initially aligned with a single diabatic state, ;. At these times
there is no Rabi interaction, and so the diabatic and adiabatic states coincide. The
initial state vector is represented by a system point on the coinciding diabatic and
adiabatic curves. As time increases and the energies vary, this system point passes
from left to right, denoting the changes of the energies with time. Its association
with a single curve can be valid only for two extreme idealized cases - corresponding
to either fast (diabatic) or slow (adiabatic) variation of the RWA Hamiltonian.

During the rapid variation of the RWA Hamiltonian, the state vector will remain
aligned with the starting diabatic state, and the system point will follow the (dashed)
diabatic curve in Figure 4.1(b), corresponding to the energy of the diabatic state 1.
The system point moving along this line, crosses the diabatic curve for the state 2.
The system remains in the state 1 until the end, i.e., no transition occurs.

By contrast, when the changes of the RWA Hamiltonian are sufficiently slow
(adiabatic), the state vector will remain aligned with the starting adiabatic state.
The system point will follow the adiabatic curve that starts from the state 1 and
does not cross any other curve. Initially its path coincides with diabatic curve for
the state 1, but at later times the path joins the diabatic curve for the state 2, i.e.,
an adiabatic transition occurs.

The realization of complete population transfer via adiabatic passage requires
the detuning to sweep slowly through the resonance. Detuning is the difference
between the Bohr atomic transition frequency and the laser carrier frequency, so
the variation of either of these two frequencies will provide the required result. The
Bohr frequency, being proportional to the energy difference between two atomic
levels, can be changed by any slowly varying non-resonant electric or magnetic field.
One possibility is to use pulses of non-resonant laser light to subject the atom to
a slowly varying electric field and to induce a (dynamic) Stark shifts of the atomic
energy levels [68, 69], i.e., Stark chirp of the detuning. This is the basic idea of
SCRAP.
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4.1.1 Two-state SCRAP

Two-state SCRAP technique uses two sequential laser pulses: pump laser pulse
having the carrier frequency w, near the atomic Bohr transition frequency ws — w;
and strong far-off-resonant Stark laser pulse. Pump pulse drives the population
between the states 1 and 2, while Stark pulse modifies the transition frequency by

Stark shifting the energies of the two states, so that the detuning A(¢) becomes
A(t) =W — W1 — Wy —+ SQ(t) — Sl(t) (45)

The detuning can be naturally represented as the sum of two terms A(t) = Ay +
So91(t). The first term, Ay = wy — wy — wy, is static detuning of the pump laser
from the Bohr atomic transition frequency in the absence of radiation. The ground
state Stark shift S;(¢) and the excited state Stark shift Sy(t) are different (usually
|S1(t)| < |S2(t)|) leading to the net Stark shift Soy(t) = Sa(t) — S1(t) of the detuning
(4.5). The dynamic Stark shift S, (¢) of the state n (n = 1,2) has the contribution
of both the pump and the Stark fields

Si(t) = SPP(t) + S;S(), (4.6a)
Sy(t) = SEP(t) + S5S(1), (4.6b)

where the dimensionless functions P(t) and S(¢) are the envelopes of the pump and
the Stark laser intensities, while S? and S% (n = 1,2) are maximal Stark shifts
of the state n due to pump and Stark laser, respectively. The pump laser induced
Stark shifts can be significant for multiphoton transitions but are negligible for single

photon transitions. Thus, the shifts induced by the Stark field are predominant
Sor(t) = (S5 — SP)S(1). (4.7)

The SCRAP technique can be explained by inspecting a time variation of the
diabatic and adiabatic energy curves (Fig. 4.2). Initially, the pump carrier frequency
is chosen such that the diabatic energy es(t) of the state 2 is higher than the diabatic
energy ¢1(t) of the state 1. During the pulse sequence, the Stark pulse shifts e5(t)
relative to e1(t) producing two diabatic energy crossings — first during the rise and
second during the fall of the Stark pulse. The adiabatic evolution occurs at some

crossing if the pump pulse is sufficiently strong. SCRAP method relies on delayed
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Pulses

Energies

Time

Figure 4.2: Top: Time dependencies of the pump (blue curve) and the Stark (green
curve) laser pulses. Bottom: Related adiabatic (solid curves) and diabatic (dashed
curves) energies versus time. System points on the energy curves are related to initial
and final states. Arrows indicate the motion of the system points along adiabatic
energy curves.

pulses so that the pump Rabi frequency is significant at exactly one of the crossings.
In the case shown in Fig. 4.2, the system starting in the state 1, passes through
the first crossing adiabatically following the state ®_(¢), and makes a transition
to the state 2. At the second crossing the pump laser field is negligible and the
system diabatically follows the diabatic state @g(t), to which it was associated prior
to this crossing. The final result of this adiabatic-diabatic evolution sequence is the

complete population transfer from the state 1 to the state 2.

4.1.2 Three-state SCRAP

SCRAP in a three-state system provides an efficient way of transferring the popu-
lation from ground state 1 to ground state 2 via minimally populated excited state
3. The transfer is realized by use of three sequential laser pulses: pump and Stokes
pulses coupling the transitions 1 — 3 and 2 — 3, respectively, and far-off-resonant

Stark pulse that creates a suitable set of level crossings in the energy diagram of the
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system. The RWA Hamiltonian of the laser-excited three-state system is

0 0 2Q,(t)
st) 3% A+ Sa(t)

where €,(t) and Qg(t) are Rabi frequencies associated with the pump and Stokes
fields, respectively. A9y and Ag; represent the static detunings, which for one-photon

transitions are given by

A9 = wy — w1 + wWg — Wy, (4.9a)
Agl =Wz — W — Wp. (49b)
The dynamical Stark shifts

are the differences between the Stark shifts S,,(¢) and S,(t) of the states m and n
(m,n =1,2,3). Similarly to two-state SCRAP, the shifts induced by the Stark field

are overwhelming, so that
Sn(t) & (S, — Sp)S(1), (4.11)

where S5 and S are maximal shifts due to Stark laser and S(t) is the envelope
of the Stark laser intensity. The adiabatic eigenenergies e;(t), 2(t) and e3(t) of
the Hamiltonian (4.8) are roots of a cubic equation and are too cumbersome to be
given in detail. Denote with ®;(t), ®5(¢) and P5(¢) the corresponding adiabatic
eigenstates.

It was shown in [31] that successful population transfer from the state 1 to the
state 2 requires appropriate choice of the process parameters: the timing of the
pump and Stokes pulses relative to each other and to the Stark pulse, the static
detunings and the strengths of the peak Rabi frequencies and the peak Stark shift.
The plots of adiabatic and diabatic energy curves in Fig. 4.3 correspond to the
optimal process parameters and illustrate the population transfer from the state 1
to the state 2. Note that the timing of the pulses is somewhat counter-intuitive, i.e.,

the Stokes pulse precedes the pump pulse. It can be seen that the system starting
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Figure 4.3: Top: Time dependencies of the pump (blue curve), Stokes (red curve)
and the Stark (green curve) laser pulses. Bottom: Corresponding adiabatic (solid
curves) and diabatic (dashed curves) energies versus time. System points on the
energy curves are related to initial and final states. Arrows indicate the motion of
the system points along adiabatic energy curves.

in the state 1 adiabatically follows the state ®1(¢) and makes transition to the state
2. In the region where diabatic crossings 1 — 3 and 2 — 3 occur for the first time, the
state ®1(¢) has a small contribution of the excited state 3. However, the transient
population of the state 3 is minimized by the counter-intuitive choice of pump and
Stokes pulse timings [31].

In the next two sections SCRAP will be generalized to the case of two and
three degenerate-level manifolds. The analysis of a degenerate-level system will be
facilitated by its subdivision into a set of smaller independently evolving subsystems
corresponding to the minimal-sized invariant subspaces of the Hamiltonian. As an
illustration, the degenerate-level SCRAP formalism will be applied to the transitions
in the 8"Rb atom.
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4.2 SCRAP IN A TWO-LEVEL ATOM

4.2 SCRAP in a two-level atom

In this section the notation will be introduced and the stage set for a developed gen-
eral formalism. Consider SCRAP population transfer among two atomic degenerate-
level manifolds: ground g and final f, with corresponding energies I, and Ey, re-
spectively. Transition g — f is driven by the classical field pump pulse, while strong
off-resonant Stark field pulse introduces dynamic Stark detunings. Let G = {|g;)| i =
L,....,ngtand F ={|f;)|j = 1,...,ny} be the bases of Hilbert spaces for manifolds
g and f, respectively, consisting of bare atomic states. The state |VU(t)) of the system
is represented in basis F U G by the vector C(t) that incorporates explicit phases
taken from frequency of the pump pulse, w,. We are concerned with coherent excita-
tion so we will describe the dynamics by the time-dependent Schrédinger equation.
In the rotating-wave picture and using rotating wave approximation (RWA) we get

the time-dependent Schrédinger equation for C(t),

d
ih=C(t) = H)C(t). (4.12)

Hamiltonian of the system is represented as

H(f) = Ap+S(t)Sy )V (4.13)
sV S()S,

where €,(t) is the pump field Rabi frequency and V is the matrix representation of
the lowering operator that connects the states in manifold f to the states in manifold
g. The n-dimensional diagonal matrix A describes the static detuning of the pump
frequency from the Bohr frequency of the transition g — f and can be represented as
Ay = A1, where 1, is ng-dimensional unit matrix and Ay = (Ef — E,)/h — w,
is the common static detuning of all f states. The matrices Sy and S, represent the
Stark shift operators of the states in manifolds f and g, respectively. Their diagonal
elements are proportional to the Stark shifts of the sublevels. All Stark shifts share
the same time dependence, expressed by S(t), that arises from the laser Stark field
variation in time. The quantity S(t) is proportional to the Stark pulse envelope and
could be taken equal to the Stark shift of some chosen sublevel.

The structure of the RWA Hamiltonian of Eq. (4.13) is similar to that of the
ordinary two-state SCRAP [13]. All time dependences are stored into €,(¢) and
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S(t), but instead of single ground and final states we now have degenerate manifolds
of substates, and hence we have matrices V, S¢, S, and Ay, instead of the single
elements in ordinary two-state SCRAP case.

As an introduction to the general degenerate-level case, we examine the simplest

case of equal sublevel Stark shifts
Sf = Sflnf, Sg = Sg]_ng, (4.14)

where s; and s, correspond to the common Stark shifts of the f and g substates,
respectively. This will serve as a starting point for development of a degenerate-
level formalism. The basic idea is to facilitate the analysis of a degenerate-level
system by its subdivision into a set of smaller independently evolving subsystems.
In the present case it is possible to find a suitable Morris-Shore (MS) transforma-
tion [36] of diabatic basis yielding a new adapted basis in which the dynamics of a
coupled degenerate two-level system is reduced to a set of independently evolving
non-degenerate two-state systems and a number of uncoupled (dark) states. It is
easily seen that each two-state subsystem under SCRAP process evolves in a well-
known manner [13, 31]. Consequently, the case of a SCRAP population transfer
between two atomic degenerate-level manifolds having equal sublevel Stark shifts
is simply reduced to a set of independent non-degenerate two-state subsystems and
dark states. Let us restate the above consideration from a more general point of view.
Effectively, the MS transformation yields the decomposition of the state space into a
set of minimal-sized subspaces to which the evolution is restricted. These subspaces
correspond to minimal-sized invariant subspaces (hereafter, invariant subspaces) of
the Hamiltonian H(¢). Hence, to each independent non-degenerate two-state sys-
tem and to each dark state corresponds an invariant subspace of the Hamiltonian.
Concept of invariant subspaces extends the scope of the former approach based on
MS transformation. Namely, two-photon resonance condition expressed by equal
sublevel shifts in Eq. (4.14) is essential for the existence of MS transformation.
Generally, the Stark field removes the sublevel degeneracy by detuning the atomic
sublevels from the two-photon resonance. The MS transformation does not exist in
that case [36], but our concept of invariant subspaces is still applicable with likely
altered size and number of subspaces. Therefore, the decomposition of the state
space on the invariant subspaces is a generalization of MS transformation that is

applicable in the general case of the removed sublevel degeneracy.
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Analysis of a multilevel system is performed essentially by identifying the Hamil-
tonian invariant subspaces that depend substantially on couplings of the transitions
and sublevel Stark shifts. Let H™ = H; ®H, be such an invariant subspace formed
by subspaces H; and H, corresponding to manifolds f and g, respectively. The
defining condition H(t)H™ < H™ leads to the following requirements:

AfHy <Hp, AgH, < H,g, (4.15a)
Sfo < Hf, SgHg < Hg, (415b)
VH; <H, VIH, <H;. (4.15¢)

The conditions (4.15a) are trivially fulfilled and can be disregarded because the
matrices Ay and A, are constant multiples of appropriate unit matrices. Let 7—[; =
ker VT be the subspace of states in manifold ¢ that are dark to the transition ¢ — f,
and let ’H;f = ker V be the subspace of states in manifold f that are dark to the
transition f — ¢g. The conditions (4.15c) determine H; (H,) up to a direct sum

with some dark subspace from 7—[? (H;l), and yield more gainful conditions
VIVH; <H;, VVIH, < H,. (4.16)

Refer briefly to the meaning of the operators involved in Eq. (4.16). Operator V
couples the states from H; to the states in VH; that belong to manifold g. On
the other side, operator VT couples the states from VH; to the states in manifold
f belonging to the subspace VIVH, that may include the states external to H;.
If one has to find the subsystems that evolve independently then the condition
VIVH; < H; naturally emerges because the interaction with the pump field must
not drive the states out from Hy. Therefore, H; has to be invariant subspace of
operator VIV, so that the evolution of the system is restricted within the subspace
Hy D VH;.

We are now ready to give an explicit construction of aforementioned invariant
subspaces. Relations (4.15b) and (4.16) indicate that # should be common invari-
ant subspace for S; and VIV. Let H‘fnz, ke{l,..., nijP"}, be minimal-sized common
invariant subspaces of VIV and S;. Tt is easily seen that the subspace Hg := VHY
is invariant for VVT, but need not to be invariant for S, due to the possibility that
S, couples the states from distinct subspaces H,j together with some states from

dark subspace HZ. Therefore, invariant subspaces 7-[,27‘2, common for both S, and
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4.2 SCRAP IN A TWO-LEVEL ATOM

VVT, may be formed from several subspaces H,x, k € I, accompanied with some
subspace Hg’ﬁ of Hg, ie., H;“,‘g = Brer, Hgr @ Hg,m ke{l,... ,nig“"}. It is worth
noting that the set I, containing the indices that label the subspaces H,; inter-
linked by S,;, may be empty in the case that the corresponding invariant subspace
entirely resides within an appropriate dark space. Finally, H™ := e, }“% SZ ”H‘g“Z
is invariant subspace for Hamiltonian H(t), including all subspaces ’Hlfnz that are
connected with H Y. The evolution during SCRAP process is restricted to H,".
Two different types of the invariant subspaces need to be considered.

First, if H™ does not contain dark states from ’Hg, it is possible to transfer all
o
starting state. Namely, during SCRAP pulse sequence, all starting states in H

population from the subspace H!™ into the subspace @kel,i%iﬁz, irrespective of the

inv
K
are adiabatically connected to corresponding final states in @gey, ‘fnz This occjrs
because the evolution is decoupled from dark states that prohibit population trans-
fer. The final states cannot be traced analytically unless related common invariant
subspaces ngnz and PBer, lfnz are one-dimensional, in which case there is one-to-one
correspondence between starting and final states. In other cases the final states can
be found only numerically because they depend on the parameters of the SCRAP
process.

The second case is when the dark states are present in ’H;nx due to interaction
with the Stark field. Because the dark states suppress transfer of population to final

level, not all states from ”H;“V

¥ have the corresponding final states in @ge IKH}HZ Gen-

erally, > kel dim H, i, states are adiabatically connected to final states in @j¢ IN’Hif‘f%
enabling the population transfer, while dim ”Hg,,{ states do not contribute to the
population transfer and preserve the population within ground level. In order to
obtain the complete population transfer, it is necessary to prepare the initial state
into specific coherent superpositions. Subspaces corresponding to each of the two
groups of superpositions cannot be determined without knowing the parameters
of the SCRAP process, apart from the trivial case H‘g“,‘_; = H;lﬁ. In the following

subsection we give an illustrative example.
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— Fq:=1

A f
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A
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Figure 4.4: Atomic hyperfine level diagrams for two-level SCRAP. Solid curves

schematically represent atomic dynamic level detuning induced by the Stark laser
pulse. wy, is the carrier frequency of the pump laser field. Ay is static level detuning.

4.2.1 SCRAP among two hyperfine levels in **Rb

Here we apply the above formalism to the SCRAP between two hyperfine levels
551/2, Fy =2 and 5Py /2, Iy = 1 of Rb that are coupled by classical field (see Fig.

4.4) with corresponding atomic lowering operator given by
V=V.¢ (4.17)

where €7, is the polarization of the light field. The vector operator V is defined by

. Je J, 1
V = (=)t i+ Joop, 4 1)(2], + 1) 79
(-1 VR DRy,
(4.18)

1
x Z Z <Fg?mg‘Ff’mf;17q>‘Fg7mg><Ffamf|eZv

qg=—1mg,my

where I = 3/2 is the nuclear quantum number of 3Rb, {:::} is Wigner 6j-symbol
and (Fy,my|Fr,my;1,q) is the Clebsch-Gordan coefficient that connects the final

level state |Fy,my) to the ground level state |F},, my) via polarization e,

1
ey = qiﬁ(ex +ie,), ey=e,, (4.19)

given in some orthonormal basis of polarization vectors. We choose the coordinate
system such that the field propagates along the z axis, and define a basis of Zeeman

states relative to this quantization axis. Bases of Hilbert spaces for level manifolds
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4.2 SCRAP IN A TWO-LEVEL ATOM

f and g are

‘F:{|17_1>f7‘170>f7|171>f}7 (420&)
g = {|27 _2>g7 |27 _1>97 |27 0>97 |27 1>97 |27 2>9} (420b)

Generally, depending on the Stark field polarization, Stark shifts of magnetic hyper-
fine sublevels have scalar, vector, and tensor part, having none, linear, and quadratic
dependence on magnetic quantum number m g, respectively. Hence, Stark field can
remove the degeneracy of hyperfine levels through the linear and quadratic depen-
dence of shift on mpg. In this example we assume that the Stark field is linearly
polarized so that the linear dependence vanishes. Alkali ground hyperfine sublevels
gain the shift that does not have tensor part, so the degeneracy of ground sublevels
is preserved. Excited hyperfine sublevels gain both scalar and tensor shifts. We will
assume that pump frequency is chosen such that A; > 0, and that the Stark field
frequency is such that the Stark shifts of the f (g) sublevels are negative (positive)
(see Fig. 4.4). Off-diagonal elements of the Stark shift operators will be neglected

for simplicity. In that manner we have the following structure of Stark shifts:

Sy = sgdiag{1,...,1}, (4.21a)
2Fg+1
Sf = dlag{—(l + sfm?/Ff) | my = —Ff, ceey Ff}, (421b)

where s, and sy are constants arbitrarily chosen in this example. S(¢) is chosen equal
to the absolute value of the Stark shift of the final sublevel |1,0);. For numerical

calculations we will use Gaussian shapes for the laser pulses, yielding

Q,(t) = Qoexp (—(t —7,)*/T7) (4.22a)
S(t) = Soexp (—t*/T7) . (4.22b)

The Stark pulse center defines the time t = 0. Relative to this, the peak of the
pump pulse is at time 7,, chosen to correspond to the first intersection of diabatic
energies of ground level and final sublevel |1,0);. We will use 7}, as the unit of time
and 1/7), as the unit of frequency. We assume that the Stark pulse has duration
T = 2T,. The polarization of the pump field is chosen to be linear along z axis, so

the matrix representing the lowering operator is
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4.2 SCRAP IN A TWO-LEVEL ATOM

: 0 0
0 % 0
V=| -7% 0 - (4.23)
0 —% 0
0 0 -5 |

Ground level dark subspace determined as kernel of VT is

1 1 1 V3 1
'H; - Span{ﬁp, _1>g + Ep’ 1>ga ﬁ|27 _2>g + 7|2a O>g + %pa 2>g}~ (4'24)

There are three common invariant subspaces of VIV and S;

. 1 1
HP =span{——=|1,—1); — —|1, 1)}, 4.25a

i = span{Js1L -1~ o 1L1)5) (4250

. 1 1

WY = gpan{ — ].,—]_ + — 171 , 4.25b

f,2 P {\/§| >f \/§| >f} ( )

75 = span{[1,0),}, (4.25¢)

and five common invariant subspaces of VVT and S,

= span{\/§|2, —2), — %|2, 0), + \/§|2, 2)4}, (4.26a)
ity = spanf 212, 2), — =[2.2), ) (4.26b)
o = Span{%ll —1)g - %\2, Ly}, (4.26¢)
i = Span{%p, 9y, + ?m, 0), + %p, 2,1}, (4.264)
HIY = span{%p, 1), + %IZ 1,1} (4.26¢)

Note that H}"j and H}'¥ are dark subspaces of . Combining results (4.25) and

(4.26) we get five invariant subspaces to which the evolution is restricted
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4.2 SCRAP IN A TWO-LEVEL ATOM

inv 1 1 3 1 3
Hl :Span{_’17_1>f__|171>f7 _‘27_2>9__|270>9+ _‘272>9}7
) NG 8 2 8
(

4.27a)

- 1 1 1 1

H12nv = Span{ﬁﬂ, —].>f + EH, 1>f, E|2, _2>g — E|2, 2>g}7 (427b)
. 1 1

HY = 1,0)s, —|2,—1), — —=12,1),}, 4.27
= span{[1,0). =[2. 1)y = —=[2.1),) (1.27¢)
inv 1 \/g 1

Hy" = Spaﬂ{ﬁ|27 —2)g + 512,0)g + %B, 2)g} (4.27d)
inv 1 1

Hy"W = Span{ﬁm, —1), + E‘Q’ L)y} (4.27¢)

Subspaces H™, r € {1,2,3}, do not contain dark states, thus it is possible to
transfer all of the population from ngnz to ’Hlfnz for k € {1,2,3}. It is worth noting
that the complete population transfer requires the starting states to be particular co-
herent superpositions. Contrary, population remains trapped within dark subspaces

ig‘?X and H;ng Previous conclusions can be depicted by plotting the adiabatic en-
ergies corresponding to aforementioned invariant subspaces. Figure 4.5 shows time
dependence of the pump and Stark pulse envelopes (left topmost part) and adiabatic
and diabatic energies versus time (other parts). Two plots of energies (left column,
from top to bottom) correspond to invariant subspaces H™, xk € {1,2}, while the
right topmost part corresponds to invariant subspace Hi. It can be seen that start-
ing from appropriate ground state, all the population transfers into the related final
state. Note that the application of SCRAP for the complete population transfer
requires the preparation of the initial state into the specific coherent superpositions
of magnetic ground hyperfine substates. The opposite situation is shown in the two
lower right-column plots where the population rests within ground level subspaces

inv inv ;
g and HJY, respectively.
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Figure 4.5: SCRAP among two hyperfine levels 55,5, Fy = 2 and 5P, /5, Fy = 1 in
8TRb. Top-left: Time dependence of the pump and Stark pulse envelopes (arbitrary
scaled). Other: Adiabatic (solid lines) and diabatic (dashed lines) energies versus
time, related to the invariant subspaces H™, k = 1 — 2 (left column) and K = 3 —5
(right column). The dashed line starting from energy 0 corresponds to degenerate
g states. The two dashed lines originating from A correspond to the states |1,0)
(smaller shift) and |1, £1); (larger shift). Used parameters are Ay = 200/7,, Sp =
500/Tp, Q() = 4/5 SQ, Sg = 1/20, Sf = 1/5
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4.3 SCRAP IN A THREE-LEVEL ATOM

4.3 SCRAP in a three-level atom

We now analyze the SCRAP process between three atomic degenerate-level mani-
folds: ground g, excited e, and final f, with corresponding energies £, E,, and Ey,
respectively. The transitions g — e and f — e are driven by classical field pump and
Stokes pulses, respectively. Strong off-resonant Stark field pulse is used to introduce
dynamic Stark detunings. Similar to the section 4.2, let G = {|g;)|i = 1,...,n4},
F=A{lf)li=1,...,n¢}, and & = {lex)| k =1,...,n.}, denote the bases of Hilbert
spaces for manifolds g, f, and e, respectively, consisting of bare atomic states. In the
same manner, the state |W(¢)) of the system is now represented in basis EUGUF by
the vector C(t) incorporating explicit phases taken from frequency of the pump and
Stokes pulses, w, and wg. In the rotating-wave picture and using RWA we get the
time-dependent Schrédinger equation analog to Eq. (4.12). Matrix representation
H(t) of the system Hamiltonian has the form

Ac+SHS. 1,0V L)V
H(t)=h| 10V, St)S, 0 : (4.28)
1Qs(t)Vy 0 Ar+ S(t)Sy

where €2,(t) and Qg(t) are Rabi frequencies of the pump and Stokes field, respec-
tively, and V, (V) is the matrix representing the lowering operator that connects
the states in manifold e to the states in manifold g (f). The zeros 0 denote null
rectangular matrices of appropriate dimensions. The diagonal matrices A, and Ay
describe static detunings and can be represented as A, = A.1,, and Ay = A1, .

where common static detunings A, and Ay for one-photon transitions are given by

A, = (E. — E))/h— w,, (4.29a)
Af = (Ef — Eg)/h + wg — wp. (429b)

The matrices S., S, and Sy correspond to the Stark shift operators of the states in
manifolds e, g and f, respectively. Again, the quantity S(¢) is proportional to the
Stark pulse envelope and is chosen to introduce a referent Stark shift. The structure
of the RWA Hamiltonian of Eq. (4.28) is similar to that of the conventional three-
state SCRAP with single elements replaced by the matrices [31].

As in the section 4.2, we first inspect the case when Stark shifts of the sublevels
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4.3 SCRAP IN A THREE-LEVEL ATOM

are equal
Se = seln,, Sy =58¢ln,, S;=s7ly,, (4.30)

where s., s, and sy correspond to the common Stark shifts of the e, g, and f states,
respectively. Again, we can utilize three-level MS transformation [37] to obtain sets
of independently evolving non-degenerate three-state and two-state systems and a

set of uncoupled (dark) states, provided the following condition is fulfilled
VIV, VIV =0. (4.31)

To each such independently evolving non-degenerate system corresponds an invari-
ant subspace of the Hamiltonian, as is already mentioned in Sec. 4.2. The origin
of operators involved in Eq. (4.31) has been addressed above, and we will briefly
discuss the commutation condition. Consider some subspace H,. of states in mani-
fold e. Following the discussion in Sec. 4.2, if one has to find the subsystems that
are dynamically independent, then H. has to be common invariant subspace of op-
erators V;Vg and V}Vf, so that the evolution of the system is restricted to the
subspace H. & V,H. & VH.. The condition (4.31) assures that all minimal-sized
common invariant subspaces are one-dimensional, i.e., that the corresponding three-
state and two-state systems are non-degenerate. We note that two-state subsystems
arise when one of subspaces V,H, or VH, contains only null vector, i.e., when the
states from #H,. are dark to one of transitions e — g or e — f. Conditions (4.30) and
(4.31) that are essential for the MS transformation only affect the size and number of
independently evolving invariant subspaces. Therefore, as in the two-level SCRAP
case, the decomposition of the state space on the invariant subspaces generalizes M'S
transformation.

Let H™ = H, ® H, ® H; be an invariant subspace for the Hamiltonian. The

necessary condition H(#)H™ < H™ yields the following requirements:

AHe <He, AjHy < Hg, AfHp < Hy, (4.32a)
ScHe < He, SgHy < Hgy, SyHy < Hy, (4.32b)
Vi, <H., ViH;<H., (4.32¢)
V,H. <H, ViH.<H;. (4.32d)

The conditions (4.32a) can be disregarded as trivially fulfilled. Let HJ, = ker V]
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4.3 SCRAP IN A THREE-LEVEL ATOM

(He, = ker V}) be the subspace of states in manifold g (f) that are dark to the
transition g — e (f — e), and let H¢; = ker Vy be the subspace of states in
manifold e that are dark to the transition e — f. The conditions (4.32¢) determine
Hy (Hyf) up to a direct sum with some dark subspace of H{, (H$,), and together
with Eq. (4.32d) yield more useful conditions

VIVHe < He, VIV <., (4.33a)
V,ViH, <M, ViVEiH, <. (4.33b)

Let H;n,‘g’, ke {1,...,n™} be common invariant subspaces of VTVQ, Vi ;VyandS..
It is trivial to see that the subspace H,; := V,HYY (Hsr := V; lrl") is invariant
for V, Vi (VfV}), but need not to be invariant for Sy (Sy) due to the possibility
that it links the states from different subspaces H,; (Hsx) together with some
states from dark subspace H;le (H%,). Hence, invariant subspaces H;’fz,, common
for both S, and V, VT and connected with some of the subspaces i“,ﬁ, may be
formed from several subspaces H,,; accompanied with some subspace H¢, ., of dark

e
space ng, ;‘}Z, = Drer, , Hor @ ng,ﬂ" ke {l,..., lgn"}, Whiere the set
I, . contains the indices k labeling the subspaces H, . that are interconnected by
Sy. Analogously, i]{jz,, 1= Grer, . Hip © H‘}m,,, ke {l,..., ‘“V} The sets of
indices I, ,» may be empty in case that related invariant subspace entirely belongs
to the appropriate dark subspace. Some of the nonempty sets /,, may have a
nonempty intersection with exactly one corresponding set Iy ., because for at least
one k € Iy N Iy the relations V HIY < HIY, and 'V HEY i, may hold.

1an are then dynamlcally connected via the excited level

Such subspaces 7—[““’, and
subspace Hy} and the invariant subspace for Hamiltonian is composed as Hy" :=
Brer, 01 ‘nV @b Hm", @b i]{“’;,, including all subspaces H‘nv that are connected
with H % and 7-[3?"‘;,,. If some of the nonempty sets I, ., does not have a nonempty
intersection with any of the sets Iy,~, then the invariant subspace is constructed
solely from subspaces related to g and e manifolds, i.e., H™ := P 19757{21,2 ) H‘gnz
That occurs if Oper,, < ’H Similar situation may involve final end excited
level resulting in Hmv = @ke Iy, KHEH,Z@”HIHV Distinct types of the invariant subspaces
depending of the presence of dark states need to be examined.

First, if H™ does not contain any dark state from ’Hd nor from H¢ f» 1t 18 possi-

inv

ble to transfer all the population from H““’/ into H,, irrespective of the starting

state. All ground starting states from the subspace H;}Z, are adiabatically connected
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to the related ending states in the subspace Hifrjz,, enabling the complete population
transfer. Exact ending states cannot be known in advance, unless the aforemen-
tioned invariant subspaces are one-dimensional. In such case there is one-to-one
correspondence between the states at the beginning of the SCRAP process to the
appropriate states at the end. In all other cases the ending states can be determined
only numerically because of their dependence on the particular parameters of the
SCRAP process.

The situation changes when the dark states are present in H™. The states from
ng prevent population transfer from the level g to the level e, while the states from
’H‘jf obstruct transfer of population from the level e toward the level f. Due to the
presence of dark states from ”ng (or H<,), part of the starting population remains
trapped within these states. If a number of dark states from ’Hgf are contained within

inv

appropriate excited level subspace of H

, there is the same number of ground
starting states that are adiabatically connected to the states in the excited level
subspace of H™. The rest of ground starting states are adiabatically connected to
the ending states in the final level. Thus, it is required to prepare the starting state
into specific coherent superpositions in order to perform the complete population
transfer. Exact starting and ending superpositions cannot be found in advance,
except in the case of one-dimensional adiabatically connected starting and ending
subspaces. Otherwise, one must resort to numerics for particular choice of SCRAP
parameters. In the next subsection we demonstrate previous considerations on the

real atomic system.

4.3.1 SCRAP among three hyperfine levels in **Rb

As an example we will analyze SCRAP in ®Rb from the ground hyperfine level
5512, Fy = 2 to the final level 55,5, Fy = 1 via the excited level 5P, Fe = 1.
Transitions g — e and f — e are driven by classical fields (see Fig. 4.6), pump and

Stokes respectively, with corresponding atomic lowering operators given by

~

V, =V, &, V;=Vj-ég, (4.34)

where €, and €g are the polarizations of the pump and Stokes field, respectively.
The vector operators Vg and V 7 are defined in analogy with Eq. (4.18). We choose

the coordinate system such that the fields propagate along the z axis, and define a
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Figure 4.6: Atomic hyperfine level diagrams for three-level SCRAP. Solid curves
schematically represent atomic dynamic level detuning induced by the Stark laser
pulse. w, and wg are carrier frequencies of the pump and Stokes laser fields, respec-
tively. Ay are static level detunings.

basis of Zeeman states relative to this quantization axis. Bases of Hilbert spaces for

manifolds e, g, and f are

& ={|1,—1).,[1,0), |1, 1)}, (4.35a)
g= {|2’ _2>97 |2> _1>97 |2a O)g: |27 1>g7 |2> 2>g}a (435b)
‘F:{‘1?_1>f7‘170>f7’171>f}' (4350)

Similar to the section 4.2.1, we assume that the Stark field is linearly polarized, so
the degeneracy of ground levels is preserved. Excited hyperfine sublevels gain both
scalar and tensor shifts. To assure necessary conditions for adiabatic connection
between ground and final level [31], we choose pump and Stokes frequencies such
that Ay < 0 and A, > 0, and take Stark field frequency so that the Stark shifts of
the e (g and f) sublevels are negative (positive) (see Fig. 4.6). Off-diagonal elements
of the Stark shift operators are again neglected for simplicity. Sublevel Stark shifts

have the form

S, = sgdiag{1l,...,1}, S;=sdiag{l,... 1}, (4.36a)
2Fy+1 2F;+1
S, = diag{—(1 + s;m?/F?)| m. = —F,,..., F.}, (4.36b)

where s,, sy and s, are constants arbitrarily chosen in this example. S(t) is taken
equal to the absolute value of the Stark shift of the excited sublevel |1,0).. For
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numerical calculations we shall assume Gaussian shapes for all pulses, and take the

pump and Stokes Rabi frequencies to have identical peak values €2y, obtaining

Q,(t) = Qoexp (—(t —7,)°/T7), (4.37a)
Qs(t) = Qoexp (—(t — 75)%/T3), (4.37b)
S(t) = Soexp (—t*/T?) . (4.37¢)

We will also take equal pump and Stokes durations, T, = T's and T' = 27},. Stark field
peak value is taken large enough to assure necessary diabatic energy crossings. The
timings 7, and 7g of pulses are chosen to correspond to appropriate first crossings of
diabatic energies of ground and final level with diabatic energy of excited sublevel
|1,0)., in the “counter-intuitive” order [31]. The polarizations of the pump and
Stokes field are both chosen to be linear along z axis, so the matrices representing

lowering operators are

0 0
1 1
0 o 0 0 v 0
_ 1 1 _ 1 1
Vo=|lvm O mllr Vislum 0 —m | (4.38)
1 1
0 7 0 0 o1 0
o o0 1
Dark subspaces are the following:
’Hgle :span{l/\/ﬁ|2,—1>g+1/\/§|2,1)g, (4.39)

1/v8]2, —2), 4+ V/3/2(2,0), + 1/v8|2,2),},
HE, = span{1/V2|1,—1); — 1/v2|1,1);}, (4.40)
He, = span{1/V2|1, -1). — 1/V2|1,1).}. (4.41)

There are three common invariant subspaces for Vng, V}V s and S,

inv 1 1
el — Span{ﬁﬂ, _1>e — EH, 1>e}7 (442&)
; 1 1
2 = span{ﬁl, —1)e + EH’ 1)}, (4.42b)
1y = span{|1,0).}, (4.42¢)
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five invariant subspaces for VgV;f] and S,

inv 3 1 3

H = span{\/; 2,-2), = 512,0) + \/g 2,2),), (4.432)
inv 1 1
9.2 = Span{ﬁ@a —2)g — E@» 2)g}, (4.43Db)
inv 1 1
9,3 — Span{ﬁpa _1>9 - EB? 1>g}’ (443C)
. 1 V3 1
my = — 2,2 —12,0), + —=|2,2),}, 4.43d
9,4 span{2\/§| >g + 5 | >g 2\/5’ >g} ( )
inv 1 1
9.5 = span{ﬁﬂ, _1>g + E|2, 1)9}7 (4438)

and three invariant subspaces for V fV} and Sy

71 = span{|1,0)}, (4.44a)
- 1 1

j» = span{—5|1, =1); + —[1,1)s}, 4.441
fy =sp {\/5| ) s \/§| )t ( )
. 1 1

W = span{ — 1,—1 —_ — 1’1 . 4.44¢
3 =sp {\/5! ) s \@! )r} (4.44c)

Six invariant subspaces of the Hamiltonian can be constructed using (4.42) — (4.44)

. 1 1 3 1 3

7_[1 = Span{ﬁ“—a _1>6 - EH: 1>67 \/;|27 _2>g - §|2a O>g + \/;|27 2>9}7 (4458‘)
. 1 1 1 1

H2 :Span{ﬁll7_1>e+E‘171>67E‘27_2>g_ E|272>97|170>f}7 (445b)

inv 1 1 1 1

H3 :Span{’170>67ﬁy27_1>9_ E’271>97E|17_1>f+ﬁ’1>1>f}7 (4450)
. 1 V3 1
o= — 2,2 —12,0 —2,2 4.45d

Hy span{2ﬁ| ) >g+ 9 ‘ ) >g+2\/§| ) >g}a ( )
inv 1 1

Hs" = Span{ﬁu, —1)g+ Epa g}, (4.45¢)
inv 1 1

He" = Spaﬁ{ﬁﬂv 1)y - Ell? Ly} (4.45f)

Subspaces H™, k € {2,3}, do not contain dark states, therefore it is possi-
ble to obtain complete population transfer from H;‘Z, to HfY, for pairs (x/, k") €
{(2,1),(3,2)}. Note that the complete population transfer requires the starting

states to be particular coherent superpositions. Conversely, the subspace HI™ con-
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Figure 4.7: SCRAP in ®"Rb among hyperfine levels 55} 5, F; = 2 and 55 2, Fy = 1
via 5P/, I, = 1. Topmost: Time dependence of the Stokes, pump and Stark pulse
envelopes (arbitrary scaled). Other: Adiabatic (solid lines) and diabatic (dashed
lines) energies versus time, related to the invariant subspaces H™, k = 1 — 3 (left
column, top to bottom) and x = 4 — 6 (right column, top to bottom). The dashed
line starting from energy 0 (Ay) corresponds to the degenerate g (f) states. The
two dashed lines originating from A, correspond to the states |1,0). (smaller shift)
and |1,£1). (larger shift). Used parameters are A, = 100/7,, Ay = —1/2A,,
So =400/T,, Qo =4/5 5y, s, = sy =1/20, s. = 1/20.
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4.3 SCRAP IN A THREE-LEVEL ATOM

tains the dark state from Hgf, so that the population transfers exclusively to the
excited level, not to the final. The subspaces H™¥ and HI (HIV) are dark for tran-
sition from ground (final) to excited level and retain the initial population during
the SCRAP process. Previous results can be illustrated by plotting the adiabatic en-
ergies corresponding to above-mentioned invariant subspaces. Figure 4.7 shows time
dependence of the pump, Stokes and Stark pulse envelopes (topmost part) and adia-
batic and diabatic energies versus time (lower parts). Topmost plot of energies in the
left column is related to H™ and shows that the population adiabatically transfers
to the excited level. Second and third energy plots in the left column correspond

inv
K

to invariant subspaces H!™, k € {2,3}. It is obvious that starting from appropriate

ground state, all the population transfers into the related final state. Similar to the
two-level case in the section 4.2.1, the total population transfer requires that the
initial ground state is prepared into the specific coherent superpositions. Different
situation is shown in the three right-column plots where the population rests within

inv

ground (final) level subspaces H,'}

and H" (M), respectively.
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5. Conclusion

Alkali-metal vapors represent suitable media for studying various coherent effects
emerging from laser-atom interaction, e.g. EIT, EIA and SCRAP. In vacuum cells
containing alkali-metal vapor at low pressures, mean free path of the atoms is larger
than the cell dimensions. If an atom freely traverses the laser beam, its state will
continuously evolve. The unperturbed laser-atom interaction during the atomic
passage through the laser beam in vacuum cells enables the examination of a de-
velopment of the coherent effects. Different atomic states in various parts of the
laser beam will yield different coherent resonances obtained from these beam parts.
In general, coherent effects depend in a nonlinear way on the laser light intensity.
Transient atomic evolution will be essentially determined by the intensity profile of
the laser beam. Distinct physical processes can dominate the atomic evolution and
affect line shapes of the coherent resonances depending on the laser beam profile.
In this thesis coherent effects were studied for two laser beam profiles: Gaussian
and uniform intensity II profile. Gaussian profile is commonly used is experiments,
while II profile is usually assumed in theoretical treatments.

Examination of Hanle EIT resonances obtained from selected parts of the cross-
section of the Gaussian laser beam is performed. The open transition F, = 2 —
F, =1 of ¥Rb D, line is used. transition The line shapes, widths and contrasts
of the EIT resonances strongly depend on the radial position of the sampled area
of the laser beam. The resonances originating from the central parts are different
than those obtained from the wings of the Gaussian laser beam. In the latter
case the resonances are much narrower with two sideband transmission minima.
The theoretical model reproduces the experimental EIT resonances and explains
the obtained EIT line shapes by the Ramsey-like interference between the atoms
coherently prepared in the central parts of the Gaussian beam with the laser light
in the wings of the beam. The interference features are partially masked due to

simultaneous contribution from atoms coming from the outside of the laser beam.
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The Ramsey-like interference together with lower power broadening leads to the
narrowing of the Hanle EIT resonances in the wings of the Gaussian laser beam. The
EIT line narrowing at larger distances from the beam axis becomes more prominent
as the total laser intensity increases. This kind of investigation revealed for the first
time that Ramsey-like interference can occur within a single laser beam. In addition,
it pointed out that the choice of the detected laser beam part is important and can
yield diverse results.

The evolution of atomic states in constant intensity laser field is investigated
using Il-shaped laser beam resonant to the aforementioned open transition of 8'Rb.
The II laser intensity profile allows the studies to be unaffected by intensity vari-
ations of the laser electric field. Information about the transient evolution of the
atomic state during the interaction with the laser beam was obtained by detailed
inspection of features in line shapes of the Hanle EIT resonances from small seg-
ments of the laser beam cross section. Theoretically and experimentally and such
resonances were obtained by sampling the transmitted laser light at various posi-
tions of the small aperture along the radius of laser beam, after the entire beam
had passed through the Rb cell. It is shown that considerable absorption occurs
immediately after atoms enter the laser beam. At low magnetic fields this leads to
the efficient preparation into a dark state and consequent evolution with low light
absorption throughout the inner region of the beam cross section. At higher mag-
netic fields, the initial absorption is followed by optical pumping into an uncoupled
ground hyperfine level F;, = 1 which dominates the evolution of the atomic state
throughout the laser beam cross section. The appearance of transmission minima,
as sidebands to the EIT resonance, in the inner regions of the II laser beam is due
to strong dependence of optical pumping on the magnetic field. Thus, essentially
different physical mechanisms, optical pumping (incoherent) in IT laser beams and
Ramsey-like interference (coherent) in Gaussian laser beams, yield seemingly similar
results, i.e., the appearance of the transmission minima in Hanle EIT line shapes. In
addition, the observed narrowing of Hanle EIT resonances toward the center of the
[I-shaped laser beam cross section is induced by population loss during the atomic
transit through the laser beam. The aforementioned studies of the influence of the
laser beam profile imply that for the proper modeling of experiments and identifica-
tion and understanding of dominant processes affecting the atomic state evolution
within the laser beam, it is essential to take into account a real beam profile.

Hanle EIA resonances at the Dy line transition F, = 2 — F, = 3 in 8TRb
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were studied using Gaussian and Il-shaped laser beams of the same radius. It
is demonstrated that the atomic state experiences completely different evolution
depending on whether traverses one or the other profiled laser beam. This is shown
by the Hanle EIA obtained from transmission of small segments of the entire laser
beam cross-section. EIA resonances are narrower in outer regions of the Gaussian
beam. In central parts of the Gaussian beam, EIA resonances are widest due to
highest power broadening. For a [I-shaped laser beam, the narrowest EIA resonances
are obtained at the beam center, due to transit-time narrowing of the coherent
resonance. EIA amplitudes, in the range of applied laser intensities, are lowest
(highest) near the laser beam center for the Gaussian (II-shaped) profile. Thus,
outer regions of the Gaussian beam and central regions of the II-shaped beam are
the most valuable regions in the sense that they contribute the narrowest linewidths
and highest amplitudes to the whole-beam EIA resonance. The opposite variation of
EIA linewidths with the distance from the laser beam center for the two beam profiles
makes the linewidths of whole-beam EIA less dependent on the laser beam profile.
The dependence of whole-beam EIA resonance linewidths on the laser intensity for
the Il-shaped laser beam has a pronounced maximum which exceeds the values
obtained with the Gaussian beam that yields a flat linewidths intensity dependence.
Differences in EIA line shapes obtained using two laser beam profiles imply that a
theory with assumed II-shaped radial dependence (common assumption in majority
of models) cannot produce good agreement with experiments done usually using a
Gaussian or similar beam shape. This work has shown that it is important to take
into account the real laser beam profile for proper modeling and analysis of coherent
effects in alkali-metal vapors.

The last topic covered by this thesis is a general formalism for describing Stark-
chirped rapid adiabatic passage among degenerate-level manifolds and the applica-
tion to the 8"Rb atom. Cases of two and three degenerate manifolds were considered.
Analysis of a degenerate-level system is facilitated by its subdivision into a set of
smaller independently evolving subsystems that are related to the minimal-sized
invariant subspaces of the Hamiltonian. The evolution is restricted within such
invariant subspaces enabling separate analysis of each subsystem. Population trans-
fer from the ground to the final level is considered for different types of invariant
subspaces depending on the presence of dark states. It is shown that the complete
transfer is feasible if the initial state is prepared into specific coherent superpositions.

The developed formalism is applicable to the general case of arbitrary numbers of
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degenerate states within each level and arbitrary couplings of the appropriate tran-
sitions. It represents a generalization of the Morris-Shore transformation to the case
when the removed degeneracy of the sublevels leads to detuning from two-photon
resonance. Applying the general formalism, SCRAP among two and three hyperfine
levels in the 8Rb atom is examined in detail. The formalism gives a full descrip-
tion of the SCRAP population transfer process and should be useful for analyzing

adiabatic passage in a wide variety of atomic and molecular systems.
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[lo3sorbaBam Aa ce objaBe Moju NMYHW Nodaumn Be3aHu 3a Aobuvjake akagemcKor 3Bara
AOKTOpa Hayka, Kao WTOo Cy MMe W npesumMe, roanHa u mecto pohewa u gatym ogbpaHe
paga.

OBM NUYHW Nogaum Mory ce 06jaBnT Ha MPEXHUM CTpaHuLuama aurntanHe 6ubnuoTeke, y
eneKTPOHCKOM KaTanory n y nyénvkaumjama YHusepauteta y beorpagy.
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Mpwnor 3.

UsjaBa o kopuwhewy

Osnawhyjem YHuBep3utetcky 6Oubnuoteky ,CseTtosap Mapkosuh® pga y [Adurutanuu

penosuTopujym YHusep3uTeta y beorpagy yHece Mojy AoOKTOpcKy Auceprtauujy noA
HacrnosoMm:

Electromagnetically Induced Coherent Effects in Laser Excited
Raman Resonances in Rubidium Vapor

Koja je Moje ayTOpCKO 4ero.

[vcepTtaunjy ca cBum nNpunosvmMa npefao/na cam y enekrpoHckom hopmMaTy norogHom 3a
TPajHO apxuBupame.

Mojy OOKTOpCKy AucepTauujy noxpawseHy y [urutantHu penosutopujym YHusepsuteTta y
Beorpagy Mory ga kopucte CBW Koju MoOWwTyjy oapeabe cagpxaHe y oaabpaHom Tuny
nuueHue KpeatusHe 3ajegHuue (Creative Commons) 3a kojy cam ce ogny4yuno/na.

1. AytopcTBO
e  AyTOpCTBO - HEKOMepLWjanHo
@ AyTOpCTBO —HekomepuwmjanHo —6e3 npepaae
e AyTOpCTBO —HEKOMEpUMjanHo —4ennT noa UcTMmM yCcrnosuma
e AyTtopcTtBo —6€3 npepage
e  AyTOpCTBO —[,€NNTU NOA UCTUM YCNOBUMA

(Monumo aa 3aoKpyxuTe camo jefiHy Of WEeCT NOHYReHX NULEHLM, KpaTak Onuc NuueHLm
Aart je Ha nonehyHu nucTa).

MoTnuc gokTopaHaa
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1. AytopcTBo - [lo3BorbaBaTe yMHOXaBahe, AUCTpubyLumjy 1 jaBHO caonwiTaBawe gena, u
npepage, ako ce HaBeae MMe ayTopa Ha HauuH ogpeneH of CcTpaHe ayTopa unu gasaoua
nvueHue, Yak n y komepuujanHe cspxe. OBO je HajcnobogHunja og CBUX NMLEHUM.

2. AyTtopctBO — HekomepuwmjanHo. [o3BorbaBaTe yMHOXaBake, OUCTPUDOYLM)y W jaBHO
caonwtaBawe fena, U npepage, ako ce HaBede MMe ayTopa Ha HavvH ogpeheH of
CTpaHe ayTtopa wnu fasaoua nuueHue. OBa nuueHua He [03BOSfbaBa KoMepLMjarHy
ynoTpeby gena.

3. AyTtopcTBO - HekomepuumjanHo — 6e3 npepage. [lo3BorbaBaTe yMHOXaBawe,
AncTpubyuujy 1 jaBHo caonwTaBawe gena, 6e3 npomeHa, npeobnukosara unu ynotpebe
Aenay CBOM ferny, ako ce HaBede ume aytopa Ha HadvH oapefheH o4 cTpaHe ayTopa unm
Aasaoua nuueHue. OBa nuueHua He Jo3BoSbaBa KoMmepuujanHy ynotpeby gena. Y ogHocy
Ha cBe ocTane nuueHue, OBOM fULEHLOM ce orpaHudaBa Hajpehm o6uM npaBa
Kopuwhera gena.

4. AyTOpCTBO - HeKkoMmepuMujanHo — Jenutu nog uUCTUM YycrioBumMa. [os3BorbaBaTte
YMHOXaBakh-e, ANCTPUBYLIMjY 1 jaBHO caomniuTaBawe gena, U npepage, ako ce HaBeae nve
ayTopa Ha HaduH ofgpefeH of cTpaHe ayTopa unu JaBaoua InuvueHLe 1 ako ce npepaga
anctpubympa nog UCTOM WAW  CIMYMHOM nuueHuom. OBa nuvueHua He [03BOSbaBa
KomepumjanHy ynotpeby gena n npepaga.

5. AytopctBo — ©6e3 npepage. [o3BorbaBaTte yMHOXaBawe, OUCTpUMOyuUMjy M jaBHO
caonwTaBawe Agena, 6e3 npomeHa, npeobnukoBaka unu ynotpebe gena y cBom aeny,
ako ce HaBede MMe ayTopa Ha HauduH ogpefeH of cTpaHe ayTopa Wnu Aasaoua nuueHue.
OBa nuueHua Ao3BorbaBa komepuumjanHy ynotpeby gena.

6. AyTOpCTBO - AenuTu Noa UcTuM ycnosuma. [losaBorbaBaTe yMHOXaBawe, AUCTpUbyuunjy
M jaBHO caonLwiTaBakwe Aena, v npepage, ako ce Hasefe MMe ayTopa Ha Ha4duH ofpeheH
o[, CTpaHe ayTopa unu gasaola f1LeHLe 1 ako ce npepaga auctpubyrpa nog UCTOM unm
cnnyHoM nuueHuoM. OBa nuueHLa [03BorbaBa KoMepumjanHy ynotpeby Aena u npepaja.
CnwnyHa je codTBEPCKMM NULEHLaMa, OQHOCHO NLeHLama OTBOPEHOr Koaa.



