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Electromagnetically induced coherent effects in
laser excited Raman resonances in rubidium vapor

Abstract

This thesis presents the theoretical analysis of various coherent effects in laser ex-

cited Raman resonances in multilevel systems in rubidium atoms. Studied coherent

effects include electromagnetically induced transparency (EIT), electromagnetically

induced absorption (EIA) and Stark-chirped rapid adiabatic passage (SCRAP). EIT

and EIA resonances are examined in Hanle configuration in rubidium vapor vacuum

cells using detailed theoretical modeling of related realistic systems. Developed nu-

merical model provided excellent agreement with actual experimental results and

their successful explanation. Furthermore, existent theory of SCRAP in two- and

three-level systems is extended to the case of two and three degenerate-level mani-

folds with arbitrary number of substates.

Vacuum alkali-metal vapor cells are commonly used in quantum optics for re-

search of coherent phenomena in laser-atom interaction. One of basic properties of

laser radiation that influences the coherent atomic evolution is its local intensity.

Generally, the coherent effects depend non-linearly on the laser intensity. Immediate

consequence is that the laser beam intensity profile must affect the atomic coherent

evolution. Moreover, different parts of the same laser beam should have different

contribution to the coherent effects. Most common laser beam profile used in exper-

iments is Gaussian, while theoretical models commonly assume constant intensity

distribution (Π profile). One motivation of this work was the actual lack of investi-

gation of the influence of different laser beam profiles on the coherent resonances in

vacuum alkali-metal vapor cells. This thesis gives a contribution to the examination

of Hanle EIT and EIA resonances using two common laser beam profiles, Gaussian

and Π. Hanle EIT is studied on the open D1 line transition Fg = 2 → Fe = 1 of
87Rb, while Hanle EIA is investigated on the closed transition Fg = 2 → Fe = 3 at

the D2 line of the same rubidium isotope.

Study of Hanle EIT resonances from selected segments of the Gaussian laser

beam cross section revealed the existence of Ramsey-like interference within a sin-

gle laser beam. As the theoretical model suggested, low intensity wings of the

Gaussian beam actually probe the coherently prepared atoms coming from intense



central parts of the laser beam. Hallmark of such scenario is the appearance of two

Ramsey-like sideband transmission minima next to the central maximum of Hanle

EIT resonances observed in the wings of the Gaussian beam. Combined with lower

power broadening, this leads to narrowing of Hanle EIT resonances in the in the

outer parts of the beam.

Hanle EIT from different parts of a Π-shaped laser beam cross section yielded

apparently similar results, but having entirely different physical background. The

sideband transmission minima appeared in EIT line shapes observed from the parts

near the Π beam center. The theoretical model showed that the occurrence of these

transmission minima is a joint effect of the coherent preparation of atoms into the

dark state and the optical pumping into the uncoupled ground level Fg = 1. The

optical pumping also caused the population-loss-induced transit time narrowing of

EIT resonances toward the Π laser beam center. This study made clear that the

profile of the laser beam determines the processes governing the evolution of atomic

states during the interaction with the laser.

Hanle EIA investigations also demonstrated that the atoms experience com-

pletely different evolution depending on whether interact with one or the other

profiled laser beam. This is evidenced by the analysis of EIA resonances obtained

from small segments of the entire laser beam. Within the particular laser beam,

Hanle EIA resonances were narrower in outer regions of the Gaussian beam, while

for a Π-shaped laser beam, the narrowest resonances were obtained at the beam

center. The theoretical analysis attributed the former to the lower power broaden-

ing in the Gaussian beam wings, while the latter was due to transit-time narrowing

toward the center of the Π-shaped beam. These results unambiguously imply that

it is important to take into account the real laser beam profile for proper modeling

and analysis of coherent effects in alkali-metal vapors.

SCRAP extension for the case of two and three degenerate-levels having arbi-

trary number of sublevels is given as the last part of this thesis. The used approach

represents a generalization of the Morris-Shore transformation to the case when the

removed degeneracy of the sublevels leads to detuning from two-photon Raman res-

onance. Theoretical analysis of a multilevel system is facilitated by its subdivision

into a set of smaller independently evolving subsystems related to the minimal-sized

invariant subspaces of the Hamiltonian. Adiabatic population transfer from the

starting to the final level is investigated for different types of the invariant sub-

spaces. It is shown that the complete population transfer is achievable if the initial



state is prepared into specific coherent superpositions. An application of the devel-

oped SCRAP formalism to the 87Rb atom is presented for illustration.

Keywords: coherent effects, Hanle configuration, Raman resonances, rubidium

Scientific field: Physics

Research area: Quantum optics

UDC number: 539:535.14(043.3)



Elektromagnetski indukovani koherentni efekti u
laserski pobu�ivanim Ramanovim rezonancama u

parama rubidijuma

Sa�etak

Ova teza predstav	a teorijsku analizu razliqitih koherentnih efekata

u laserski pobu�ivanim Ramanovim rezonancama u sistemima sa vixe nivoa u

atomima rubidijuma. Prouqavani koherentni efekti uk	uquju elektromagnet-

ski indukovanu transparenciju (EIT), elektromagnetski indukovanu apsor-

pciju (EIA) i Xtarkovski brzi adijabatski prelaz (engl. SCRAP ). EIT i

EIA rezonance su ispitivane u Hanle konfiguraciji u vakuumskim �elijama

para rubidijuma deta	nim teorijskim modelira�em odgovaraju�ih realisti-

qnih sistema. Razvijeni numeriqki model je pokazao odliqno slaga�e sa odgo-

varaju�im eksperimentalnim rezultatima i omogu�io �ihovo uspexno obja-

x�e�e. Dodatno, postoje�a teorija SCRAP -a u sistemima sa dva i tri nivoa

je proxirena na sluqajeve dva i tri nivoa sa proizvo	nim brojem degenerisa-

nih podnivoa.

Vakuumske �elije para alkalnih metala su qesto korix�ene u kvantnoj op-

tici prilikom istra�iva�a koherentnih pojava u interakciji lasera sa atom-

ima. Jedna od osnovnih osobina laserskog zraqe�a koja utiqe na koherentnu

evoluciju atoma je �egov lokalni intenzitet. Uopxteno gledano, koherentni

efekti zavise nelinearno od intenziteta lasera. Neposredna posledica toga

je da profil intenziteta laserskog snopa mora uticati na koherentnu atom-

sku evoluciju. Xtavixe, razliqiti delovi jednog istog laserskog snopa tre-

balo bi da razliqito doprinose koherentnim efektima. U eksperimentima

je Gausov profil laserskog snopa najqex�e korix�en, dok teorijski modeli

obiqno pretpostav	aju ravnomernu raspodelu intenziteta (Π profil). Jedan

od motiva ovog rada je bio prisutni nedostatak istra�iva�a uticaja razliqi-

tih profila laserskog snopa na koherentne rezonance u vakuumskim �elijama

para alkalnih metala. Ova teza daje doprinos ispitiva�u Hanle EIT i EIA

rezonanci korix�e�em dvaju qestih laserskih profila, Gausovog i Π. Hanle

EIT je prouqavana na otvorenom prelazu Fg = 2 → Fe = 1 linije D1 izotopa
87Rb, dok je Hanle EIA ispitivana na zatvorenom prelazu Fg = 2 → Fe = 3



linije D2 istog izotopa rubidijuma.

Izuqava�e Hanle EIT rezonanci dobijenih od odre�enih delova popreqnog

preseka Gausovog laserskog snopa otkrilo je postoja�e interferencije sliqne

Remzijevoj i to u okviru jednog laserskog snopa. Teorijski model je ukazao da

krila Gausovog snopa koja su niskog intenziteta zapravo probaju koherentno

priprem	ene atome koji dolaze iz vrlo intenzivnih centralnih delova laser-

skog snopa. Oznaka pomenutih procesa je pojava dvaju transmisionih minimuma

Remzijevog tipa neposredno uz centralni maksimum Hanle EIT rezonanci koje

su dobijene u krilima Gausovog snopa. U sadejstvu sa uma�enim xire�em usled

snage, pomenuti procesi dovode do su�ava�a Hanle EIT rezonanci dobijenih

u spo	ax�im delovima laserskog snopa.

Hanle EIT dobijena od razliqitih delova popreqnog preseka Π laserskog

snopa dala je naizgled sliqne rezultate, ali sa sasvim drugaqijom fiziqkom

pozadinom. Dva transmisiona minimuma su se pojavila u EIT oblicima lin-

ija dobijenih od centralnih delova Π snopa. Teorijski model je pokazao da je

pojava tih transmisionih minimuma posledica sadejstva koherentnog pripre-

ma�a atoma u tamno sta�e i optiqkog pumpa�a u nespregnuti osnovni nivo

Fg = 1. Optiqko pumpa�e je tako�e uzrokovalo su�ava�e EIT rezonanci

usled gubitka nase	enosti, tokom vremena preleta atoma ka centru Π laser-

skog snopa. Ovo istra�iva�e je jasno pokazalo da profil laserskog snopa

odre�uje koji procesi uprav	aju evolucijom atomskih sta�a tokom interak-

cije sa laserom.

Prouqava�e Hanle EIA je tako�e pokazalo da atomi evoluiraju sasvim dru-

gaqije zavisno od toga da li interaguju sa laserskim snopom jednog ili drugog

profila. To je potkrep	eno analizom EIA rezonanci dobijenih od malih de-

lova laserskog snopa. U jednom odre�enom snopu, Hanle EIA rezonance su bile

u�e u spo	ax�im delovima Gausovog snopa, dok su u sluqaju Π snopa naju�e

rezonance dobijene u samom �egovom centru. Teorijska analiza je pre�ax�e

pripisala sma�enom xire�u usled snage u krilima Gausovog snopa, dok je po-

to�e posledica su�ava�a tokom vremena preleta atoma ka centru Π snopa.

Ovi rezultati nedvosmisleno ukazuju da je neophodno uzeti u obzir stvarni

profil laserskog snopa radi modelira�a i analize koherentnih efekata u

parama alkalnih metala.

Proxire�e SCRAP -a na sisteme dva ili tri nivoa sa podnivoima je dato

u posled�em delu teze. Korix�eni pristup predstav	a uopxte�e Moris-



Xorove transformacije na sluqaj kada uklo�ena degeneracija podnivoa dovodi

do razdexava�a dvo-fotonske Ramanove rezonance. Teorijska analiza ovakvog

sistema sa vixe nivoa je omogu�ena podelom na ma�e podsisteme koji evoluiraju

nezavisno i povezani su sa minimalnim invarijantnim potprostorima Hamil-

tonijana. Ispitan je adijabatski prenos nase	enosti od polaznog do krajn-

jeg nivoa za razliqite vrste invarijantnih potprostora. Pokazano je da se

potpuni prenos nase	enosti mo�e ostvariti ukoliko poqetno sta�e odgovara

odre�enim koherentnim superpozicijama. Data je primena razvijenog SCRAP

formalizma na atom 87Rb radi slikovitosti.

K	uqne reqi: koherentni efekti, Hanle konfiguracija, Ramanove rezonance,

rubidijum

Nauqna oblast: Fizika

Oblast istra�iva�a: Kvantna optika

UDK broj: 539:535.14(043.3)



Contents

Contents x

1 Introduction 1

2 Theoretical basics 7

2.1 Interaction of laser radiation with two-level atomic system . . . . . . 7

2.2 Interaction of laser radiation with three-level atomic system . . . . . 9

2.2.1 Electromagnetically induced transparency . . . . . . . . . . . 11

2.3 Interaction of laser radiation with multilevel atomic system . . . . . . 13

3 Influence of laser intensity and beam profile on Hanle resonances 20

3.1 Influence of the laser beam profile on the transient atomic evolution . 21

3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Hanle EIT resonances from selected segments of the Gaussian laser

beam cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Hanle EIT resonances from selected segments of the Π-shaped laser

beam cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Influence of laser beam profile on Hanle EIA . . . . . . . . . . . . . . 46

4 Stark-chirped rapid adiabatic passage 54

4.1 Adiabatic passage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Two-state SCRAP . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Three-state SCRAP . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 SCRAP in a two-level atom . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 SCRAP among two hyperfine levels in 87Rb . . . . . . . . . . 66

4.3 SCRAP in a three-level atom . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 SCRAP among three hyperfine levels in 87Rb . . . . . . . . . 74

5 Conclusion 80

References 84

x



1. Introduction

One of currently very attractive research areas in physics is quantum optics. It com-

bines the opportunity to cope with fundamental quantum features of matter and

the prospects of harnessing them for technological advancement. The groundwork

of quantum optics is light-matter interaction. One of the extensively investigated

aspects is the interaction of laser light and atomic vapors. That utterly rich play-

ground keeps providing an ongoing interest for many emergent electromagnetically

induced coherent effects, especially in laser excited alkali-metal-atom vapors. The

main reason for such trend is the opportunity for numerous applications. Addition-

ally, in-depth examination of coherent effects, transfer of coherence and transfer of

population, leads to better understanding of various phenomena in quantum optics

and laser-matter interaction in general.

Typical examples of coherent effects are those originating from coupling a single

atomic excited state with two long-lived ground atomic states using two laser fields,

pump and probe (so called Λ configuration). This system enables the realization of

the interference between the two transition pathways generated by the laser fields

and the creation of so called dark states - coherent superpositions between the long-

lived states uncoupled to the excited state having quite remarkable features. Namely,

when the pair of laser fields in Raman resonance between the ground atomic states

prepare the absorbing medium into the dark state, it becomes more transparent for

the pair of fields than it would be for each separate resonant laser field. This is

basic physical picture of coherent population trapping (CPT) [1, 2] and electromag-

netically induced transparency (EIT) [3, 4]. CPT and EIT can also be observed in

multilevel systems as those involving two atomic degenerate-level manifolds having

multiple Zeeman substates. The observation of CPT and EIT in such systems is also

a direct consequence of the existence of a dark state(s) within the ground atomic

level when Fg ≥ Fe (Fg and Fe being the angular momenta quantum numbers of the

ground and excited state, respectively). The pump-probe spectroscopy of multilevel

1



systems with 0 < Fg < Fe also yields resonances in the laser transmission when

the Raman resonance condition between ground-state Zeeman substates is fulfilled.

However, in this case, the resonances show increased laser field absorption and have

consequently being termed as electromagnetically induced absorption (EIA) [5, 6].

Contrary to CPT and EIT, the EIA resonances cannot be related to the existence

of dark state(s) within the ground state. EIA is shown to be due to transfer of

coherence via spontaneous emission, from the excited to the ground states, and due

to transfer of population [7, 8]. Coherent effects can alternatively be studied in so

called Hanle configuration [9, 10] consisting of a single linearly or elliptically polar-

ized laser beam where external magnetic field provides detuning from the Raman

resonance. Another coherent effect related to multilevel atomic systems is rapid

adiabatic passage [11, 12] where using adiabatic evolution of the atomic states and

the avoided crossings of diabatic energies, the complete population transfer among

two atomic states can be obtained. Recently proposed technique of Stark-chirped

rapid adiabatic passage (SCRAP) [13] presents a very robust and efficient method

for producing complete population transfer between two bound states of an atomic

or molecular system.

Narrow CPT and EIT resonances have important role in optical metrology, pri-

marily in magnetometry [14, 15, 16], spectroscopy [17, 18] and frequency standards

[19]. Availability of reliable diode lasers having tunable wavelength resulted in the

expansion of the experiments and applications related to the coherent effects. Mag-

netometers based on the alkali-metal vapors are capable of measuring extremely

weak magnetic fields, i.e. magnetic fields of the heart and of the brain [20]. Atomic

clocks operating on the base of CPT and EIT effects are highly stable and can

be made chip-scale [21]. For all applications narrowing of the resonances is the

most important. For this to be achieved, it is essential thorough understanding of

coherent effects, their mechanisms and consequences. Further development of the

experimental methods for the narrowing of the emerging resonances is tied to our

knowledge of the laser-matter interaction. On the other side, examination of the

dependence of the resonance line-shapes on various experimental parameters reveals

the details of the interaction of the laser and the atomic systems. In vacuum atomic

vapor cells the resonance line-widths depend on the atomic interaction time with

the laser beam as well as on the actual laser beam profile. In order to increase

the atomic interaction time, buffer gas is added into the alkali-metal vapor cells.

Collisions with the buffer gas preserve the alkali-metal laser induced coherence and

2



significantly reduce their mean free path. This can lead to the resonances of the

width below 50 Hz [22]. Alternatively, vapor cells with paraffin-coated walls also

provide resonance narrowing [23]. Paraffin coating enables the alkali-metal atoms

to keep the coherence even after few thousands of collisions with the cell walls.

In the alkali-metal vapor vacuum cells the atomic motion at low pressures is rec-

tilinear and disturbed only by the collisions with the cell walls. The atomic states

continually evolve during the transient interaction with the laser beam. Therefore,

different parts of the laser beam cross section, after passing through the cell, will

carry different information about the atomic state and will yield different resonances.

Additional narrowing of CPT, EIT and EIA resonances can be obtained by proper

selection of the beam profile and the detected segment of the laser beam. There

are only a few papers dealing with the influence of the laser beam profile on EIT

resonance line-shapes. The dark resonances in cesium vacuum cell obtained using

Gaussian laser beam are studied in [24]. It is shown that whole-beam dark reso-

nance line-shapes are not Lorentzians due to inhomogeneous intensity distribution

of the laser beam and repeated interaction of Cs atoms at different positions in the

beam. CPT linewidths for open transitions in cases of Gaussian and Π transverse

laser beam profile in vacuum gas cells are analyzed theoretically in [25]. Nonlin-

ear, monotonically increasing square-root-like CPT linewidth dependence on laser

intensity was obtained for both beam profiles. The linewidths were narrower for the

Gaussian than for the Π transverse profile of the laser beam. The comparison of dark

resonances obtained in alkali-metal atom buffer-gas cells using Gaussian and Π laser

beam profile is presented in [26, 27]. Gaussian laser beam yields non-Lorentzian, so

called Rabi-Lorentzian, whole-beam resonance line-shapes in dense 4He vapor, while

detection of the laser beam segments using small aperture gives purely Lorentzian

resonances exhibiting Rabi broadening corresponding to the local intensities [28].

It is shown that Laguerre Gaussian beam profile provides significant narrowing in

the line shape of the Hanle EIT and EIA resonances in comparison to the Gaussian

beam [29].

The development of efficient schemes for selective population transfer and prepa-

ration of atoms and molecules in well-defined quantum states is of critical importance

for modern atomic and molecular physics, atom optics and quantum information.

Stark-chirped rapid adiabatic passage technique enables such efficient population

transfer among two atomic or molecular states using two sequential laser pulses.

The pump laser pulse transfers the population from one state to another, while an

3



intense far off-resonant Stark laser pulse modifies the transition probability between

the two states by Stark-shifting their energies. It has been shown that the proper

pump pulse intensity, duration, and partial overlap with the Stark pulse produce

complete population transfer from one state to another [30]. SCRAP technique was

extended for complete population transfer amongst three states [31]. In that case,

all three states have to be coupled simultaneously using three laser pulses. Near

resonant Stokes laser pulse is applied in addition to the pump and the Stark laser

pulses. Population transfer from one state to another is performed via an inter-

mediate third state while the population of the intermediate state is maintained

minimized by the proper laser pulse timing and by adiabatic evolution of the states.

SCRAP is robust against the fluctuations of Rabi frequencies and temporal shape

of the laser pulses and does not rely on the exact two-photon Raman resonance

condition. SCRAP technique was used for very successful and robust generation

of population inversion in NO molecules [32, 33]. It appears as a highly promising

building block of quantum state engineering [34] and quantum computing [35].

This thesis deals with theoretical examination of the coherent effects in laser ex-

cited rubidium vapor. Organization of the thesis is as follows. Important topic will

be the influence of the laser beam intensity profile on the line-shapes of Hanle EIT

and EIA resonances. Considered beam profiles will be Gaussian and Π-shaped (hav-

ing constant intensity all-over its cross section). It will be shown that the laser beam

intensity profile strongly affects the resonance line-shapes. The same laser beam can

have twofold role: role of the pump beam that coherently prepares the atoms and

role of the probe beam that interferes with the coherently prepared atoms. Further

study will focus on the Hanle EIT resonances from selected segments of the Gaus-

sian laser beam cross section and the related appearance of the Ramsey effect in the

single-beam EIT resonances. Different positioning of the segments along the beam

radius yields markedly different resonance line-shapes, with Ramsey-like features

appearing in the wings of the Gaussian beam. Analysis of the Hanle EIT resonances

obtained from selected segments of the Π-shaped laser beam will reveal joint effect

of the preparation of atoms into the dark state and the optical pumping into the

uncoupled ground level. Hanle EIA resonances obtained using both beam profiles

will also be tackled. It will be shown that outer regions of Gaussian beam, and

central regions of the Π-shaped beam generate the narrowest resonances and that

an atom experiences completely different evolution depending on whether traverses

one or the other profiled beam. This indicates that different physical processes

4



determine the atomic evolution depending on the used laser beam profile. Proper

understanding and interpretation of these results requires the development of the

appropriate theoretical model enabling the investigation of the interaction of the Rb

vapor with the laser beam of arbitrary intensity profile. Theoretical examination

is based on time dependent optical Bloch equations including Maxwell-Boltzmann

velocity distribution, diversity of atomic trajectories through the laser beam of a

custom cylindrical symmetric intensity profile and laser induced polarization of the

Rb vapor. The complete Zeeman sublevel structure of the involved hyperfine transi-

tions is taken into account. Results of the computer simulations will enable detailed

insight into various physical processes during the interaction of the atoms with the

laser light in the selected beam segments and the accompanying atomic state tran-

sient evolution. Comparison of the theoretical results with the actual measurements

will provide an additional support for the analysis of the related coherent effects.

Additionally, an extension of the SCRAP technique will be given. It applies to

the atomic systems having two or three levels that can be degenerated with arbi-

trary number of substates. Employed formalism relies on the decomposition of the

Hilbert space of the system into minimal invariant subspaces to which the evolution

of the system is restricted. It is a generalization of the Morris-Shore transformation

[36, 37] to the case when the removed degeneracy of the substates leads to detuning

from two-photon Raman resonance. The possibility of SCRAP population transfer

among two degenerate-level manifolds will be examined first in detail, and afterward

the case of three degenerate-level manifolds will be discussed. It will be shown that

the complete transfer is feasible if the initial state is prepared into specific coherent

superpositions. The method will be applied to the adiabatic passage among two and

three hyperfine levels in the rubidium atom.

Contents of this thesis are based on the following papers of the author:

1) M. Radonjić, D. Arsenović, Z. Grujić, and B. M. Jelenković, Coherent popu-

lation trapping linewidths for open transitions: Cases of different transverse

laser intensity distribution, Physical Review A 79, 023805 (2009),

2) M. Radonjić and B. M. Jelenković, Stark-chirped rapid adiabatic passage

among degenerate-level manifolds, Physical Review A 80, 043416 (2009),

3) A. J. Krmpot, S. M. Ćuk, S. N. Nikolić, M. Radonjić, D. G. Slavov, and B.
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M. Jelenković, Dark Hanle resonances from selected segments of the Gaussian

laser beam cross-section, Optics Express 17, 22491 (2009),

4) S. M. Ćuk, M. Radonjić, A. J. Krmpot, S. N. Nikolić, Z. D. Grujić, and B.

M. Jelenković, Influence of laser beam profile on electromagnetically induced

absorption, Physical Review A 82, 063802 (2010),

5) A. J. Krmpot, M. Radonjić, S. M. Ćuk, S. N. Nikolić, Z. D. Grujić, and B.

M. Jelenković, Evolution of dark state of an open atomic system in constant

intensity laser field, Physical Review A 84, 043844 (2011).

Other papers of the author not included in the thesis:

1) Nikola Burić and Milan Radonjić, Uniquely defined geometric phase of an open

system, Physical Review A 80, 014101 (2009),

2) M. M. Mijailović, Z. D. Grujić, M. Radonjić, D. Arsenović, and B. M. Je-
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4) M. Radonjić, S. Prvanović, and N. Burić, Emergence of classical behavior from

the quantum spin, Physical Review A 85, 022117 (2012),
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2. Theoretical basics

2.1 Interaction of laser radiation with two-level

atomic system

The state of a closed quantum system is described by its state vector |Ψ(t)〉 that is
member of some Hilbert space H. Unitary evolution of the system is described by

time-dependent Schrödinger equation (TDSE)

i~
d|Ψ(t)〉
dt

= Ĥ(t)|Ψ(t)〉, (2.1)

where Ĥ(t) is (possibly time-dependent) Hamiltonian operator of the system acting

on the space H. Schrödinger equation is linear and allows coherent superpositions.

When describing the interaction of an atomic system with the laser light, the Hamil-

tonian has two parts:

Ĥ(t) = Ĥat + V̂ int(t), (2.2)

where the first, constant, part Ĥat incorporates the unperturbed eigenenergies of

the (bare) atom in the absence of the laser radiation

Ĥat|ψn〉 = εn|ψn〉, n ∈ {1, 2, . . .}, (2.3)

where |ψn〉 are the eigenstates corresponding to the bare atomic eigenenergies εn.

The matrix elements of the interaction part V̂ int(t) can, in principle, be obtained

from the eigenstates of the system V int
mn (t) = 〈ψm|V̂ int(t)|ψn〉. Usually, when dealing

with the laser excitation the laser carrier frequency ω is close to some Bohr transition

frequency, i.e., ω ≈ ωnm ≡ (εn − εm)/~. In such case, there is no any appreciable

population in quantum states other than those initially populated or excited by the

laser. Thus although there may be an infinite number of quantum states, very few

of those participate in the excitation dynamics. One can restrict attention to only a
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2.1 INTERACTION OF LASER RADIATION WITH TWO-LEVEL ATOMIC SYSTEM

finite N -dimensional subspace HN of the infinite Hilbert space H. In this subspace

the state vector |Ψ(t)〉 has the expansion

|Ψ(t)〉 =
N∑

n=1

cn(t)|ψn〉, (2.4)

where the time-varying complex numbers cn(t) (termed probability amplitudes) must

be chosen such that the resulting state vector satisfies the TDSE (2.1). This re-

quirement leads to the following vectorial form of the system of N coupled ordinary

differential equations for the probability amplitudes:

i~
dC(t)

dt
= H(t)C(t), (2.5)

where the vector C(t) = (c1(t), . . . , cN(t))
T and the matrix H(t) represent the state

|Ψ(t)〉 and the Hamiltonian Ĥ(t), respectively, in the basis {|ψ1〉, . . . , |ψN〉}.
Although only N states appear explicitly in the expansion (2.4), the influence of

other states can have important consequences. Other states are responsible for the

polarizability of the atom, i.e. for the occurrence of an induced dipole moment which,

when the laser field is present, supplements the direct transition dipole moment.

These produce multiphoton transitions and laser-induced energy (Stark) shifts.

The predominant part of the interaction of bound particles with laser light is

almost always the electric dipole interaction. In that case the interaction energy

operator is associated with the projection of the electric dipole operator d̂ onto the

electric field V̂ int(t) = −d̂ ·E(t), where E(t) is the time varying electric field at the

center of mass of the particle. This applies to almost all commonly considered (i.e.

“allowed”) transitions. The interaction operator leads to selection rules such that,

for a given pair of states ψm and ψn only one polarization direction ê gives a nonzero

transition moment dmn = 〈ψm|d̂ · ê|ψn〉. It is common to introduce the appropriate

Rabi frequency as Ωmn(t) = −dmnE(t)/~, where E(t) is the electric field envelope,

i.e., E(t) = E(t) cos(ωt+φ). The set of nonzero moments for the interaction operator

can be viewed as a linkage pattern. The possible dipole transition moments - the

possible linkages - are characteristic for any given atom or molecule. Manipulation of

the state vector of an atom or molecule is possible through control of the magnitude

and direction of the laser electric field E(t).

Consider now a two-level system with ground state |ψ1〉 having the energy ~ω1
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2.2 INTERACTION OF LASER RADIATION WITH THREE-LEVEL ATOMIC SYSTEM

and excited state |ψ2〉 having the energy ~ω2. For optical wavelengths of used laser

pulses, the Rabi frequency is typically 4 or 5 orders of magnitude smaller than

the laser carrier frequency ω. That is, the photon energy ~ω is much larger than

the interaction energy. Rapid oscillations associated with the carrier frequency are

not of interest. One is concerned with processes that take place over very many

optical cycles. Thus, it is necessary to focus on slow dynamics by making rotating-

wave approximation (RWA). It consists of replacing terms in the evolution equations

rotating at optical frequencies by their zero average value. In the rotating basis of

so called diabatic states

|ψ̃1(t)〉 = e−iω1t|ψ1〉,

|ψ̃2(t)〉 = e−i(ω1+ω)t|ψ1〉
(2.6)

the two-level RWA Schrödinger equation has the form

i~
d

dt

[
c1(t)

c2(t)

]
= ~

[
0 1

2
Ω(t)

1
2
Ω∗(t) ∆

][
c1(t)

c2(t)

]
, (2.7)

where the time-dependent complex Rabi frequency is Ω(t) = −d21E(t)eiφ/~ and the

laser detuning is ∆ = ω2 − ω1 − ω.

2.2 Interaction of laser radiation with three-level

atomic system

Extension of a two-level system with another state leads to a three-level system

whose enriched complexity enables additional coherent phenomena. Let the three-

level system be composed from the states |ψ1〉, |ψ2〉 and |ψ3〉, having the energies

~ω1, ~ω2 and ~ω3, respectively. In case of the electric-dipole interaction the selection

rules require that coupled states must have opposite parity. Therefore, three-level

system can be dipole-excited by two distinct laser fields coupling two different dipole-

allowed transitions. These two laser fields, labeled by the letters p and S are often

called pump and Stokes fields, respectively. The carrier frequencies of the two fields,

ωp and ωS, respectively, are both taken to be close to resonance with exactly one of

the possible transitions. In that manner, each laser field can be uniquely associated

with a single transition. Let the pump field is (near) resonant only with the 1 → 3

transition, while the Stokes field is (near) resonant only with the 2 → 3 transition.
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2.2 INTERACTION OF LASER RADIATION WITH THREE-LEVEL ATOMIC SYSTEM

Figure 2.1: Three-level Λ system. Pump field (label p) couples the transition 1 → 3,
while Stokes field (label S) couples the transition 2 → 3. Ωp and ΩS are Rabi
frequencies of the fields, ωp and ωS are carrier frequencies, while ∆p and ∆S are
transition detunings.

The transition 1 → 2 is dipole-forbidden and the states 1 and 2 are long-lived

(ground states) comparing to the state 3 (excited state). Then, the nonzero dipole

interactions are

Vp(t) = −d31Ep(t) cos(ωpt+ φp), VS(t) = −d32ES(t) cos(ωSt+ φS), (2.8)

where d13 and d23 are the dipole moments of the transitions and Ep(t) and ES(t) are
slowly varying amplitudes of the laser fields. One can introduce the corresponding

Rabi frequencies as Ωp(t) = −d31Ep(t)/~ and ΩS(t) = −d32ES(t)/~.
The state vector of a three-level system can be expanded as

|Ψ(t)〉 = c1(t)|ψ̃1(t)〉+ c2(t)|ψ̃2(t)〉+ c3(t)|ψ̃3(t)〉, (2.9)

where

|ψ̃1(t)〉 = e−iω1t|ψ1〉,

|ψ̃2(t)〉 = e−i(ω1+ωp−ωS)t|ψ2〉,

|ψ̃3(t)〉 = e−i(ω1+ωp)t|ψ3〉

(2.10)

are the diabatic basis states in the rotating frame. The evolution is governed by the

10



2.2 INTERACTION OF LASER RADIATION WITH THREE-LEVEL ATOMIC SYSTEM

three-level RWA Schrödinger equation which in the diabatic basis has the form

i~
d

dt

c1(t)c2(t)

c3(t)

 = ~

 0 0 1
2
Ωp(t)

0 ∆p −∆S
1
2
ΩS(t)

1
2
Ω∗

p(t)
1
2
Ω∗

S(t) ∆p


c1(t)c2(t)

c3(t)

 , (2.11)

where ∆p = ω3−ω1−ωp and ∆S = ω3−ω2−ωS are appropriate single-photon detun-

ings of the pump and Stokes field, respectively. Difference between two detunings

∆R = ∆p−∆S is known as Raman two-photon detuning and ∆R = 0 corresponds to

a Raman two-photon resonance condition. The type of three-level system relevant

for this thesis, called Λ system, is given in Figure 2.1. Other two possible types, V

and ladder, are not of present interest.

2.2.1 Electromagnetically induced transparency

Three-level Λ system represents the simplest system presenting two physically closely

related coherent phenomena - coherent population trapping (CPT) and electromag-

netically induced transparency (EIT). Basic physical picture of these phenomena is

based on the existence of dark states that are uncoupled to the laser fields. The

atoms trapped into the dark state cannot be further excited by the laser fields and

cannot fluorescence - they are dark.

Let us consider the case when the two fields are in Raman resonance ∆R = 0,

i.e., single-photon detunings are equal ∆p = ∆S = ∆. The Λ system Hamiltonian

W(t) = ~

 0 0 1
2
Ωp(t)

0 0 1
2
ΩS(t)

1
2
Ω∗

p(t)
1
2
Ω∗

S(t) ∆

 (2.12)

has the following eigenstates and eigenenergies

Φ0(t) =
1

Ω(t)

 Ω∗
S(t)

−Ω∗
p(t)

0

 , ε0(t) = 0, (2.13)

Φ−(t) =
1

Ω(t)

Ωp(t) cos θ(t)

ΩS(t) cos θ(t)

−Ω(t) sin θ(t)

 , ε−(t) =
~
2
(∆−

√
∆2 + Ω(t)2), (2.14)
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2.2 INTERACTION OF LASER RADIATION WITH THREE-LEVEL ATOMIC SYSTEM

Φ+(t) =
1

Ω(t)

Ωp(t) sin θ(t)

ΩS(t) sin θ(t)

Ω(t) cos θ(t)

 , ε+(t) =
~
2
(∆ +

√
∆2 + Ω(t)2), (2.15)

where the “mixing angle” θ(t) is introduced as cot(2θ(t)) = ∆/Ω(t), with Ω(t) =√
|Ωp(t)|2 + |ΩS(t)|2. It is important to note that the states Φ±(t) retain components

of all of the atomic states. In contrast, the state Φ0(t) is composed entirely from

ground states 1 and 2 and has no contribution of the excited state 3. Moreover,

the state Φ0(t) is a dark state that is effectively decoupled from the excited state 3,

since W(t)Φ0(t) = 0. This decoupling is consequence of destructive interference of

probability amplitude for the transition 1 → 3 with probability amplitude for the

transition 2 → 3. If the medium is prepared in this state, there is no possibility

of excitation by means of the coupling laser fields. This leads to an enhanced

transparency of the medium when the laser fields are close to Raman resonance.

Increased transparency for near resonant coupling fields is common to CPT and

EIT. Preparation into the dark state via optical pumping (via spontaneous decay

from the excited state 3) is one way to trap population into that state. Note once

again that necessary conditions for the CPT and EIT appearance are the existence

of dark states and two-photon Raman resonance of the coupling laser fields.

In a strict sense, EIT relates to the induced transparency of a weak probe field

in addition of a strong pump field, coupling one of the states of the original transi-

tion to a third state. The difference between EIT and CPT is that CPT relates to

two fields of nearly equal Rabi frequencies. EIT and CPT can be found in systems

with different types of level structures having different number of levels [2]. Pos-

sible realizations include pump-probe and Hanle configuration. The later utilizes

single linearly or elliptically polarized laser beam whose circular components couple

Zeeman sublevels of appropriate level manifolds and form Λ scheme(s). Detuning

from the Raman resonance is realized by an external axial magnetic field that lifts

Zeeman degeneracy. The material presented in this thesis deals with Hanle EIT in

multilevel systems in rubidium atoms. Previous exposition of EIT and CPT is very

simplistic, capturing the essence of the phenomena. Full treatment must include

the relaxation effects that are inevitable in atomic systems, like spontaneous emis-

sion. This is naturally carried out using the master equation approach where the

relaxation effects are treated via appropriate Lindblad-form terms [38, 39, 40].
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2.3 INTERACTION OF LASER RADIATION WITH MULTILEVEL ATOMIC SYSTEM

2.3 Interaction of laser radiation with multilevel

atomic system

Hyperfine atomic structure offers the possibility of studying coherent effects in mul-

tilevel systems. Hyperfine levels are degenerate in the absence of a magnetic field.

The Zeeman degeneracy can be intentionally lifted by applying an external magnetic

field, like in Hanle configuration experiments. Hanle EIT (EIA) resonances are usu-

ally related to hyperfine atomic transitions Fg → Fe = Fg − 1 (Fg → Fe = Fg + 1),

where Fg and Fe are angular momentum quantum numbers of the ground- and

excited-state hyperfine levels, respectively. External magnetic field B removes the

degeneracy of Zeeman sublevels of both the ground and the excited hyperfine levels

and favors the choice of quantization axis. Hence, the quantization z axis is chosen

to be parallel to the external magnetic field, i.e. B = Bez. The ground and the

excited hyperfine states are coupled by a linearly polarized laser beam propagating

along the z axis. The laser frequency ω0 is chosen to be resonant with the considered

atomic transition. The theoretical model is based on time-dependent optical Bloch

equations (OBEs) for the density matrix of a moving atom. Under the assumption

of purely radiative relaxation the equations are of the form [41]

dρ̂

dt
= − i

~
[
Ĥatom(B) + V̂int(t), ρ̂

]
+

(
dρ̂

dt

)
SE

, (2.16)

where

Ĥatom(B) =

Fg∑
j=−Fg

~ωgj(B)|gj〉〈gj|+
Fe∑

k=−Fe

~ωek(B)|ek〉〈ek|, (2.17)

is the atomic Hamiltonian related to ground (excited) states |gj〉 ≡ |Fg,mgj = j〉
(|ek〉 ≡ |Fe,mek = k〉) with Zeeman-shifted energies ~ωgj(B) = ~ωg0 + µBgFgBmgj

(~ωek(B) = ~ωe0 + µBgFeBmek). µB is the Bohr magneton and gFg and gFe are the

Landé factors for the appropriate hyperfine levels. Dipole laser-atom interaction is

V̂int(t) = −
Fg∑

j=−Fg

Fe∑
k=−Fe

E(t) · djk(|gj〉〈ek|+ |ek〉〈gj|), (2.18)

where E(t) is the time-dependent laser electric field and djk = 〈gj|d̂|ek〉 is the

atomic electric dipole moment for the transition between the states |gj〉 and |ek〉.
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Spontaneous emission is included through the Lindblad-form term(
dρ̂

dt

)
SE

=
Γ

2

∑
j,k

(
2Âjkρ̂Â

†
jk − Â†

jkÂjkρ̂− ρ̂Â†
jkÂjk

)
, (2.19)

where Γ is the decay rate of each excited sublevel and Âjk are Lindblad operators

corresponding to dipole transitions from the excited- to ground-state manifold. In

the rotating wave approximation the OBEs for the density matrix of a moving atom

have the form [25]

dρgjgk
dt

= i
(
ωgk − ωgj

)
ρgjgk +

i

~

Fe∑
m=−Fe

(
ρ̃gjemV−emgk − V+gjem ρ̃emgk

)
+ (−1)j+k(2Fe + 1)ΓFe→Fg

1∑
q=−1

ρej+qek+q

(
Fe 1 Fg

k+q −q −k

)(
Fe 1 Fg

j+q −q −j

)
,

dρ̃ekgj
dt

=

(
i(ωL + ωgj − ωek)−

Γ

2

)
ρ̃ekgj +

i

~

( Fe∑
m=−Fe

ρekemV−emgj−
Fg∑

`=−Fg

V−ekg`ρg`gj

)
,

dρejek
dt

=
(
i(ωek − ωej)− Γ

)
ρejek +

i

~

Fg∑
`=−Fg

(
ρ̃ejg`V+g`ek − V−ejg` ρ̃g`ek

)
, (2.20)

where (: : :) denotes Wigner 3−j symbol. Diagonal density matrix elements ρgjgj
(ρekek) are populations of gj (ek) Zeeman sublevels, while off-diagonal elements ρgjgk
(ρejek) are Zeeman coherences between gjgk (ejek) sublevels. Fast oscillations of the

optical coherences ρejgk were eliminated by standard substitution ρejgk = ρ̃ejgke
−iω0t.

ωL = ω0(1−v‖/c) is the Doppler-shifted laser frequency seen by a moving atom and

v‖ is the of the atomic velocity component parallel to the laser propagation direction.

ΓFe→Fg is the decay rate from each sublevel of the excited level Fe to one ground

hyperfine level Fg [41]

ΓFe→Fg = (2Je + 1)(2Fg + 1)

{
Jg Je 1

Fe Fg In

}2

Γ, (2.21)

where Jg, Je and In represent the electron and nuclear angular momentum quan-

tum numbers and {: : :} represents Wigner 6− j symbol. According to sum rule∑
F ′
g
ΓFe→F ′

g
= Γ, openness of the atomic system is quantitatively given by the ratio

ΓFe→Fg/Γ. The ratio is less than 1 for open and exactly 1 for closed systems. In
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case of an open system, one could also include the equations for the density ma-

trix elements related to the other ground levels F ′
g 6= Fg. However, those equations

can be safely disregarded since those levels are not coupled by the laser. Because

a Doppler-broadened atomic vapor is considered, inclusion of higher excited levels

into the analysis may become necessary depending on the ratio of the Doppler-width

and excited level hyperfine splittings.

In a general case, the laser electric field is given by

E(r, t) = exE0x(r, t) cos(ω0t− kr) + eyE0y(r, t) cos(ω0t− kr+ ϕyx). (2.22)

For symmetry reasons it is suitable to express the laser electric field in terms of the

spherical basis unit vectors u±1 = (∓ex − iey)/
√
2

E = u1(E1,+e
i(ω0t−kr) + E1,−e

−i(ω0t−kr)) + u−1(E−1,+e
i(ω0t−kr) + E−1,−e

−i(ω0t−kr)),

(2.23)

where we used the notation E±1,± = (∓E0x + ie±iϕyxE0y)/(2
√
2). Terms V±gjek in

OBEs (2.20) are of the form

V±gjek = −µgjek,−1E−1,± − µgjek,1E1,±. (2.24)

Here µgjek,q is the electric dipole matrix element between the ground and excited

states |gj〉 and |ek〉, respectively, and it can be calculated as [41]

µgjek,q =
〈
Fg,mgj |uq · d̂|Fe,mek

〉
=

〈
Jg||d̂||Je

〉
(−1)Jg+In+mgj

√
(2Fg + 1)(2Fe + 1)(2Jg + 1)

×

{
Jg Je 1

Fe Fg In

}(
Fe 1 Fg

mek q −mgj

)
, (2.25)

where
〈
Jg||d̂||Je

〉
is the reduced matrix element of the electric dipole operator

between the appropriate ground and excited states. Due to the relation µ∗
ekgj ,q

=

(−1)qµgjek,−q, the terms V±ekgj are completely determined by the terms V∓gjek .

It is assumed that after colliding with cell walls, atoms reset into an internal

state with equally populated ground magnetic sublevels. Between collisions with cell

walls, rubidium atoms interact only with the axially oriented homogeneous magnetic

field and spatially dependent stationary laser electric field. The magnetic field is
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Figure 2.2: (a) Schematic of atomic trajectories chosen to cover the entire laser
beam cross section (horizontal straight lines). Each trajectory defines certain angle
φ. All trajectories intersecting the circle of radius r contribute to density matrix
ρ(B; r). (b) Two atomic trajectories T1 and T2, related by rotation by the angle α
about the beam axis, are equivalent due to cylindrical symmetry.

taken constant during the atomic transit through the laser beam. Collisions among

Rb atoms are negligible due to very low Rb vapor pressure at room temperature, so

an atom moves through the laser beam with constant velocity v = v‖ + v⊥, where

v‖ and v⊥ are velocity components parallel and perpendicular to laser propagation

direction, respectively. The former affects the longitudinal direction of the atomic

trajectory and Doppler shift of the laser frequency seen by a moving atom, while the

latter determines the transverse direction of the trajectory and the interaction time.

Longitudinal changes of the beam profile are negligible comparing to transverse

ones so that only the transverse direction of the trajectory matters. Therefore,

the explicit dependence on z of all physical quantities related to the Rb vapor is

dropped. From the reference frame of the moving atom, the electric field varies and

the rate of variation depends only on v⊥. Assume that the transverse projection of

the atomic trajectory is given by r⊥(t) = r0⊥ + v⊥t, where r0⊥ is the perpendicular

component of the atom position vector at t = 0. The temporal variation of the laser

electric field seen by the moving atom is given by

E(t) ≡ E(r⊥(t)) = E(r0⊥ + v⊥t), (2.26)

representing the spatial laser electric field variation along the trajectory of the atom

in the laboratory frame. When the beam profile is cylindrical symmetric, the spatial

dependence becomes purely radial dependence.

The observed resonances in EIT and EIA experiments are a probabilistic aver-

age of the contributions of many individual, mutually non-interacting atoms. Ru-
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bidium atoms traverse the laser beam at different trajectories with different veloc-

ities. Maxwell-Boltzmann velocity distribution and diversity of atomic trajectories

through the laser beam are taken into account. The trajectories having different

distances from the laser beam center are chosen so that the beam cross section is

suitably covered (Fig. 2.2(a)). Each trajectory corresponds to a certain azimuthal

angle φv of the atomic velocity v ≡ (v‖, v⊥, φv). Let trajectories T1 and T2, shown

in Fig. 2.2(b), correspond to velocities v1 ≡ (v‖, v⊥, φv1) and v2 ≡ (v‖, v⊥, φv2),

respectively. Owing to the cylindrical symmetry of the laser beam profile, atomic

density matrices ρ(B;v1; r⊥) and ρ(B;v2; r⊥) calculated along those trajectories are

the same up to a rotation by the angle α about the laser beam axis. Therefore, the

trajectories T1 and T2 may be considered as equivalent and it is enough to perform

the actual calculations only along the trajectories like those in Fig. 2.2(a).

The goal is to obtain the atomic ensemble density matrix ρ(B; r) across the beam

cross section. Starting step is to calculate the atomic density matrix ρ(B;v; r⊥)

along a given trajectory for a representative set of atomic velocities. The calculated

density matrices are then averaged over the longitudinal and transverse parts of the

Maxwell-Boltzmann distribution of velocities yielding

ρ(B;φv; r⊥) =

∞∫
0

dv⊥W⊥(v⊥)

∞∫
−∞

dv‖W‖(v‖)ρ(B; v‖, v⊥, φv; r⊥), (2.27)

with

W‖(v‖) =
1

u
√
π
exp

(
−v2‖/u2

)
, W⊥(v⊥) =

2v⊥
u2

exp
(
−v2⊥/u2

)
, (2.28)

where u = (2kBT/mRb)
1/2 is the most probable velocity of Rb atoms at temperature

T . Final step is to average the density matrix ρ(B;φv; r⊥) over all azimuthal angles

φv in the range (0, 2π), i.e. over all equivalent trajectories. Due to the cylindrical

symmetry of the atomic velocity distribution, the resulting density matrix will also

be cylindrical symmetric. Thus, the angular integral appearing in the averaging over

φv can be replaced by an angular integral over space

ρ(B; r) =

2π∫
0

dφv

2π
ρ(B;φv; r⊥) =

2π∫
0

dφ

2π
ρ(B;φv = 0; r cosφ, r sinφ), (2.29)
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where φv = 0 is chosen only for convenience and does not influence the result.

The effects of the laser propagation along the cell and induced atomic polarization

of the Rb vapor are included using the following approximations. The Rb vapor

ensemble density matrix ρ(B; r) and polarization P are first computed assuming

the constant value of the electric field E along the z direction of laser propagation

within the cell. The polarization of Rb vapor is obtained from the ensemble density

matrix

P(B; r) = n(T )Tr(ρ(B; r) d̂) = n(T )e−i(ω0t−kr)×

×
Fg∑

j=−Fg

Fe∑
k=−Fe

ρ̃ekgj(B; r)

(
µgjek,−1 − µgjek,1√

2
ex + i

µgjek,−1 + µgjek,1√
2

ey

)
+ c.c.,

(2.30)

where the 87Rb concentration at temperature T is given by [42]

log10 n(T ) = log10

(
0.2783 · 133.322

kBT

)
− 2.881 + 4.857− 4215

T
. (2.31)

Due to trace operation including dipole operator d̂, the polarization P depends

only on the optical coherences ρ̃ekgj between the excited and the ground Zeeman

sublevels. Using the computed Rb polarization, the change of the electric field due

to propagation of the laser through the Rb vapor is calculated. Let E(B; r) and

P(B; r) denote complex slowly varying envelopes of the electric field and the polar-

ization, respectively, defined by E(B; r, t) = Re(E(B; r)e−i(ω0t−kr)) and P(B; r, t) =

Re(P(B; r)e−i(ω0t−kr)). Assuming that the change of electric field along the length

L of the Rb cell is small enough, the exact relation for the slowly varying envelopes

∂E(B; r, z)

∂z
=

iω0

2ε0c
P(B; r, z) (2.32)

in the first approximation takes the form

E(B; r, z = L) = E(B; r, z = 0) +
iω0

2ε0c
P(B; r)L, (2.33)

where ε0 is the vacuum dielectric constant. The laser electric field at the entrance

to the Rb cell is E(B; r, z = 0), while the transmitted electric field is E(B; r, z = L).

In the experiments, the Hanle resonances are obtained by measuring the trans-
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2.3 INTERACTION OF LASER RADIATION WITH MULTILEVEL ATOMIC SYSTEM

mitted power of the whole laser beam or of some small circular segment of the laser

beam cross section. Local intensity of the laser beam is given by

I(r) =
cε0
2
|E(r)|2 = cε0

2
|E(r)|2. (2.34)

Hence, the total transmitted power of the laser beam is

Ptot(B) =

∞∫
0

I(B; r, z = L)2πrdr = πcε0

∞∫
0

|E(B; r, z = L)|2rdr. (2.35)

The transmitted power in the case of detecting the light from the small circular

segment of the laser beam cross section, centered at the distance ` from the beam

axis and having the radius a, is

Pseg(B) =
cε0
2

2π∫
0

a∫
0

|E(B;R(r, φ), z = L)|2rdrdφ, (2.36)

where R(r, φ) = (`2 − 2`r cosφ+ r2)
1/2

. The transmitted power of Eqs. (2.35) and

(2.36) is used in the calculations of Hanle EIT and EIA resonances that are compared

with the experiment.

The OBEs (2.20) represent a set of ordinary differential equations (ODEs). In or-

der to solve these equations, a Fortran program is developed that uses BiM code [43].

BiM code implements a variable order-variable stepsize Blended Implicit Methods

for (stiff) initial value problems for ODEs.
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3. Influence of laser intensity and beam
profile on Hanle resonances

All coherent phenomena strongly depend on the intensity of the applied laser field.

Laser intensity dependence of EIT line-shapes has been studied extensively. It is

shown that EIT line-widths at lower intensities have a linear dependence on the laser

electric field, i.e. laser Rabi frequency, and a linear dependence on laser intensity at

higher intensities [44, 45, 46]. The EIA line-widths, in contrast, have a maximum

near the saturation limit [47]. Theoretical models usually assume a Λ atomic scheme,

a steady state solution of the optical Bloch equations, and single values for the

relaxation rates of the populations and coherences between the ground hyperfine

levels. The relaxation rates for coherences are constants determined either by the

diffusion rate (buffer gas cells) or by the reciprocal of the atom transit time through

the laser beam (vacuum cells).

The term “laser intensity” is commonly used in the sense of an average beam

intensity (laser power divided by the beam area), regardless of the laser beam profile

used in the study. Since coherent phenomena are generally nonlinear, they depend

strongly not only on the average beam intensity but also on the radial intensity dis-

tribution of the used laser beam. The typical laser beam profile used in experiments

is Gaussian, while theoretical descriptions commonly assume a Π-shaped beam pro-

file. The influence of different laser beam profiles has been studied only for EIT

line-shapes in a few papers [26, 28, 27, 25, 29].

In the sequel, the presented theoretical model will be applied to the investigation

of Hanle EIT and EIA resonances in 87Rb vapor vacuum cell obtained using Gaussian

and Π laser beam profiles. For the interaction of the Gaussian or Π laser beam

with alkali-metal atom vapor, different effects such as Ramsey and Dicke narrowing,

transit time, and Doppler broadening are examined either in vacuum [24, 48] or in

buffer gas cells [49, 50, 51, 52]. The differences in EIT line shapes for Gaussian and

Π laser beams were presented in [26, 27, 25] by considering only the entire laser
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3.1 INFLUENCE OF THE LASER BEAM PROFILE ON THE TRANSIENT ATOMIC
EVOLUTION

Figure 3.1: Zeeman sublevel scheme in 87Rb at the D1 line. The solid lines denote
coupling with σ+ and σ− components of linearly polarized laser light. Dashed lines
represent spontaneous emission.

beam contribution without focusing on the details of laser-atom interaction within

the laser beam. However, different parts of the laser beam cross section, after

passing through the alkali-metal vapor cell, carry different information about the

atomic state and should yield different EIT and EIA resonances. The contribution

of different segments of the Gaussian laser beam to the dark resonance line-shapes

in a dense 4He vapor was presented in Ref. [28] where deviation of overall resonance

profile from pure Lorentzian shape is shown and attributed to observed spatial

variation of line-shapes for different positions in the Gaussian laser beam. Therefore,

it is important to take into account the real laser beam profile for proper modeling

and analysis of coherent effects in alkali-metal vapors. Subsequent sections will

present the details of the work published in [53, 54, 55].

3.1 Influence of the laser beam profile on the tran-

sient atomic evolution

This section illustrates that the transient evolution of the atoms passing through

the laser beam is significantly affected by the beam intensity profile. Considered

atomic transition is Fg = 2 → Fe = 1 from D1 line of 87Rb. The transition is open

because excited states can decay to another Fg = 1 ground state level. The energy

level diagram given in Fig. 3.1 shows hyperfine levels either coupled by the linearly

polarized laser light or populated due to spontaneous emission.

In what follows, the dependence of the laser intensity on the radial distance r
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3.1 INFLUENCE OF THE LASER BEAM PROFILE ON THE TRANSIENT ATOMIC
EVOLUTION

Figure 3.2: Π-shaped (blue curve) and Gaussian (green curve) intensity profiles of
the laser beam of radius r0 and unit average beam intensity.

from the beam axis for the Gaussian profile is

I(r) = 2Ī exp
(
−2r2/r20

)
, (3.1)

where r0 is 1/e2 beam radius and Ī is average beam intensity (total laser power

divided by πr20). A Π-shaped profile of the same intensity and radius was modeled

using the equation

I(r) = Īa
[
1 + erf

(
p(r − r0)

)]2
, (3.2)

where a is the normalization constant, p is a positive parameter affecting the steep-

ness of the profile near r = r0 and erf( ) is the error function. The two beam profiles

are illustrated in Fig. 3.2.

Figure 3.3 presents the spatial variation of the total population of the ground and

the excited hyperfine states for the atom with specific values of the transverse v⊥ and

of the longitudinal v‖ velocity components, for two laser intensities. These results

were obtained for atoms traversing the laser beam along its diameter (φ = 0), and

for an axial magnetic field B = 2 µT. As the dashed lines indicate, the left sides are

for the Π while the right sides are for the Gaussian transverse laser beam profile. It is

evident that the atomic population of excited and ground states vary differently, both

qualitatively and quantitatively, along the two laser beam profiles. After entering the

laser beam, some fraction of the excited atoms decays into the uncoupled hyperfine
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3.1 INFLUENCE OF THE LASER BEAM PROFILE ON THE TRANSIENT ATOMIC
EVOLUTION

Figure 3.3: Calculated spatial dependence of the total Zeeman sublevel populations
of the ground Fg = 2 (two upper curves in each figure) and the excited Fe = 1 (two
lower curves in each figure) hyperfine levels for a single atom entering the laser beam
from the left. (a) and (b) show the effects of the laser intensity for Ī = 0.5 mW/cm2

(red lines) and Ī = 5 mW/cm2 (blue lines). Results are for v⊥ = 180 m/s, v‖ = 0
m/s and B = 2 µT. Beam profiles are shown in dashed lines and have r0 = 1.5 mm.
Excited level populations are multiplied by 20 in the case of a Π and by 40 in the
case of a Gaussian profile.

level Fg = 1, resulting in loss of population from the transition Fg = 2 → Fe = 1.

The atoms decaying back to the Fg = 2 hyperfine level can populate two dark states

composed of Zeeman ground state sublevels |Fg = 2,mg = m〉 ≡ |2,m〉g. In the case

of linearly polarized laser light these dark states are

|DS1〉 =
1√
2
|2,−1〉g +

1√
2
|2, 1〉g, (3.3a)

|DS2〉 =
1

2
√
2
|2,−2〉g +

√
3

2
|2, 0〉g +

1

2
√
2
|2, 2〉g. (3.3b)

During evolution in non-zero magnetic field B, the phase of each state |2,m〉g os-

cillates with frequency ∝ m ·B, so that different Zeeman states will acquire different

phases. This would alter relative phases between the states |2,m〉g in Eqns. (3.3)

and deteriorate the dark states. Thus, the dark states are ideally non-coupled by

the laser only when there is no magnetic field. However, when the magnetic field is

sufficiently small and the laser intensity is high enough, a quasi-steady state can be

reached, as can be seen in Fig. 3.3. In that case one part of the initial ground state

population is pumped into an uncoupled hyperfine level Fg = 1 while the rest is in an

almost non-coupled dark states. Because the rate of this population redistribution

is higher for more intense laser light, the quasi-steady state is reached more rapidly
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3.1 INFLUENCE OF THE LASER BEAM PROFILE ON THE TRANSIENT ATOMIC
EVOLUTION

Figure 3.4: Calculated spatial dependence of the total Zeeman sublevel populations
of the ground Fg = 2 (two upper curves in each figure) and the excited Fe = 1 (two
lower curves in each figure) hyperfine levels for a single atom entering the laser beam
from the left. (a) and (b) show the effects of the transverse velocity component for
v⊥ = 40 m/s (blue lines) and v⊥ = 180 m/s (red lines). Results are for v‖ = 0
m/s, B = 2 µT, Ī = 0.5 mW/cm2 and r0 = 1.5 mm. Excited level populations are
multiplied by 20 in the case of a Π and by 40 in the case of a Gaussian profile.

for larger laser intensities. At B = 2 µT the Rb atoms can be excited from the dark

states and the populations vary continuously while an atom is illuminated by the

laser light. Changes in the populations as an atom enters the laser beam are much

more rapid for Π-shaped beam profile as a consequence of steep intensity increase.

In a Gaussian beam, atoms are at first slowly pumped out from the Fg = 2 level,

resulting in the total excited population peak delay until the atom reaches higher

light intensities of the Gaussian beam. Also, optical pumping is lower and the total

excited population is higher for faster atoms, as shown in Fig. 3.4. The influence

of longitudinal velocity component is presented in Fig. 3.5. Due to Doppler detun-

ing, the atoms having nonzero longitudinal velocity interact with non-resonant laser

light. Detuning from the exact resonance reduces the total excited state population

and lowers the optical pumping. In a Gaussian beam, the total excited population

peak is shifted toward more intense central parts of the Gaussian beam. It is ap-

parent that the atomic transient evolution is influenced by the atomic motion all

the time as the atom traverses the laser beam. Additional differences come from

different velocities of the traversing atoms, i.e. from different time variation of the

laser electric field as seen by the moving atom. Hence, in order to have a proper

description of atomic interaction with the laser beam of some radial profile, it is

mandatory to deal with time-dependent OBEs.
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3.2 EXPERIMENTAL SETUP

Figure 3.5: Calculated spatial dependence of the total Zeeman sublevel populations
of the ground Fg = 2 (two upper curves in each figure) and the excited Fe = 1 (two
lower curves in each figure) hyperfine levels for a single atom entering the laser beam
from the left. (a) and (b) show the effects of the longitudinal velocity component
for v‖ = 0 m/s (red lines) and v‖ = 5 m/s (blue lines). Results are for v⊥ = 180
m/s, B = 2 µT, Ī = 0.5 mW/cm2 and r0 = 1.5 mm. Excited level populations are
multiplied by 20 in the case of a Π and by 40 in the case of a Gaussian profile.

The following sections will present the theoretical results for Hanle EIT and EIA

resonances for different laser beam profiles. Theoretical results will be compared

with actual measurements done by the colleagues Aleksandar Krmpot, Senka Ćuk

and Stanko Nikolić, members of the Photonics Center of the Institute of Physics,

University of Belgrade.

3.2 Experimental setup

This section gives an outline of the experimental setup shown in Fig. 3.6. The exter-

nal cavity diode laser is frequency locked to the appropriate transition of Rb. Laser

locking is performed in an auxiliary vacuum Rb cell using the Doppler-free dichroic

atomic vapor laser lock (DDAVLL) method [56, 57]. The variable neutral density

filter is used for laser power adjustments. Single-mode fiber was used to provide

the Gaussian laser beam. After passing through the Glan-Thompson polarizer, the

laser beam becomes linearly polarized.

For experiments with the Gaussian profile, the laser beam is expanded to 3 mm in

diameter. Laser beam diameters are determined from the 1/e2 value. The Π-shaped

laser beam profile was obtained after expanding the Gaussian laser beam to 20 mm

in diameter and then extracting its central part via the circular aperture placed on
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3.2 EXPERIMENTAL SETUP

Figure 3.6: (a) Experimental setup: ECDL, external cavity diode laser; OI, optical
isolator; DDAVLL, Doppler-free dichroic atomic vapor laser lock; VNDF, variable
neutral density filter; SMF, single-mode fiber; FC, fiber collimator; P, polarizer;
BE, beam expander; PD, photodiode. Moving the aperture on the translation stage
allows only a selected part of the laser beam to reach the detector, while the rest of
the laser beam is blocked. Π-shaped beam profiles were recorded by a beam profiler
placed at 3 cm (b) and 30 cm (c) from the 3-mm circular aperture. (b) The dashed
(red) curve is the profile of a Gaussian laser beam of the same power and diameter
as the Π-shaped beam.
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3.2 EXPERIMENTAL SETUP

the entrance window of the cell. Diffraction affects the beam shape in the Rb cell

and one has to settle for an approximation of the Π shape of the laser beam. After

experimenting with different diameters of the expanded Gaussian laser beam, sizes

of apertures, and thicknesses of the foil used for the apertures, Π-shaped laser beam

whose radial intensity profiles presented in Figs. 3.6(b) and 3.6(c) is obtained. The

beam profiles measured by the beam profiler are 3 and 30 cm away from the 3-mm

aperture on 0.1-mm tick foil. The first profile is at a distance equal to the distance

between the aperture and the mid section of the Rb cell. This profile is referred to

as Π-shaped throughout the thesis. The beam profile at 30 cm from the aperture

is used to show relatively small changes in the profile with distance and to justify

use of the Π-shaped profile in the theoretical model. Together with the Π-shaped

laser beam profile, the profile of the Gaussian laser beam is also presented in Fig.

3.6(b). The two beam profiles shown together have the same power and the same

diameter. The laser beam passes through the 6-cm-long vacuum Rb cell containing

a natural abundance of rubidium isotopes. The cell is placed in the solenoid used

for scanning the axial magnetic field. The cell and the solenoid are placed inside

triple-layered µ-metal cylinders to eliminate Earth’s and stray magnetic fields. In

the parts of the experiment studying the effects of the laser beam profile on the

intensity dependence of whole-laser-beam EIT (EIA), the entire transmitted laser

beam was detected while scanning the external magnetic field. To measure Hanle

EIT (EIA) from only small parts of the laser beam, a movable aperture 0.5 mm

in diameter is placed in front of the large detection surface photodiode (area of 80

mm2). By moving the aperture with the fine translation stage only light from a

small segment of transmitted laser beam is allowed to reach the photodiode. The

signal obtained from the photodiode while scanning the external magnetic field is

recorded by the digital oscilloscope and transferred to the computer.
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3.3 HANLE EIT RESONANCES FROM SELECTED SEGMENTS OF THE GAUSSIAN LASER
BEAM CROSS SECTION

3.3 Hanle EIT resonances from selected segments

of the Gaussian laser beam cross section

Typical transverse laser beam profile in experiments studying EIT is Gaussian. The

intensities in the central parts and in the wings of the Gaussian laser beam are very

different. Nevertheless, the order of magnitude lower intensity in the wings can still

significantly affect the atomic coherent evolution. The lifetime of alkali-metal atomic

coherence in vacuum cell is longer then the atom transit time through the laser beam.

Thus, the light in the wings can “probe” the induced coherence of the atoms coming

from central parts of the Gaussian laser beam leading to Ramsey-like interference.

The reversed order of events, interaction of atoms with the light first in the beam

wings and afterward in the intense central parts of the laser beam, will not reveal

such effect of the coherently prepared atomic state due to overwhelming influence

of the intense light at the center of the Gaussian beam. Therefore, different Hanle

EIT resonances should be obtained from different parts of the Gaussian laser beam.

This section refers to the first confirmation that Ramsey-like repeated excitation

of atoms within the same laser beam significantly affects the resonance line-shapes

observed from the segments of the Gaussian laser beam cross section [53].

The contribution of different segments of the Gaussian laser beam to the EIT

resonance line-shapes in a dense 4He vapor was presented in [28]. The results of

Ref. [28] show deviation of overall resonance profile from pure Lorentzian shape

attributed to observed spatial variation of line-shapes for different positions in the

Gaussian laser beam. However, no Ramsey-like repeated excitation of atoms was

found. This will be discussed later. There are several papers showing significance of

the repeated interaction of atoms by separated, in space and/or time, laser beams

tuned to Raman resonance of the atomic transitions. Narrowing of EIT resonances

in cells with anti-relaxation coatings [23] and in buffer gas cells [49, 50] is attributed

to repeated excitation by the laser beam after the atoms spend some time in the

“dark” part of the cell, not illuminated by the laser light.

This section presents the study of EIT resonances originating from different parts

of the Gaussian laser beam cross section, after the whole laser beam passes through

the Rb vapor cell. The investigation was performed on 87Rb atoms at D1 line

transition Fg = 2 → Fe = 1 in the Hanle configuration. Hanle resonance line-shapes

were calculated using the model introduced in the section 2.3, i.e. by including the

effects of the atomic polarization, the time evolution and the interaction of the
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Figure 3.7: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small parts of the Gaussian beam. The green, the red and the blue curves
are for r = 0 mm, 0.75 mm and 1.5 mm, respectively, where r is the radial distance
of the aperture from the beam center. The beam diameter is 3 mm and the total
intensity is 0.5 mW/cm2. Theoretical results were normalized to the experimental
results such that peak values at r = 0 mm are equal.

atomic state with light in the Gaussian laser beam. The theoretical description

distinguish the contribution to the EIT resonances from the atoms coming to the

wings from central parts of the laser beam and from the outside of the beam.

The curves in Fig. 3.7 represent theoretical and experimental resonances obtained

for different positions of the aperture along the beam diameter, with r = 0 mm

referring to the laser beam center. The laser intensity is 0.5 mW/cm2. There

is a good agreement between the theory and the experiment. Figure 3.7 reveals

significant differences in line-shapes, widths and amplitudes of the resonances at

different positions within the beam. The Hanle EIT resonances from the wings

of the beam show the two transmission minima at certain values of the magnetic

field. The origin of such line-shape is in the interaction of light in the wings of

the laser beam with the coherently prepared atoms coming from the central part of

the Gaussian beam. Namely, during the interaction with the strong laser electric

field near the center of the Gaussian beam an atom is coherently prepared into the

dark state. The dark state is coherent superposition of Zeeman sublevels of Fg = 2
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ground level and is ideally non-coupled to the laser light only in the absence of

external magnetic field. Zeeman sublevel populations and coherences are subjected

to various relaxation processes. The transit time of the atoms through the laser

beam is much shorter than the relaxation times of the ground state coherences.

During the time that atom spends in the laser beam the coherences vary due to

competitive effects of the laser excitation and the external magnetic field. The

laser continuously forces the atomic coherence to be in-phase with the electric field.

The external magnetic field B causes oscillations of the coherence phase at Larmor

frequency that is proportional to B. Such oscillations can turn the dark atomic

state into the bright state and vice versa. When atoms move away from the central

to the outer parts of the beam (outgoing atoms), the oscillatory behavior prevails

when the laser field is low enough. Thenceforth the phase of the atomic coherence

oscillates and the atoms are cycling between dark and bright states. The outer

section of the Gaussian beam, where this cycling occurs, is the interference region.

Aside from outgoing atoms there are also atoms coming into the interference region

from the outside of the beam (incoming atoms). Note that the incoming atoms

are not coherently prepared and do not contribute to the interference. Consider an

outgoing atom from the certain velocity class traversing the interference region along

the certain trajectory. While passing through the laser beam the atom experiences

nearly constant magnetic field due to its slow variation in the experiment. The

phase shift of the atomic coherence at the point r along this trajectory depends on

the value of the magnetic field B. If the coherence at r is in-phase with the laser

electric field, the atom is in the dark state and the transparency at r is increased.

It is clear that B = 0 fulfills this condition since the atom is continuously in the

dark state regardless of the location in the interference region. If the magnetic field

is such that the difference between the phases of the atomic coherence and the laser

field equals to π/2 + nπ (n ∈ Z) the atom is in the bright state, and the minima

of transparency at r occur. These minima and maxima of the transparency are

interference fringes. The atoms inside the cell move with different velocities and

traverse different trajectories with respect to the laser beam. The averaging over

the velocity and trajectory distributions results in the lowering of the amplitude and

in washing out the higher-than-first order interference fringes in the transmission

signal.

Previous considerations are supported by the results given in Fig. 3.8. The results

are shown the magnetic field B = 10 µT at which transmission minima appear in
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Figure 3.8: Change of the argument of atomic coherence ρg−1,g1 during atomic pas-
sage through the 3-mm-wide Gaussian laser beam at constant magnetic field. The
dashed lines denote the positions along the beam radius where the Hanle EIT reso-
nances for the given laser intensities exhibit very pronounced transmission minima.
The transmission minima at the Hanle EIT resonances appear in the wings of the
Gaussian beam cross section when arg ρg−1,g1 , i.e., the atomic phase is equal to π/2.
The magnetic field value 10 µT is chosen because the transmission minima in the
Hanle EIT resonances appear exactly at this value. The beam profile is presented
by the gray line.

Hanle EIT resonances. Since the laser electric field tends to keep the phase of the

coherence constant while the magnetic field tends to change the phase, when both

magnetic and electric field are present, the phase of atomic coherence depends on

the magnitudes of these two fields. The atom is coherently prepared and the phase is

kept fixed by the laser field in the central parts of the Gaussian beam. In the wings

of the Gaussian beam the phase value of the same atomic coherence depends on

the local laser intensity. When the atomic phase reaches π/2, i.e., the atomic state

becomes bright, two transmission minima appear in Hanle EIT resonances obtained

in the wings of the Gaussian laser beam. Naturally, the distance from the beam

center where that happens increases with the laser intensity, as can be seen from

the curves in Fig. 3.8.

Figure 3.9 shows Hanle EIT resonances calculated by considering outgoing, in-

coming and both groups of atoms. The results are given for two distances from the
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Figure 3.9: Calculated contribution of outgoing (green), incoming (red) and both
outgoing and incoming (blue) atoms to the Hanle EIT resonances for two distances
from the laser beam center: r = 1.00 mm (a) and r = 1.75 mm (b). The laser
intensity is 3 mW/cm2.

laser beam center, r = 1 mm (Fig. 3.9(a)) and r = 1.75 mm (Fig. 3.9(b)). It is

evident that only outgoing atoms are responsible for the appearance of the two side-

band transmission minima. Effect of outgoing atoms on the resonance line-shape, at

certain distance r, depends on the laser intensity. Results in Fig. 3.9 show that for 3

mW/cm2, the contribution of outgoing atoms to Hanle EIT resonances is negligible

at the distance r = 1 mm, while it is very strong at r = 1.75 mm. The physical

mechanism used in the above explanation of these results is the same as in Ramsey

interference. The resulting Hanle line-shapes are similar to those obtained due to

Ramsey interference in separated pump and probe laser fields in vacuum gas cells

[58]. In this case, the extended low intensity wings of the Gaussian laser beam play

the role of the probe laser beam.

Figure 3.10 shows theoretical (a) and experimental (b) behavior of the Hanle EIT

line-widths as a function of the aperture radial position r. There are two reasons

for narrowing of the Hanle EIT resonances in the wings of the Gaussian laser beam

profile. The first is the lower power broadening in the outer parts of the laser beam.

Another reason is the Ramsey-like narrowing caused by the aforementioned physical
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Figure 3.10: Theoretical (a) and experimental (b) Hanle EIT line-widths for the
different positions r of the aperture along the laser beam diameter. The blue, the
red, and the green curves are for the intensities I = 15 mW/cm2, 2 mW/cm2, and 0.5
mW/cm2, respectively. The dashed bars in (a) represent the Hanle EIT line-widths
obtained by detecting the entire laser beam.

processes. The line narrowing at larger radial distances becomes more prominent as

the total laser intensity increases. The dashed bars in (a) denote the line-widths of

the Hanle EIT resonances for the three laser beam intensities when the whole laser

beam is detected. At this point we find suitable to compare with results of Ref.

[28]. Line-shape Rabi power broadening corresponding to local intensities within

the Gaussian beam, was also observed in [28], but without altering local resonance

Lorentzian shape due to interference effects. One possible reason for the absence of

the interference effects in such experiment is in the used experimental conditions.

Namely, the mean free path of 4He atoms at the pressure of 1.5 Torr is of the order

0.1 mm, while used laser beam diameter is 6 mm. Motion of 4He atoms is diffusive

so that they are effectively localized and cannot freely traverse the laser beam as

in our case. Therefore, the interference effects could not occur in the experiment

performed in Ref. [28] due to frequent atom-atom collisions.
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3.4 Hanle EIT resonances from selected segments

of the Π-shaped laser beam cross section

This section contains the study of time and space evolution of atomic states as the

Rb atoms traverse the Π-shaped laser beam, i.e., laser electric field of nearly constant

intensity. Such studies were performed by obtaining EIT line shapes from different

circular segments of the laser beam cross section, much smaller than the laser beam

diameter, after the entire beam had already passed through the Rb cell. Hanle

configuration with the laser locked to the Fg = 2 → Fe = 1 hyperfine transition of

the D1 line in the 87Rb isotope in the vacuum vapor cell is used. This is similar

to the examinations presented in the previous section. Due to interaction with

a laser electric field having different distributions in the Gaussian and Π-shaped

beams, the atomic state develops differently in the presence of a small external

magnetic field. Narrowing of the Hanle EIT in the wings of the Gaussian laser

beam was attributed to the interference of the laser light and coherently prepared

atoms coming from the central part of the beam. The narrowing is accompanied

by the appearance of Ramsey-like transmission minima in Hanle EIT line shapes

detected in the Gaussian beam wings. Therefore, it is expected that examination

of EIT line shapes obtained in different segments of Π laser beam cross section

should reveal some details about the transient evolution of interacting atoms. It

can also help in understanding differences in line-widths and amplitudes of EIT

resonances obtained using two laser beam profiles and reported in Refs. [25, 26, 27].

Partial Hanle EIT resonances from different segments of the Π laser beam were not

thoroughly investigated. The significance of using the Π profile is in the elimination

of the effects due to transverse variation of the laser intensity, providing conditions

for more direct insight into the laser-atom interaction. Theoretical calculations of

the spatial dependence of EIT line shapes along the laser beam profile are compared

with the experimental results. The calculations are based on time-dependent optical

Bloch equations model presented in the section 2.3. It unveils the influence of the

optical pumping into the uncoupled ground-state hyperfine level on the obtained

Hanle EIT resonance line-shapes.

The actual beam profile used in the experiment is shown in Fig. 3.11. The beam

profiles obtained at 30 cm from the aperture are given to show relatively small

changes in the profile with distance and to justify use of the Π-shaped profile in

the calculations. Theoretical and experimental Hanle EIT resonances obtained at
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Figure 3.11: Two Π-shaped beam profiles recorded by a beam profiler placed at
different distances from the circular aperture: at 3 cm (a) and 30 cm (b) for the
3-mm profile, and at 3 cm (c) and 30 cm (d) for the 6-mm profile.

different positions of the small aperture along the beam diameter are presented in

Figs. 3.12(a) and 3.12(b), respectively. Hereafter r = 0 mm refers to the center of

the laser beam cross section. The beam diameter is 3 mm and overall intensity is

4 mW/cm2. Results in Fig. 3.12 show significant differences in shapes, widths, and

amplitudes of resonances obtained at different positions within the cross section of

the Π-profiled laser beam. The Hanle EIT resonances originating from the central

parts of the Π beam cross section exhibit two transmission minima next to the

central maximum of the EIT resonance. Additionally, resonances in the center of

the laser beam cross section are narrower than those originating from the outer

parts of the beam. These results are reversed to the results obtained from different
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Figure 3.12: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small segments of the Π laser beam cross section. Green, red, blue, and
orange curves are for r = 0 mm, 0.75 mm, 1.0 mm and 1.5 mm, from bottom to
top, respectively, where r is the radial distance of the small aperture from the beam
center. The beam diameter is 3 mm and the total intensity is 4 mW/cm2. The
theoretical results were normalized to the experimental results at r = 0 mm.

segments of a Gaussian laser beam cross section presented in the previous section.

In the latter case two minima appear, and the resonances are narrower, when the

small aperture is placed at the wings of the Gaussian beam cross section.

Neglecting small intensity variations of the Π-shaped laser beam (see Fig. 3.11)

atoms interact with a constant electric field of the laser in the presence of constant

external magnetic field during the passage through the laser beam. The evolution of

the atomic state under these conditions is different than in the case of the Gaussian

beam. In Fig. 3.13 we present a calculated variation of the total population of the

excited state Fe = 1 as a function of distance from the entrance in the laser beam

(leftmost), considering atoms with the most probable radial velocity of 180 m/s at

room temperature (300 K). When an atom enters the laser beam at zero magnetic

field (B = 0), it starts to absorb photons and the population of the excited state, i.e.,

the sum of the populations of all excited-state Zeeman sublevels, increases (red thick

line in Fig. 3.13). Shortly after entering the laser beam, atoms are prepared into
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Figure 3.13: Calculated total population
∑
ρei,ei of all Zeeman sublevels of the

Fe = 1 excited level at different magnetic fields as a function of position along the
3-mm beam diameter of the Π-shaped laser beam. The curves corresponding to the
magnetic fields 0−100 µT from the legend appear from bottom to top, respectively,
at r = −1.25 mm. The beam intensity is 4 mW/cm2. The atomic velocity is 180
m/s. The thin gray line represents the cross section of the laser beam with an
arbitrary intensity unit. The atom enters the beam from the left.

the dark state and do not absorb photons afterward yielding maximal transmission.

At small magnetic fields the preparation of atoms into the dark state is less efficient

and there is certain probability for photon absorption during the entire interaction

of the atom and the laser light. Thus, the excited-state population decreases less

rapidly than for B = 0 as atoms move through the laser beam and transmission

decreases. As Fig. 3.13 shows, the atomic total excited-state population, for atoms

near the laser beam center, is largest for a magnetic field at about 30 µT (dark

yellow thick line) when transmission reaches minimum. At larger magnetic fields

(e.g., 75 µT, orange thick line), pumping into the uncoupled Fg = 1 hyperfine

level becomes considerable and transmission noticeably increases. The observed

behavior of the excited-state populations and resulting laser transmission are due to

the fact that the rates of pumping into the dark state and into the uncoupled level

depend oppositely on the external magnetic field. Therefore, the appearance of two

transmission minima at about 30 µT is a joint effect of preparation of atoms into

the dark state and optical pumping into the uncoupled ground hyperfine level.
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Figure 3.14: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small segments of the Π laser beam cross section at four distances from
the beam center: 0, 1.0, 2.0, and 2.75 mm (from bottom to top, respectively). The
beam diameter is 6 mm and the total laser intensity is 4 mW/cm2. The theoretical
results were normalized to the experimental results at r = 0 mm. Note that the
curves for r = 0 and r = 1.0 mm almost overlap.

Behavior of the excited-level population at different magnetic fields explains the

origin of the two symmetrically placed, with respect to the central transmission

peak, transmission minima present in the Hanle EIT resonances recorded near the

center of the laser beam. For a given laser intensity, atoms have to spend a certain

time in the laser beam before these minima emerge in the Hanle EIT curves. It turns

out that if the laser beam has a 3 mm diameter, for most atoms this shape of the

EIT would only be observed in the laser beam center. If one considers a laser beam

with a diameter lager than 3 mm, under the same experimental conditions (the same

cell temperature, i.e., the most probable velocity, and the same laser intensity), it is

expected that optical pumping would significantly affect EIT line shapes at the same

distances of ∼ 1.5 mm from the edge of the beam. Consequently, with the larger

beam diameter, transmission minima should occur in the wider domain around the

beam center. The curves in Fig. 3.14 present theoretical and experimental Hanle

EIT resonances obtained at different positions of the small aperture along the 6-mm
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Figure 3.15: Calculated total population
∑
ρei,ei of all Zeeman sublevels of the

Fe = 1 excited level at different magnetic fields as a function of position along the
6-mm beam diameter of the Π-shaped laser beam. The curves corresponding to the
magnetic fields 0−100 µT from the legend appear from bottom to top, respectively,
at r = −2.75 mm. The beam intensity is 4 mW/cm2. The atomic velocity is the
most probable velocity at room temperature (180 m/s). The thin gray line represents
the laser beam cross section profile. The atom enters the beam from the left.

diameter Π-shaped laser beam. Overall intensity is similar as before, 4 mW/cm2.

Now, transmission minima are present in Hanle EIT resonances obtained not only

in the center of the laser beam, but also up to a certain distance away from the

center. Moreover, the resonances obtained up to that distance are almost the same,

as in the case of overlapping resonances for r = 0 and r = 1 mm in Fig. 3.14.

The explanation for the appearance of transmission minima in Hanle EIT line

shapes in the case of a 6-mm-diameter laser beam could be made tracing the behavior

of the total excited state populations given in Fig. 3.15 and applying the same

logic as in Fig. 3.13, i.e., for the 3-mm beam diameter. It is apparent from Figs.

3.13 and 3.15 that under the same experimental conditions, the distance from the

beam edge where the total excited-state population at B = 75 µT (orange thick

line) falls down to zero is the same in both cases, approximately 1.5 mm. For the

3-mm beam diameter this point coincides with the location of the beam center,

while for the 6-mm-diameter beam this location is, of course, away from the beam

center. Therefore, for the 6-mm-diameter beam, transmission minima in Hanle EIT
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Figure 3.16: Calculated Hanle EIT resonances obtained from the small segments of
the Π laser beam cross section of (a) 3 mm and (b) 6 mm diameter. It is taken
that the transition Fg = 2 → Fe = 1 is closed. The resonances almost completely
overlap and can be barely distinguished only near B = 0 (see insets). The curves
corresponding to decreasing radial distances from the legends appear from bottom
to top, respectively. The laser intensity is 4 mW/cm2. Note a different scale for the
magnetic field than in Figs. 3.12 and 3.14 and broader resonances than in the case
of the open transition.

resonances at around B = 30 µT will occur as long as EIT resonances are taken

from the central region of 3 mm in diameter.

To further clarify the influence of optical pumping on Hanle EIT line shapes

the calculations for artificially closed transition Fg = 2 → Fe = 1 were performed,

i.e., the optical pumping was eliminated. Calculated Hanle EIT resonances, for

the laser intensity of 4 mW/cm2, are shown in Fig. 3.16. Obtained Hanle EIT

line shapes are broader than for the open system because there is no population-

loss-induced narrowing [59, 60]. The absence of population loss also yields the

same line shapes regardless of the distance from the beam center. There are no

transmission minima in line shapes obtained at the central regions of the beam

cross section. In this case, a slight increase of transmission at very large magnetic

fields (∼ 200 µT) is due to the broad single-photon Hanle background on which

the EIT resonances are superimposed. Next, we investigate the influence of the
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Figure 3.17: Theoretical (a) and experimental (b) Hanle EIT resonances obtained
from the small segments of the Π laser beam cross section at four distances r from the
beam center. The resonances are nearly identical except for the resonance obtained
close to rim of the beam (pointed to with the arrow). The beam diameter is 6 mm
and the total intensity is 0.5 mW/cm2. Note that the magnetic field range is smaller
than in Figs. 3.12 and 3.14.

overall laser intensity on line shapes of the EIT obtained in different segments of the

Π-shaped laser beam. The curves in Figs. 3.17(a) and 3.17(b) are theoretical and

experimental Hanle EIT resonances obtained for the laser intensity 0.5 mW/cm2

at different positions of the small aperture along the beam diameter of 6 mm. At

lower laser intensity, transmission minima are barely visible (theory) or missing

(experiment) in the Hanle EIT profiles, because of the weak optical pumping. Since

there are diffraction effects between the planes of the two apertures (see Fig. 3.11)

the radial position of the collecting aperture does not map exactly the corresponding

position in the atomic cell. This introduces some averaging that may explain why

the structures are smoother in the experiments with respect to the calculations. In

Fig. 3.18 we show the total excited-state populations for an atom traversing the

beam with velocity 180 m/s as a function of the radial distance from the beam

center at different magnetic fields. Even at a very high magnetic field (75 µT),

the population is not zero as it was at high laser intensities (see Fig. 3.15) because
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Figure 3.18: Calculated total population of all Zeeman sublevels of the Fe = 1
excited level at different magnetic fields as a function of position along the 6-mm
beam diameter of Π-shaped laser beam. The curves corresponding to the magnetic
fields 0 − 100 µT from the legend appear from bottom to top, respectively, at r =
−2.5 mm. The curves for B & 20 µT are almost identical. The atomic velocity
is the most probable velocity at room temperature (180 m/s). The thin gray line
represents the laser beam cross section profile.

optical pumping to the Fg = 1 level is not as efficient. In this case the transmission

of the vapor will not increase at high magnetic fields and consequently there are

no transmission minima at Hanle EIT resonance profiles at any position along the

beam diameter.

As discussed above, EIT line shapes obtained in different parts of the Π-shaped

laser beam cross section are determined by evolution of the dark states and (par-

ticularly around the beam center) by the optical pumping. On the other hand, the

change of atomic coherence in the magnetic field is found to play a significant role in

the line shapes obtained in parts of the Gaussian laser beam cross section. Results

in Figs. 3.19(a) and 3.19(b) confirm that the phase of atomic coherence is almost

constant during atomic transit through the Π-shaped laser beam. Here we compare

the calculated phase of the coherence, induced between the mF = −1 and mF = 1

Zeeman sublevels of Fg = 2 hyperfine level for atoms passing through the Π laser

beam. The magnetic field during transit time of an atom is assumed constant. The

results are shown for the magnetic field of 30 µT at which transmission minima
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Figure 3.19: Change of the argument of atomic coherence ρg−1,g1 during atomic
passage through the 3 mm (a) or 6 mm (b) wide Π laser beam for two laser intensities
0.5 mW/cm2 and 3 mW/cm2. It is obvious that the phase is constant during atom
passage through the Π laser beam, regardless of the laser intensity. The magnetic
field value of 30 µT is chosen because the transmission minima in the Hanle EIT
resonances appear exactly at those values in corresponding laser beam profiles. The
beam profile is presented by the gray line.

appear in the related Hanle EIT resonances. Since the laser electric field tends to

keep the phase of the coherence constant while the magnetic field tends to change

the phase, when both magnetic and electric field are present, the phase of atomic
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Figure 3.20: Theoretical (a) and experimental (b) Hanle EIT line-widths at different
positions of small aperture along the 6-mm-diameter Π-shaped laser beam. I is the
laser intensity. The dashed lines in (b) denote the Hanle EIT line-widths when the
entire laser beam is detected.

coherence will depend on the magnitudes of these two fields. The atom is coherently

prepared shortly after entering the laser beam and the phase is kept fixed by the

strong laser field across the beam. Therefore, it is not the change of the phase that

affects the observed Hanle EIT line shapes for the Π laser beam.

Figures 3.20(a) and 3.20(b) show theoretical and experimental results for the

dependence of line-widths of the Hanle EIT resonances on the radial position r

of the small aperture along the 6-mm diameter of the Π-shaped laser beam. The

dashed lines in Fig. 3.20(b) denote the Hanle EIT line-widths when the whole laser

beam is detected. Results are given for three different laser intensities. It is obvious

that there is Hanle EIT line narrowing from the edge toward the beam center. This

is population-loss-induced transit time narrowing [59, 60]. As seen in Fig. 3.20, it

is more pronounced at higher laser intensities, when most significant Hanle EIT

narrowing apparently occurs in the region close to the beam edges, i.e., very soon

after the atom enters the beam.

At the end this section, one note is suitable. The appearance of transmission

minima, as sidebands to the EIT resonance, in the inner regions of the Π laser beam

is shown to be due to strong dependence of optical pumping on the magnetic field.
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Transmission minima were also observed for Hanle EIT resonances obtained using

the Gaussian laser beam, but such EIT line shapes were only observed in the wings

of the beam. Their presence was attributed to the interference of the laser light in

the beam wings and coherently prepared atoms coming from the central part of the

beam. Thus, essentially different physical mechanisms, optical pumping (incoherent)

in Π laser beams and Ramsey-like effect (coherent) in Gaussian laser beams, yield

seemingly similar results, i.e., the appearance of the transmission minima in Hanle

EIT line shapes. Thus, it is apparent that for the proper modeling of experiments

and identification and understanding of dominant processes affecting the atomic

state evolution within the laser beam, it is essential to take into account a real

beam profile.
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3.5 Influence of laser beam profile on Hanle EIA

Electromagnetically induced absorption (EIA) [5, 6], is another coherent phenomenon

that manifests in the increase of the medium resonant absorption of a probe beam

in the presence of a pump beam. EIA appears in many different systems [8, 61,

62, 63, 64, 65]. It is shown that three different mechanisms can lead to the emer-

gence of EIA: transfer of coherence (TOC) [8, 61], transfer of population (TOP)

[8, 62] and quantum interference among competing two-photon transitions [65, 66].

EIA due to TOP between the Zeeman levels of the ground hyperfine state occurs

when pump and probe lasers have the same polarization, while EIA due to TOC

occurs for perpendicularly polarized lasers. In Hanle configuration, EIA depends on

the ground-state Zeeman coherences and on the efficiency of spontaneous coherence

transfer from the excited to the ground levels [67].

Figure 3.21: Energy level diagram forD2 line transitions considered in the theoretical
model. Solid lines represent transitions induced by the laser, while dotted lines
correspond to possible spontaneous emission channels from excited levels. Frequency
differences between adjacent hyperfine levels are shown.

The goal of this section is to give a comparative study of the Hanle EIA reso-

nances obtained with two radial laser beam profiles, Gaussian and Π-shaped. The

investigation was performed on 87Rb vapor in a vacuum cell at the D2 line transi-

tion Fg = 2 → Fe = 3 in the Hanle configuration. EIA obtained from two beam

profiles from the entire 3-mm-diameter laser beam and, also, obtained from the
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small segments of the laser beam cross section is examined. Studies of EIA from

selected parts of the laser beam were done by using the aperture movable along

the laser beam radius. Similar investigations for EIT presented in previous sections

have demonstrated the essential influence of different parts of the laser beam cross

section on the overall EIT resonances, that is, on the EIT from the entire laser

beam. The theoretical model gives the Hanle resonance line-shapes in accordance

with measurements. Calculations are based on the optical Bloch equations for tran-

sient evolution of the atomic state during interaction with laser light of a profiled

intensity. The details of the theoretical model are given in the section 2.3. Diagram

of energy levels taken into account in calculations is shown in Fig. 3.21. Although

the laser is locked to the Fg = 2 → Fe = 3 transition, the excited hyperfine levels

Fe = 2 and Fe = 1 are also laser coupled due to the Doppler broadening and must

be considered.

Figure 3.22: Theoretical (a) and experimental (b) Hanle EIA resonances for the
Gaussian (dashed red curves) and Π-shaped (solid blue curves) beam profiles. Laser
intensity is 2 mW/cm2.

Figure 3.22 shows a comparison of Hanle EIA resonances for Gaussian and Π-

shaped profiles, at a laser intensity of 2 mW/cm2. The quoted laser intensity corre-

sponds to the intensity of the whole laser beam, that is, the measured laser power at

the entrance of the cell divided by the beam area. Figure 3.22(a) shows theoretical

results and Fig. 3.22(b) corresponds to experiment. Key features of any resonance

are amplitude and line-width. It can be seen that for an intensity of 2 mW/cm2,

the Π-shaped beam profile yields resonances with a greater line-width. Figure 3.23

presents theoretical, and Fig. 3.24 experimental, results for the amplitudes and line-
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widths of EIA resonances as a function of the laser intensity, for both laser profiles.

EIA amplitudes are normalized to transmitted laser intensity. In each figure we give

results obtained using two radial laser beam profiles. It is shown that amplitude

intensity dependences for both profiles initially rise quite rapidly, until they reach a

maximum at approximately 0.5 mW/cm2. Further decrease with the laser intensity

is a consequence of saturation.

Figure 3.23: Theoretical (a) amplitudes and (b) line-widths for Gaussian (red, trian-
gles) and Π-shaped (blue, squares) beam profiles as a function of the laser intensity.

Figure 3.24: Experimental (a) amplitudes and (b) line-widths for Gaussian (red,
triangles) and Π-shaped (blue, squares) beam profiles as a function of the laser
intensity.

Resonance line-widths obtained from the two beam profiles have different depen-

dences on the laser intensity. For both beam profiles there is a very rapid increase
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at low intensities. However, the Π-shaped profile gives a pronounced maximum

at about 2 mW/cm2, while the Gaussian profile provides an almost-flat line-width

dependence at these and higher intensities. EIA intensity narrowing at high laser

intensities, assuming a Π-shaped beam, was already noted in [47]. Differences in

line-widths are most notable for moderate intensities and are due to different tran-

sient dynamics of atoms passing through the laser beam. During atomic transit

through the laser beam the atomic state changes due to competitive effects of the

laser excitation and the external magnetic field. The laser continuously forces the

atom to be “aligned” with the electric field, in which case the state of the atom

relates to the appearance of EIA. The external magnetic field causes oscillations

of the atomic state at the corresponding Larmor frequency. At low laser intensi-

ties, the influence of the magnetic field is more significant, so that the atomic state

“aligned” with the electric field is degraded more easily. For the Gaussian laser

beam, the atoms experience an omnichanging laser field, while the Π-shaped beam

provides an almost-constant electric field. This difference reflects directly on the

robustness of the “aligned” atomic state with respect to the external magnetic field

because the spatial change in the laser field decreases the robustness by inducing

an extra variation of the atomic state. Under a zero external magnetic field atoms

reach an “aligned” state, and absorption reaches a maximum. A nonzero magnetic

field degrades that state, reducing the absorption. If the “aligned” state is more

robust, the absorption decreases less for the same magnetic field. Therefore, greater

robustness of the EIA with respect to the external magnetic field requires a larger

magnetic field to halve the peak absorption and hence yields larger EIA line-widths

for the Π-shaped beam, compared to the Gaussian beam. When the laser intensity

is high enough, differences in laser beam profile become less important, yielding very

similar line-widths for both profiles.

Hanle EIA obtained from only a small parts of the laser beam cross section,

as a function of the magnetic field, are also studied. When the intensity of the

light passing through the small part of the beam cross section is low, the part plays

the role of the probe beam. Therefore, throughout the text it will be referred as

quasi-probe. The rest of the laser beam can be considered as the pump. In such

case, resulting resonances are either due to coherently prepared atoms coming into

the quasi-probe from the surrounding pump region or because of EIA induced by

the quasi-probe. Relative contributions of probing and inducing EIA within the

quasi-probe depend on the overall laser intensity, shape of the beam (Gaussian or
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Figure 3.25: Theoretical results for (a) amplitudes and (b) line-widths as a function
of the radial position of the 0.5-mm aperture for Gaussian (red, triangles) and
Π-shaped (blue, squares) beam profiles. Laser intensity is 0.2 mW/cm2. Points
correspond to different radial distances of the 0.5-mm aperture selecting the beam
sections.

Figure 3.26: Theoretical results for (a) amplitude and (b) line-width dependence
on the radial position of the 0.5-mm aperture determining the beam segment for
Gaussian (red, triangles) and Π-shaped (blue, squares) beam profiles. Laser intensity
is 1 mW/cm2.

Π-shaped), and radial distance of the quasi-probe from the laser beam center.

Figures 3.25 and 3.26 present theoretical results for amplitudes (Figs. 3.25(a)

and 3.26(a)) and line-widths (Figs. 3.25(b) and 3.26(b)) of Hanle quasi-probe EIA

resonances as a function of radial positions of the selected beam segment, at a laser

intensity of 0.2 and 1 mW/cm2, respectively. Figures 3.27 and 3.28 are corresponding
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Figure 3.27: Experimental results for (a) amplitudes and (b) line-widths of EIA
obtained from laser beam sections at different radial distances from the laser beam
center for Gaussian (red, triangles) and Π-shaped (blue, squares) beam profiles.
Laser intensity is 0.2 mW/cm2.

Figure 3.28: Experimental results for (a) amplitude and (b) line-width EIA depen-
dence on the radial position of the 0.5-mm aperture for Gaussian (red, triangles)
and Π-shaped (blue, squares) beam profiles. Laser intensity is 1 mW/cm2.

measurements. While resonance line-widths for the Π-shaped profile are largest at

the outer parts of the laser beam, line-widths for the Gaussian laser beam are larger

near the laser beam center. This can be attributed to the fact that in the region near

the beam boundary, the Π-shaped profile has a higher intensity than the Gaussian.

The intensity inside the Gaussian beam increases toward the beam center, causing

EIA resonance broadening, so the situation reverses around the radial distance where

the Gaussian beam becomes more intense (note that it is two times more intense at
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the center than the Π-shaped beam of the same average intensity). Note that EIA

resonances are particularly narrow in the wings of the Gaussian beam, where a very

low intensity quasi-probe really probes the “aligned” EIA state of the atoms coming

into the quasi-probe from the rest of the beam. At places closer to the beam center,

the quasi-probe simultaneously probes and induces EIA, and eventually the induced

effect dominates over probing. This leads to increased line-widths as the quasi-probe

moves toward the beam center. In a Π-shaped beam, the passing atoms experience a

very rapid increase in laser intensity only at the beam edge and a constant intensity

inside the beam. A large variation in laser intensity causes broadening of line-widths

and a resulting maximum of line-widths near the beam edge. As atoms move toward

the beam center, the constant laser intensity experienced by the atoms and the longer

average time of flight inside the Π-shaped beam cause the gradual narrowing of EIA

resonances as the atoms move toward the beam center. In other words, the decrease

in line-widths upon approaching the beam center for a Π-shaped beam is a typical

transit-time narrowing.

Radial behavior of EIA amplitudes is notably different for two laser beam shapes

at higher laser intensities, as shown in Figs. 3.26 and 3.28 for 1 mW/cm2. Am-

plitudes for the Π-shaped profile do not show large variations along the beam in

comparison with the Gaussian profile, where the initial rise in amplitudes turns into

a significant and constant decrease. A strong laser intensity near the center of the

Gaussian beam, above ∼ 1 mW/cm2, leads to a lower amplitude in comparison to

amplitudes farther from the beam center. Similar behavior, a decrease upon ap-

proaching the center, becomes present also in Π-shaped beams of a laser intensity

higher than 1 mW/cm2. This is attributed to the fact that at high intensities, the

laser field dominates over the influence of the magnetic field, so that the effect of

the beam profile on the EIA amplitudes becomes less pronounced.

EIA amplitudes and line-widths depend on ambient conditions, stray magnetic

field, and room temperature. Effects of stray magnetic field are negligible due to

shielding by the triple-layered µ-metal cylinder. The variation of room temperature

from one set of measurements to the other was within ±1 oC. These temperature

variations have a negligible influence on line-widths but may result in changes in

EIA amplitudes. Ambient temperature variation shifts the amplitudes radial depen-

dencies, presented in Figs. 3.27(a) and 3.28(a), by 10 %, preserving their shape.

In the present section it is demonstrated that the atoms evolve very differently

depending on the passage through one or the another profiled beam. This is shown
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by the Hanle EIA obtained in transmission from only small segment of the entire

laser beam. In this way the quasi-probe EIA is studied, i.e., EIA due to some small

beam part that is surrounded by the rest of the laser beam having the pump role.

Since at very low laser intensities, the quasi-probe probes coherently prepared atoms

moving toward the selected region, EIA resonances are narrower in outer regions of

the Gaussian beam. At higher laser intensities the quasi-probe can also generate EIA

in atoms. Thus, near the center of the Gaussian beam, EIA resonances are widest

due to higher power broadening. For a Π-shaped laser beam, the quasi-probe gives

the narrowest EIA resonances at the beam center, due to transit-time narrowing of

the coherent resonances. EIA amplitudes, in the range of applied laser intensities,

are lowest (highest) near the laser beam center for the Gaussian (Π-shaped) profile.

Thus, outer regions of the Gaussian beam and central regions of the Π-shaped

beam are the most valuable regions in the sense that they contribute the narrowest

line-widths and highest amplitudes to the overall EIA. The opposite variation of

quasi-probe EIA line-widths with the distance from the laser beam center for the

two beam profiles makes the line-widths of whole-beam EIA less dependent on the

laser beam profile. Only in the range of laser intensities 1− 4 mW/cm2 the overall

EIA line-widths for the Π-shaped laser beam have a maximum which exceeds the

corresponding values obtained with the Gaussian beam that yields a flat intensity

dependence.

The results of this section show that it is important to take into account the real

laser beam profile for proper modeling and analysis of coherent effects in alkali metal

vapors. Differences in EIA line-widths obtained using two laser radial beam profiles

imply that a theory with assumed Π-shaped radial dependence (common assumption

in majority of models) will not produce good agreement with experiments done

usually using a Gaussian or similar beam shape. One practical consequence of these

results is that detecting only the wings of the Gaussian laser beam will give narrower

EIA resonances than in the case of entire-beam detection.
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4. Stark-chirped rapid adiabatic passage

4.1 Adiabatic passage

SCRAP technique is a special case of a general adiabatic passage technique. Thus,

the essentials of adiabatic passage will be presented first and particularities of

SCRAP will be addressed afterward.

The realization of specific changes in the state vector by resonant excitation

requires careful control of the temporal laser pulse shape. Additionally, such excita-

tion has limited applicability when the treated ensemble has a range of detunings,

like in Doppler broadened atomic vapors. There is an alternative pulsed excitation

procedure that overcomes such difficulties. It can yield equal excitation over a dis-

tribution of Doppler-induced detunings, independent of the temporal pulse shape.

Specifically, the excitation pulse incorporates not only a variation of the Rabi fre-

quency but a monotonic sweep of the laser detuning. Rapid adiabatic passage (RAP)

[11, 12] technique requires that state vector changes must be finished during a time

interval that is shorter than any decoherence process (like spontaneous emission).

Although the overall action must be rapid on that time scale, within that time the

detuning should vary slowly with time, i.e. adiabatically. The resulting evolution

of the state vector is an example of adiabatic following in which the state vector

follows a path in Hilbert space defined by an adiabatic state.

In the simplest idealization of RAP the detuning linearly changes in time, i.e.,

∆(t) = ∆0 + rt, where r is the rate at which the detuning varies and ∆0 is a fixed

detuning, e.g. corresponding to a single Doppler shift. Such situation can be realized

by varying the laser frequency linearly with time, i.e. by chirping the laser frequency.

When an atom is excited by the laser subjected to a sweep of frequency around an

atomic transition, the behavior of the population of the states coupled by the laser

can be understood with the help of an alternative Hilbert-space basis, the one chosen

54
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as instantaneous eigenbasis of the time varying Hamiltonian W(t)

W(t)Φn(t) = εnΦn(t). (4.1)

The states Φn(t) are called adiabatic states, in contrast to the diabatic states ψ̃n(t)

(2.6). The two-level RWA Hamiltonian of Eq. (2.7) that incorporates time variation

of both the Rabi frequency and the detuning is

W(t) = ~

[
0 1

2
Ω(t)

1
2
Ω∗(t) ∆(t)

]
. (4.2)

The eigenvalues of the RWA Hamiltonian, the adiabatic energies, are

ε±(t) =
~
2
(∆(t)± Ω̃(t)), where Ω̃(t) =

√
|Ω(t)|2 +∆(t)2. (4.3)

The diagonal elements of the RWA Hamiltonian, 0 and ~∆(t) in the case of (4.2),

are known as diabatic energies. The adiabatic states in the present case are of the

form

Φ+(t) =

[
e−iφ sin θ(t)

cos θ(t)

]
, Φ−(t) =

[
cos θ(t)

−eiφ sin θ(t)

]
, (4.4)

where cot(2θ(t)) = ∆(t)/|Ω(t)|.
When the state vector is initially aligned with one adiabatic state, and the RWA

Hamiltonian changes slowly (adiabatically), then the state vector remains aligned

with this single adiabatic state. In other words, the state vector adiabatically follows

the adiabatic state during the adiabatic evolution. This is known as adiabatic follow-

ing. The adiabatic state varies with time, and so the state vector varies when viewed

in the basis of diabatic states. The result of the adiabatic following can be a trans-

fer of population if the followed adiabatic state initially corresponds to one of the

diabatic states and changes into another diabatic state at the end of the evolution.

This can be realized by aligning the initial state with ψ̃1 and adiabatically changing

∆(t) and Ω(t) so that θ(t) sweeps from θ(ti) = 0 to θ(tf ) = π/2. This corresponds

to the change of the adiabatic state from Φ−(ti) = ψ̃1(ti) to Φ−(tf ) = ψ̃2(tf ) and

enables the adiabatic passage of the population from the state 1 to the state 2.

The adiabatic passage is often visualized by presenting plots of adiabatic energies

along with plots of diabatic energies. For a two-level system case the diabatic

energies are 0 and ∆(t). When there is a sweep of detuning from e.g. negative to
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Figure 4.1: Top parts: diabatic (dashed curves) and adiabatic energies (solid curves)
for two-level system. Bottom parts: corresponding population histories for state
1 (blue curve) and state 2 (red curve). Left: adiabatic evolution with constant
detuning. Right: adiabatic evolution with chirped detuning. System points on the
energy curves are related to initial and final states. Arrows indicate the motion of
the system points along adiabatic energy curves.

positive values, then the diabatic energy curves cross − this occurs when ∆(t) = 0.

However, the adiabatic curves ε±(t) do not cross if there is any, however small, Rabi

frequency at the moment of crossing of diabatic energy curves. The adiabatic energy

curves have so called avoided crossing. Figure 4.1 shows the behavior of these curves,

and the corresponding population histories during adiabatic evolution, for two cases

of a two-level system subject to a pulsed Rabi frequency. The left-hand pair of plots

illustrates the case when the detuning is kept fixed. The diabatic energies remain

constant, while the adiabatic energies exhibit reversible changes produced by the

Rabi-frequency variation with time. With the presented choice of parameters, there

occurs complete population return. The right-hand pair of plots shows the influence

of a chirped detuning on these curves. The diabatic curve for state 2 rises linearly

with time, crossing that of state 1 at t = 0. For large values of |t|, far from t = 0,

the Rabi frequency is negligible, and the adiabatic curves coincide with the diabatic
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4.1 ADIABATIC PASSAGE

curves 0 and ∆(t). However, as the Rabi frequency becomes larger, the two sets of

curves differ and avoided crossing occurs.

To explain the population histories associated with such curves let us begin by

considering the system at early times - the left-hand side of the figures. Suppose

the state vector is initially aligned with a single diabatic state, ψ̃1. At these times

there is no Rabi interaction, and so the diabatic and adiabatic states coincide. The

initial state vector is represented by a system point on the coinciding diabatic and

adiabatic curves. As time increases and the energies vary, this system point passes

from left to right, denoting the changes of the energies with time. Its association

with a single curve can be valid only for two extreme idealized cases - corresponding

to either fast (diabatic) or slow (adiabatic) variation of the RWA Hamiltonian.

During the rapid variation of the RWA Hamiltonian, the state vector will remain

aligned with the starting diabatic state, and the system point will follow the (dashed)

diabatic curve in Figure 4.1(b), corresponding to the energy of the diabatic state 1.

The system point moving along this line, crosses the diabatic curve for the state 2.

The system remains in the state 1 until the end, i.e., no transition occurs.

By contrast, when the changes of the RWA Hamiltonian are sufficiently slow

(adiabatic), the state vector will remain aligned with the starting adiabatic state.

The system point will follow the adiabatic curve that starts from the state 1 and

does not cross any other curve. Initially its path coincides with diabatic curve for

the state 1, but at later times the path joins the diabatic curve for the state 2, i.e.,

an adiabatic transition occurs.

The realization of complete population transfer via adiabatic passage requires

the detuning to sweep slowly through the resonance. Detuning is the difference

between the Bohr atomic transition frequency and the laser carrier frequency, so

the variation of either of these two frequencies will provide the required result. The

Bohr frequency, being proportional to the energy difference between two atomic

levels, can be changed by any slowly varying non-resonant electric or magnetic field.

One possibility is to use pulses of non-resonant laser light to subject the atom to

a slowly varying electric field and to induce a (dynamic) Stark shifts of the atomic

energy levels [68, 69], i.e., Stark chirp of the detuning. This is the basic idea of

SCRAP.
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4.1.1 Two-state SCRAP

Two-state SCRAP technique uses two sequential laser pulses: pump laser pulse

having the carrier frequency ωp near the atomic Bohr transition frequency ω2 − ω1

and strong far-off-resonant Stark laser pulse. Pump pulse drives the population

between the states 1 and 2, while Stark pulse modifies the transition frequency by

Stark shifting the energies of the two states, so that the detuning ∆(t) becomes

∆(t) = ω2 − ω1 − ωp + S2(t)− S1(t). (4.5)

The detuning can be naturally represented as the sum of two terms ∆(t) = ∆21 +

S21(t). The first term, ∆21 = ω2 − ω1 − ωp, is static detuning of the pump laser

from the Bohr atomic transition frequency in the absence of radiation. The ground

state Stark shift S1(t) and the excited state Stark shift S2(t) are different (usually

|S1(t)| � |S2(t)|) leading to the net Stark shift S21(t) = S2(t)−S1(t) of the detuning

(4.5). The dynamic Stark shift Sn(t) of the state n (n = 1, 2) has the contribution

of both the pump and the Stark fields

S1(t) = Sp
1P(t) + SS

1 S(t), (4.6a)

S2(t) = Sp
2P(t) + SS

2 S(t), (4.6b)

where the dimensionless functions P(t) and S(t) are the envelopes of the pump and

the Stark laser intensities, while Sp
n and SS

n (n = 1, 2) are maximal Stark shifts

of the state n due to pump and Stark laser, respectively. The pump laser induced

Stark shifts can be significant for multiphoton transitions but are negligible for single

photon transitions. Thus, the shifts induced by the Stark field are predominant

S21(t) ≈ (SS
2 − SS

1 )S(t). (4.7)

The SCRAP technique can be explained by inspecting a time variation of the

diabatic and adiabatic energy curves (Fig. 4.2). Initially, the pump carrier frequency

is chosen such that the diabatic energy ε2(t) of the state 2 is higher than the diabatic

energy ε1(t) of the state 1. During the pulse sequence, the Stark pulse shifts ε2(t)

relative to ε1(t) producing two diabatic energy crossings − first during the rise and

second during the fall of the Stark pulse. The adiabatic evolution occurs at some

crossing if the pump pulse is sufficiently strong. SCRAP method relies on delayed
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Figure 4.2: Top: Time dependencies of the pump (blue curve) and the Stark (green
curve) laser pulses. Bottom: Related adiabatic (solid curves) and diabatic (dashed
curves) energies versus time. System points on the energy curves are related to initial
and final states. Arrows indicate the motion of the system points along adiabatic
energy curves.

pulses so that the pump Rabi frequency is significant at exactly one of the crossings.

In the case shown in Fig. 4.2, the system starting in the state 1, passes through

the first crossing adiabatically following the state Φ−(t), and makes a transition

to the state 2. At the second crossing the pump laser field is negligible and the

system diabatically follows the diabatic state ψ̃2(t), to which it was associated prior

to this crossing. The final result of this adiabatic-diabatic evolution sequence is the

complete population transfer from the state 1 to the state 2.

4.1.2 Three-state SCRAP

SCRAP in a three-state system provides an efficient way of transferring the popu-

lation from ground state 1 to ground state 2 via minimally populated excited state

3. The transfer is realized by use of three sequential laser pulses: pump and Stokes

pulses coupling the transitions 1 → 3 and 2 → 3, respectively, and far-off-resonant

Stark pulse that creates a suitable set of level crossings in the energy diagram of the
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system. The RWA Hamiltonian of the laser-excited three-state system is

W(t) = ~

 0 0 1
2
Ωp(t)

0 ∆21 + S21(t)
1
2
ΩS(t)

1
2
Ω∗

p(t)
1
2
Ω∗

S(t) ∆31 + S31(t)

 , (4.8)

where Ωp(t) and ΩS(t) are Rabi frequencies associated with the pump and Stokes

fields, respectively. ∆21 and ∆31 represent the static detunings, which for one-photon

transitions are given by

∆21 = ω2 − ω1 + ωS − ωp, (4.9a)

∆31 = ω3 − ω1 − ωp. (4.9b)

The dynamical Stark shifts

Smn(t) = Sm(t)− Sn(t), (4.10)

are the differences between the Stark shifts Sm(t) and Sn(t) of the states m and n

(m,n = 1, 2, 3). Similarly to two-state SCRAP, the shifts induced by the Stark field

are overwhelming, so that

Smn(t) ≈ (SS
m − SS

n )S(t), (4.11)

where SS
m and SS

n are maximal shifts due to Stark laser and S(t) is the envelope

of the Stark laser intensity. The adiabatic eigenenergies ε1(t), ε2(t) and ε3(t) of

the Hamiltonian (4.8) are roots of a cubic equation and are too cumbersome to be

given in detail. Denote with Φ1(t), Φ2(t) and Φ3(t) the corresponding adiabatic

eigenstates.

It was shown in [31] that successful population transfer from the state 1 to the

state 2 requires appropriate choice of the process parameters: the timing of the

pump and Stokes pulses relative to each other and to the Stark pulse, the static

detunings and the strengths of the peak Rabi frequencies and the peak Stark shift.

The plots of adiabatic and diabatic energy curves in Fig. 4.3 correspond to the

optimal process parameters and illustrate the population transfer from the state 1

to the state 2. Note that the timing of the pulses is somewhat counter-intuitive, i.e.,

the Stokes pulse precedes the pump pulse. It can be seen that the system starting
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Figure 4.3: Top: Time dependencies of the pump (blue curve), Stokes (red curve)
and the Stark (green curve) laser pulses. Bottom: Corresponding adiabatic (solid
curves) and diabatic (dashed curves) energies versus time. System points on the
energy curves are related to initial and final states. Arrows indicate the motion of
the system points along adiabatic energy curves.

in the state 1 adiabatically follows the state Φ1(t) and makes transition to the state

2. In the region where diabatic crossings 1− 3 and 2− 3 occur for the first time, the

state Φ1(t) has a small contribution of the excited state 3. However, the transient

population of the state 3 is minimized by the counter-intuitive choice of pump and

Stokes pulse timings [31].

In the next two sections SCRAP will be generalized to the case of two and

three degenerate-level manifolds. The analysis of a degenerate-level system will be

facilitated by its subdivision into a set of smaller independently evolving subsystems

corresponding to the minimal-sized invariant subspaces of the Hamiltonian. As an

illustration, the degenerate-level SCRAP formalism will be applied to the transitions

in the 87Rb atom.
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4.2 SCRAP IN A TWO-LEVEL ATOM

4.2 SCRAP in a two-level atom

In this section the notation will be introduced and the stage set for a developed gen-

eral formalism. Consider SCRAP population transfer among two atomic degenerate-

level manifolds: ground g and final f , with corresponding energies Eg and Ef , re-

spectively. Transition g− f is driven by the classical field pump pulse, while strong

off-resonant Stark field pulse introduces dynamic Stark detunings. Let G = {|gi〉| i =
1, . . . , ng} and F = {|fj〉| j = 1, . . . , nf} be the bases of Hilbert spaces for manifolds

g and f , respectively, consisting of bare atomic states. The state |Ψ(t)〉 of the system
is represented in basis F ∪ G by the vector C(t) that incorporates explicit phases

taken from frequency of the pump pulse, ωp. We are concerned with coherent excita-

tion so we will describe the dynamics by the time-dependent Schrödinger equation.

In the rotating-wave picture and using rotating wave approximation (RWA) we get

the time-dependent Schrödinger equation for C(t),

i~
d

dt
C(t) = H(t)C(t). (4.12)

Hamiltonian of the system is represented as

H(t) = ~

[
∆f + S(t)Sf

1
2
Ωp(t)V

†

1
2
Ωp(t)V S(t)Sg

]
(4.13)

where Ωp(t) is the pump field Rabi frequency and V is the matrix representation of

the lowering operator that connects the states in manifold f to the states in manifold

g. The nf -dimensional diagonal matrix∆f describes the static detuning of the pump

frequency from the Bohr frequency of the transition g−f and can be represented as

∆f = ∆f1nf
, where 1nf

is nf -dimensional unit matrix and ∆f = (Ef −Eg)/~− ωp

is the common static detuning of all f states. The matrices Sf and Sg represent the

Stark shift operators of the states in manifolds f and g, respectively. Their diagonal

elements are proportional to the Stark shifts of the sublevels. All Stark shifts share

the same time dependence, expressed by S(t), that arises from the laser Stark field

variation in time. The quantity S(t) is proportional to the Stark pulse envelope and

could be taken equal to the Stark shift of some chosen sublevel.

The structure of the RWA Hamiltonian of Eq. (4.13) is similar to that of the

ordinary two-state SCRAP [13]. All time dependences are stored into Ωp(t) and
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S(t), but instead of single ground and final states we now have degenerate manifolds

of substates, and hence we have matrices V, Sf , Sg and ∆f , instead of the single

elements in ordinary two-state SCRAP case.

As an introduction to the general degenerate-level case, we examine the simplest

case of equal sublevel Stark shifts

Sf = sf1nf
, Sg = sg1ng , (4.14)

where sf and sg correspond to the common Stark shifts of the f and g substates,

respectively. This will serve as a starting point for development of a degenerate-

level formalism. The basic idea is to facilitate the analysis of a degenerate-level

system by its subdivision into a set of smaller independently evolving subsystems.

In the present case it is possible to find a suitable Morris-Shore (MS) transforma-

tion [36] of diabatic basis yielding a new adapted basis in which the dynamics of a

coupled degenerate two-level system is reduced to a set of independently evolving

non-degenerate two-state systems and a number of uncoupled (dark) states. It is

easily seen that each two-state subsystem under SCRAP process evolves in a well-

known manner [13, 31]. Consequently, the case of a SCRAP population transfer

between two atomic degenerate-level manifolds having equal sublevel Stark shifts

is simply reduced to a set of independent non-degenerate two-state subsystems and

dark states. Let us restate the above consideration from a more general point of view.

Effectively, the MS transformation yields the decomposition of the state space into a

set of minimal-sized subspaces to which the evolution is restricted. These subspaces

correspond to minimal-sized invariant subspaces (hereafter, invariant subspaces) of

the Hamiltonian H(t). Hence, to each independent non-degenerate two-state sys-

tem and to each dark state corresponds an invariant subspace of the Hamiltonian.

Concept of invariant subspaces extends the scope of the former approach based on

MS transformation. Namely, two-photon resonance condition expressed by equal

sublevel shifts in Eq. (4.14) is essential for the existence of MS transformation.

Generally, the Stark field removes the sublevel degeneracy by detuning the atomic

sublevels from the two-photon resonance. The MS transformation does not exist in

that case [36], but our concept of invariant subspaces is still applicable with likely

altered size and number of subspaces. Therefore, the decomposition of the state

space on the invariant subspaces is a generalization of MS transformation that is

applicable in the general case of the removed sublevel degeneracy.
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Analysis of a multilevel system is performed essentially by identifying the Hamil-

tonian invariant subspaces that depend substantially on couplings of the transitions

and sublevel Stark shifts. Let Hinv = Hf ⊕Hg be such an invariant subspace formed

by subspaces Hf and Hg corresponding to manifolds f and g, respectively. The

defining condition H(t)Hinv < Hinv leads to the following requirements:

∆fHf < Hf , ∆gHg < Hg, (4.15a)

SfHf < Hf , SgHg < Hg, (4.15b)

VHf < Hg, V†Hg < Hf . (4.15c)

The conditions (4.15a) are trivially fulfilled and can be disregarded because the

matrices ∆f and ∆g are constant multiples of appropriate unit matrices. Let Hd
g =

kerV† be the subspace of states in manifold g that are dark to the transition g → f ,

and let Hd
f = kerV be the subspace of states in manifold f that are dark to the

transition f → g. The conditions (4.15c) determine Hf (Hg) up to a direct sum

with some dark subspace from Hd
f (Hd

g), and yield more gainful conditions

V†VHf < Hf , VV†Hg < Hg. (4.16)

Refer briefly to the meaning of the operators involved in Eq. (4.16). Operator V

couples the states from Hf to the states in VHf that belong to manifold g. On

the other side, operator V† couples the states from VHf to the states in manifold

f belonging to the subspace V†VHf that may include the states external to Hf .

If one has to find the subsystems that evolve independently then the condition

V†VHf < Hf naturally emerges because the interaction with the pump field must

not drive the states out from Hf . Therefore, Hf has to be invariant subspace of

operator V†V, so that the evolution of the system is restricted within the subspace

Hf ⊕VHf .

We are now ready to give an explicit construction of aforementioned invariant

subspaces. Relations (4.15b) and (4.16) indicate that Hf should be common invari-

ant subspace for Sf andV†V. LetHinv
f,k, k ∈ {1, . . . , ninv

f }, be minimal-sized common

invariant subspaces ofV†V and Sf . It is easily seen that the subspaceHg,k := VHinv
f,k

is invariant for VV†, but need not to be invariant for Sg due to the possibility that

Sg couples the states from distinct subspaces Hg,k together with some states from

dark subspace Hd
g. Therefore, invariant subspaces Hinv

g,κ, common for both Sg and
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VV†, may be formed from several subspaces Hg,k, k ∈ Iκ, accompanied with some

subspace Hd
g,κ of Hd

g, i.e., Hinv
g,κ := ⊕k∈IκHg,k ⊕ Hd

g,κ, κ ∈ {1, . . . , ninv
g }. It is worth

noting that the set Iκ, containing the indices that label the subspaces Hg,k inter-

linked by Sg, may be empty in the case that the corresponding invariant subspace

entirely resides within an appropriate dark space. Finally, Hinv
κ := ⊕k∈IκHinv

f,k ⊕Hinv
g,κ

is invariant subspace for Hamiltonian H(t), including all subspaces Hinv
f,k that are

connected with Hinv
g,κ. The evolution during SCRAP process is restricted to Hinv

κ .

Two different types of the invariant subspaces need to be considered.

First, if Hinv
κ does not contain dark states from Hd

g, it is possible to transfer all

population from the subspace Hinv
g,κ into the subspace ⊕k∈IκHinv

f,k, irrespective of the

starting state. Namely, during SCRAP pulse sequence, all starting states in Hinv
g,κ

are adiabatically connected to corresponding final states in ⊕k∈IκHinv
f,k. This occurs

because the evolution is decoupled from dark states that prohibit population trans-

fer. The final states cannot be traced analytically unless related common invariant

subspaces Hinv
g,κ and ⊕k∈IκHinv

f,k are one-dimensional, in which case there is one-to-one

correspondence between starting and final states. In other cases the final states can

be found only numerically because they depend on the parameters of the SCRAP

process.

The second case is when the dark states are present in Hinv
g,κ due to interaction

with the Stark field. Because the dark states suppress transfer of population to final

level, not all states from Hinv
g,κ have the corresponding final states in ⊕k∈IκHinv

f,k. Gen-

erally,
∑

k∈Iκ dimHg,k states are adiabatically connected to final states in ⊕k∈IκHinv
f,k

enabling the population transfer, while dimHd
g,κ states do not contribute to the

population transfer and preserve the population within ground level. In order to

obtain the complete population transfer, it is necessary to prepare the initial state

into specific coherent superpositions. Subspaces corresponding to each of the two

groups of superpositions cannot be determined without knowing the parameters

of the SCRAP process, apart from the trivial case Hinv
g,κ = Hd

g,κ. In the following

subsection we give an illustrative example.
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Figure 4.4: Atomic hyperfine level diagrams for two-level SCRAP. Solid curves
schematically represent atomic dynamic level detuning induced by the Stark laser
pulse. ωp is the carrier frequency of the pump laser field. ∆f is static level detuning.

4.2.1 SCRAP among two hyperfine levels in 87Rb

Here we apply the above formalism to the SCRAP between two hyperfine levels

5S1/2, Fg = 2 and 5P1/2, Ff = 1 of 87Rb that are coupled by classical field (see Fig.

4.4) with corresponding atomic lowering operator given by

V̂ = V̂ · ε̂L (4.17)

where ε̂L is the polarization of the light field. The vector operator V̂ is defined by

V̂ = (−1)Ff+Jg+I+1
√
(2Ff + 1)(2Jg + 1)

{
Jf Jg 1

Fg Ff I

}

×
1∑

q=−1

∑
mg ,mf

〈Fg,mg|Ff ,mf ; 1, q〉|Fg,mg〉〈Ff ,mf |e∗q,
(4.18)

where I = 3/2 is the nuclear quantum number of 87Rb, {: : :} is Wigner 6j-symbol

and 〈Fg,mg|Ff ,mf ; 1, q〉 is the Clebsch-Gordan coefficient that connects the final

level state |Ff ,mf〉 to the ground level state |Fg,mg〉 via polarization e∗q,

e±1 = ∓ 1√
2
(ex ± ı̇ey), e0 = ez, (4.19)

given in some orthonormal basis of polarization vectors. We choose the coordinate

system such that the field propagates along the z axis, and define a basis of Zeeman

states relative to this quantization axis. Bases of Hilbert spaces for level manifolds
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f and g are

F = {|1,−1〉f , |1, 0〉f , |1, 1〉f}, (4.20a)

G = {|2,−2〉g, |2,−1〉g, |2, 0〉g, |2, 1〉g, |2, 2〉g}. (4.20b)

Generally, depending on the Stark field polarization, Stark shifts of magnetic hyper-

fine sublevels have scalar, vector, and tensor part, having none, linear, and quadratic

dependence on magnetic quantum number mF , respectively. Hence, Stark field can

remove the degeneracy of hyperfine levels through the linear and quadratic depen-

dence of shift on mF . In this example we assume that the Stark field is linearly

polarized so that the linear dependence vanishes. Alkali ground hyperfine sublevels

gain the shift that does not have tensor part, so the degeneracy of ground sublevels

is preserved. Excited hyperfine sublevels gain both scalar and tensor shifts. We will

assume that pump frequency is chosen such that ∆f > 0, and that the Stark field

frequency is such that the Stark shifts of the f (g) sublevels are negative (positive)

(see Fig. 4.4). Off-diagonal elements of the Stark shift operators will be neglected

for simplicity. In that manner we have the following structure of Stark shifts:

Sg = sgdiag{1, . . . , 1︸ ︷︷ ︸
2Fg+1

}, (4.21a)

Sf = diag{−(1 + sfm
2
f/F

2
f ) | mf = −Ff , . . . , Ff}, (4.21b)

where sg and sf are constants arbitrarily chosen in this example. S(t) is chosen equal

to the absolute value of the Stark shift of the final sublevel |1, 0〉f . For numerical

calculations we will use Gaussian shapes for the laser pulses, yielding

Ωp(t) = Ω0 exp
(
−(t− τp)

2/T 2
p

)
, (4.22a)

S(t) = S0 exp
(
−t2/T 2

)
. (4.22b)

The Stark pulse center defines the time t = 0. Relative to this, the peak of the

pump pulse is at time τp, chosen to correspond to the first intersection of diabatic

energies of ground level and final sublevel |1, 0〉f . We will use Tp as the unit of time

and 1/Tp as the unit of frequency. We assume that the Stark pulse has duration

T = 2Tp. The polarization of the pump field is chosen to be linear along x axis, so

the matrix representing the lowering operator is
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V =



1
2

0 0

0 1√
8

0

− 1√
24

0 1√
24

0 − 1√
8

0

0 0 −1
2


. (4.23)

Ground level dark subspace determined as kernel of V† is

Hd
g = span{ 1√

2
|2,−1〉g +

1√
2
|2, 1〉g,

1√
8
|2,−2〉g +

√
3

2
|2, 0〉g +

1√
8
|2, 2〉g}. (4.24)

There are three common invariant subspaces of V†V and Sf

Hinv
f,1 = span{ 1√

2
|1,−1〉f −

1√
2
|1, 1〉f}, (4.25a)

Hinv
f,2 = span{ 1√

2
|1,−1〉f +

1√
2
|1, 1〉f}, (4.25b)

Hinv
f,3 = span{|1, 0〉f}, (4.25c)

and five common invariant subspaces of VV† and Sg

Hinv
g,1 = span{

√
3

8
|2,−2〉g −

1

2
|2, 0〉g +

√
3

8
|2, 2〉g}, (4.26a)

Hinv
g,2 = span{ 1√

2
|2,−2〉g −

1√
2
|2, 2〉g}, (4.26b)

Hinv
g,3 = span{ 1√

2
|2,−1〉g −

1√
2
|2, 1〉g}, (4.26c)

Hinv
g,4 = span{ 1√

8
|2,−2〉g +

√
3

2
|2, 0〉g +

1√
8
|2, 2〉g}, (4.26d)

Hinv
g,5 = span{ 1√

2
|2,−1〉g +

1√
2
|2, 1〉g}. (4.26e)

Note that Hinv
g,4 and Hinv

g,5 are dark subspaces of Hd
g. Combining results (4.25) and

(4.26) we get five invariant subspaces to which the evolution is restricted
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Hinv
1 = span{ 1√

2
|1,−1〉f −

1√
2
|1, 1〉f ,

√
3

8
|2,−2〉g −

1

2
|2, 0〉g +

√
3

8
|2, 2〉g},

(4.27a)

Hinv
2 = span{ 1√

2
|1,−1〉f +

1√
2
|1, 1〉f ,

1√
2
|2,−2〉g −

1√
2
|2, 2〉g}, (4.27b)

Hinv
3 = span{|1, 0〉f ,

1√
2
|2,−1〉g −

1√
2
|2, 1〉g}, (4.27c)

Hinv
4 = span{ 1√

8
|2,−2〉g +

√
3

2
|2, 0〉g +

1√
8
|2, 2〉g}, (4.27d)

Hinv
5 = span{ 1√

2
|2,−1〉g +

1√
2
|2, 1〉g}. (4.27e)

Subspaces Hinv
κ , κ ∈ {1, 2, 3}, do not contain dark states, thus it is possible to

transfer all of the population from Hinv
g,κ to Hinv

f,κ for κ ∈ {1, 2, 3}. It is worth noting

that the complete population transfer requires the starting states to be particular co-

herent superpositions. Contrary, population remains trapped within dark subspaces

Hinv
g,4 and Hinv

g,5 . Previous conclusions can be depicted by plotting the adiabatic en-

ergies corresponding to aforementioned invariant subspaces. Figure 4.5 shows time

dependence of the pump and Stark pulse envelopes (left topmost part) and adiabatic

and diabatic energies versus time (other parts). Two plots of energies (left column,

from top to bottom) correspond to invariant subspaces Hinv
κ , κ ∈ {1, 2}, while the

right topmost part corresponds to invariant subspace Hinv
3 . It can be seen that start-

ing from appropriate ground state, all the population transfers into the related final

state. Note that the application of SCRAP for the complete population transfer

requires the preparation of the initial state into the specific coherent superpositions

of magnetic ground hyperfine substates. The opposite situation is shown in the two

lower right-column plots where the population rests within ground level subspaces

Hinv
g,4 and Hinv

g,5 , respectively.
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Figure 4.5: SCRAP among two hyperfine levels 5S1/2, Fg = 2 and 5P1/2, Ff = 1 in
87Rb. Top-left: Time dependence of the pump and Stark pulse envelopes (arbitrary
scaled). Other: Adiabatic (solid lines) and diabatic (dashed lines) energies versus
time, related to the invariant subspaces Hinv

κ , κ = 1− 2 (left column) and κ = 3− 5
(right column). The dashed line starting from energy 0 corresponds to degenerate
g states. The two dashed lines originating from ∆f correspond to the states |1, 0〉f
(smaller shift) and |1,±1〉f (larger shift). Used parameters are ∆f = 200/Tp, S0 =
500/Tp, Ω0 = 4/5S0, sg = 1/20, sf = 1/5.
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4.3 SCRAP in a three-level atom

We now analyze the SCRAP process between three atomic degenerate-level mani-

folds: ground g, excited e, and final f , with corresponding energies Eg, Ee, and Ef ,

respectively. The transitions g − e and f − e are driven by classical field pump and

Stokes pulses, respectively. Strong off-resonant Stark field pulse is used to introduce

dynamic Stark detunings. Similar to the section 4.2, let G = {|gi〉| i = 1, . . . , ng},
F = {|fj〉| j = 1, . . . , nf}, and E = {|ek〉| k = 1, . . . , ne}, denote the bases of Hilbert
spaces for manifolds g, f , and e, respectively, consisting of bare atomic states. In the

same manner, the state |Ψ(t)〉 of the system is now represented in basis E ∪G∪F by

the vector C(t) incorporating explicit phases taken from frequency of the pump and

Stokes pulses, ωp and ωS. In the rotating-wave picture and using RWA we get the

time-dependent Schrödinger equation analog to Eq. (4.12). Matrix representation

H(t) of the system Hamiltonian has the form

H(t) = ~


∆e + S(t)Se

1
2
Ωp(t)V

†
g

1
2
ΩS(t)V

†
f

1
2
Ωp(t)Vg S(t)Sg 0

1
2
ΩS(t)Vf 0 ∆f + S(t)Sf

 , (4.28)

where Ωp(t) and ΩS(t) are Rabi frequencies of the pump and Stokes field, respec-

tively, and Vg (Vf ) is the matrix representing the lowering operator that connects

the states in manifold e to the states in manifold g (f). The zeros 0 denote null

rectangular matrices of appropriate dimensions. The diagonal matrices ∆e and ∆f

describe static detunings and can be represented as ∆e = ∆e1ne and ∆f = ∆f1nf
,

where common static detunings ∆e and ∆f for one-photon transitions are given by

∆e = (Ee − Eg)/~− ωp, (4.29a)

∆f = (Ef − Eg)/~+ ωS − ωp. (4.29b)

The matrices Se, Sg and Sf correspond to the Stark shift operators of the states in

manifolds e, g and f , respectively. Again, the quantity S(t) is proportional to the

Stark pulse envelope and is chosen to introduce a referent Stark shift. The structure

of the RWA Hamiltonian of Eq. (4.28) is similar to that of the conventional three-

state SCRAP with single elements replaced by the matrices [31].

As in the section 4.2, we first inspect the case when Stark shifts of the sublevels
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are equal

Se = se1ne , Sg = sg1ng , Sf = sf1nf
, (4.30)

where se, sg and sf correspond to the common Stark shifts of the e, g, and f states,

respectively. Again, we can utilize three-level MS transformation [37] to obtain sets

of independently evolving non-degenerate three-state and two-state systems and a

set of uncoupled (dark) states, provided the following condition is fulfilled

[V†
gVg,V

†
fVf ] = 0. (4.31)

To each such independently evolving non-degenerate system corresponds an invari-

ant subspace of the Hamiltonian, as is already mentioned in Sec. 4.2. The origin

of operators involved in Eq. (4.31) has been addressed above, and we will briefly

discuss the commutation condition. Consider some subspace He of states in mani-

fold e. Following the discussion in Sec. 4.2, if one has to find the subsystems that

are dynamically independent, then He has to be common invariant subspace of op-

erators V†
gVg and V†

fVf , so that the evolution of the system is restricted to the

subspace He ⊕VgHe ⊕VfHe. The condition (4.31) assures that all minimal-sized

common invariant subspaces are one-dimensional, i.e., that the corresponding three-

state and two-state systems are non-degenerate. We note that two-state subsystems

arise when one of subspaces VgHe or VfHe contains only null vector, i.e., when the

states from He are dark to one of transitions e→ g or e→ f . Conditions (4.30) and

(4.31) that are essential for the MS transformation only affect the size and number of

independently evolving invariant subspaces. Therefore, as in the two-level SCRAP

case, the decomposition of the state space on the invariant subspaces generalizes MS

transformation.

Let Hinv = He ⊕ Hg ⊕ Hf be an invariant subspace for the Hamiltonian. The

necessary condition H(t)Hinv < Hinv yields the following requirements:

∆eHe < He, ∆gHg < Hg, ∆fHf < Hf , (4.32a)

SeHe < He, SgHg < Hg, SfHf < Hf , (4.32b)

V†
gHg < He, V†

fHf < He, (4.32c)

VgHe < Hg, VfHe < Hf . (4.32d)

The conditions (4.32a) can be disregarded as trivially fulfilled. Let Hd
ge = kerV†

g
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(Hd
fe = kerV†

f ) be the subspace of states in manifold g (f) that are dark to the

transition g → e (f → e), and let Hd
ef = kerVf be the subspace of states in

manifold e that are dark to the transition e→ f . The conditions (4.32c) determine

Hg (Hf ) up to a direct sum with some dark subspace of Hd
ge (Hd

fe), and together

with Eq. (4.32d) yield more useful conditions

V†
gVgHe < He, V†

fVfHe < He, (4.33a)

VgV
†
gHg < Hg, VfV

†
fHf < Hf . (4.33b)

Let Hinv
e,k , k ∈ {1, . . . , ninv

e }, be common invariant subspaces of V†
gVg, V

†
fVf and Se.

It is trivial to see that the subspace Hg,k := VgHinv
e,k (Hf,k := VfHinv

e,k) is invariant

for VgV
†
g (VfV

†
f ), but need not to be invariant for Sg (Sf ) due to the possibility

that it links the states from different subspaces Hg,k (Hf,k) together with some

states from dark subspace Hd
ge (Hd

fe). Hence, invariant subspaces Hinv
g,κ′ , common

for both Sg and VgV
†
g and connected with some of the subspaces Hinv

e,k , may be

formed from several subspaces Hg,k accompanied with some subspace Hd
ge,κ′ of dark

space Hd
ge, i.e., Hinv

g,κ′ := ⊕k∈Ig,κ′Hg,k ⊕ Hd
ge,κ′ , κ′ ∈ {1, . . . , ninv

g }, where the set

Ig,κ′ contains the indices k labeling the subspaces Hg,k that are interconnected by

Sg. Analogously, Hinv
f,κ′′ := ⊕k∈If,κ′′Hf,k ⊕ Hd

fe,κ′′ , κ′′ ∈ {1, . . . , ninv
f }. The sets of

indices Ig,κ′ may be empty in case that related invariant subspace entirely belongs

to the appropriate dark subspace. Some of the nonempty sets Ig,κ′ may have a

nonempty intersection with exactly one corresponding set If,κ′′ , because for at least

one k ∈ Ig,κ′ ∩ If,κ′′ the relations VgHinv
e,k < Hinv

g,κ′ and VfHinv
e,k < Hinv

f,κ′′ may hold.

Such subspaces Hinv
g,κ′ and Hinv

f,κ′′ are then dynamically connected via the excited level

subspace Hinv
e,k and the invariant subspace for Hamiltonian is composed as Hinv

κ :=

⊕k∈Ig,κ′∪If,κ′′H
inv
e,k ⊕ Hinv

g,κ′ ⊕ Hinv
f,κ′′ including all subspaces Hinv

e,k that are connected

with Hinv
g,κ′ and Hinv

f,κ′′ . If some of the nonempty sets Ig,κ′ does not have a nonempty

intersection with any of the sets If,κ′′ , then the invariant subspace is constructed

solely from subspaces related to g and e manifolds, i.e., Hinv
κ := ⊕k∈Ig,κHinv

e,k ⊕Hinv
g,κ.

That occurs if ⊕k∈Ig,κHinv
e,k < Hd

ef . Similar situation may involve final end excited

level resulting inHinv
κ := ⊕k∈If,κHinv

e,k⊕Hinv
f,κ. Distinct types of the invariant subspaces

depending of the presence of dark states need to be examined.

First, if Hinv
κ does not contain any dark state from Hd

ge nor from Hd
ef , it is possi-

ble to transfer all the population from Hinv
g,κ′ into Hinv

f,κ′′ , irrespective of the starting

state. All ground starting states from the subspace Hinv
g,κ′ are adiabatically connected
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to the related ending states in the subspace Hinv
f,κ′′ enabling the complete population

transfer. Exact ending states cannot be known in advance, unless the aforemen-

tioned invariant subspaces are one-dimensional. In such case there is one-to-one

correspondence between the states at the beginning of the SCRAP process to the

appropriate states at the end. In all other cases the ending states can be determined

only numerically because of their dependence on the particular parameters of the

SCRAP process.

The situation changes when the dark states are present in Hinv
κ . The states from

Hd
ge prevent population transfer from the level g to the level e, while the states from

Hd
ef obstruct transfer of population from the level e toward the level f . Due to the

presence of dark states from Hd
ge (or Hd

fe), part of the starting population remains

trapped within these states. If a number of dark states fromHd
ef are contained within

appropriate excited level subspace of Hinv
κ , there is the same number of ground

starting states that are adiabatically connected to the states in the excited level

subspace of Hinv
κ . The rest of ground starting states are adiabatically connected to

the ending states in the final level. Thus, it is required to prepare the starting state

into specific coherent superpositions in order to perform the complete population

transfer. Exact starting and ending superpositions cannot be found in advance,

except in the case of one-dimensional adiabatically connected starting and ending

subspaces. Otherwise, one must resort to numerics for particular choice of SCRAP

parameters. In the next subsection we demonstrate previous considerations on the

real atomic system.

4.3.1 SCRAP among three hyperfine levels in 87Rb

As an example we will analyze SCRAP in 87Rb from the ground hyperfine level

5S1/2, Fg = 2 to the final level 5S1/2, Ff = 1 via the excited level 5P1/2, Fe = 1.

Transitions g − e and f − e are driven by classical fields (see Fig. 4.6), pump and

Stokes respectively, with corresponding atomic lowering operators given by

V̂g = V̂g · ε̂p, V̂f = V̂f · ε̂S, (4.34)

where ε̂p and ε̂S are the polarizations of the pump and Stokes field, respectively.

The vector operators V̂g and V̂f are defined in analogy with Eq. (4.18). We choose

the coordinate system such that the fields propagate along the z axis, and define a
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Figure 4.6: Atomic hyperfine level diagrams for three-level SCRAP. Solid curves
schematically represent atomic dynamic level detuning induced by the Stark laser
pulse. ωp and ωS are carrier frequencies of the pump and Stokes laser fields, respec-
tively. ∆f(e) are static level detunings.

basis of Zeeman states relative to this quantization axis. Bases of Hilbert spaces for

manifolds e, g, and f are

E = {|1,−1〉e, |1, 0〉e, |1, 1〉e}, (4.35a)

G = {|2,−2〉g, |2,−1〉g, |2, 0〉g, |2, 1〉g, |2, 2〉g}, (4.35b)

F = {|1,−1〉f , |1, 0〉f , |1, 1〉f}. (4.35c)

Similar to the section 4.2.1, we assume that the Stark field is linearly polarized, so

the degeneracy of ground levels is preserved. Excited hyperfine sublevels gain both

scalar and tensor shifts. To assure necessary conditions for adiabatic connection

between ground and final level [31], we choose pump and Stokes frequencies such

that ∆f < 0 and ∆e > 0, and take Stark field frequency so that the Stark shifts of

the e (g and f) sublevels are negative (positive) (see Fig. 4.6). Off-diagonal elements

of the Stark shift operators are again neglected for simplicity. Sublevel Stark shifts

have the form

Sg = sgdiag{1, . . . , 1︸ ︷︷ ︸
2Fg+1

}, Sf = sfdiag{1, . . . , 1︸ ︷︷ ︸
2Ff+1

}, (4.36a)

Se = diag{−(1 + sem
2
e/F

2
e ) | me = −Fe, . . . , Fe}, (4.36b)

where sg, sf and se are constants arbitrarily chosen in this example. S(t) is taken
equal to the absolute value of the Stark shift of the excited sublevel |1, 0〉e. For
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numerical calculations we shall assume Gaussian shapes for all pulses, and take the

pump and Stokes Rabi frequencies to have identical peak values Ω0, obtaining

Ωp(t) = Ω0 exp
(
−(t− τp)

2/T 2
p

)
, (4.37a)

ΩS(t) = Ω0 exp
(
−(t− τS)

2/T 2
S

)
, (4.37b)

S(t) = S0 exp
(
−t2/T 2

)
. (4.37c)

We will also take equal pump and Stokes durations, Tp = TS and T = 2Tp. Stark field

peak value is taken large enough to assure necessary diabatic energy crossings. The

timings τp and τS of pulses are chosen to correspond to appropriate first crossings of

diabatic energies of ground and final level with diabatic energy of excited sublevel

|1, 0〉e, in the “counter-intuitive” order [31]. The polarizations of the pump and

Stokes field are both chosen to be linear along x axis, so the matrices representing

lowering operators are

Vg =



1
2

0 0

0 1√
8

0
1√
24

0 1√
24

0 1√
8

0

0 0 1
2


, Vf =


0 − 1√

24
0

1√
24

0 − 1√
24

0 1√
24

0

, (4.38)

Dark subspaces are the following:

Hd
ge = span{1/

√
2|2,−1〉g + 1/

√
2|2, 1〉g,

1/
√
8|2,−2〉g +

√
3/2|2, 0〉g + 1/

√
8|2, 2〉g},

(4.39)

Hd
fe = span{1/

√
2|1,−1〉f − 1/

√
2|1, 1〉f}, (4.40)

Hd
ef = span{1/

√
2|1,−1〉e − 1/

√
2|1, 1〉e}. (4.41)

There are three common invariant subspaces for V†
gVg, V

†
fVf and Se

Hinv
e,1 = span{ 1√

2
|1,−1〉e −

1√
2
|1, 1〉e}, (4.42a)

Hinv
e,2 = span{ 1√

2
|1,−1〉e +

1√
2
|1, 1〉e}, (4.42b)

Hinv
e,3 = span{|1, 0〉e}, (4.42c)

76



4.3 SCRAP IN A THREE-LEVEL ATOM

five invariant subspaces for VgV
†
g and Sg

Hinv
g,1 = span{

√
3

8
|2,−2〉g −

1

2
|2, 0〉g +

√
3

8
|2, 2〉g}, (4.43a)

Hinv
g,2 = span{ 1√

2
|2,−2〉g −

1√
2
|2, 2〉g}, (4.43b)

Hinv
g,3 = span{ 1√

2
|2,−1〉g −

1√
2
|2, 1〉g}, (4.43c)

Hinv
g,4 = span{ 1

2
√
2
|2,−2〉g +

√
3

2
|2, 0〉g +

1

2
√
2
|2, 2〉g}, (4.43d)

Hinv
g,5 = span{ 1√

2
|2,−1〉g +

1√
2
|2, 1〉g}, (4.43e)

and three invariant subspaces for VfV
†
f and Sf

Hinv
f,1 = span{|1, 0〉f}, (4.44a)

Hinv
f,2 = span{ 1√

2
|1,−1〉f +

1√
2
|1, 1〉f}, (4.44b)

Hinv
f,3 = span{ 1√

2
|1,−1〉f −

1√
2
|1, 1〉f}. (4.44c)

Six invariant subspaces of the Hamiltonian can be constructed using (4.42) − (4.44)

Hinv
1 = span{ 1√

2
|1,−1〉e −

1√
2
|1, 1〉e,

√
3

8
|2,−2〉g −

1

2
|2, 0〉g +

√
3

8
|2, 2〉g}, (4.45a)

Hinv
2 = span{ 1√

2
|1,−1〉e +

1√
2
|1, 1〉e,

1√
2
|2,−2〉g −

1√
2
|2, 2〉g, |1, 0〉f}, (4.45b)

Hinv
3 = span{|1, 0〉e,

1√
2
|2,−1〉g −

1√
2
|2, 1〉g,

1√
2
|1,−1〉f +

1√
2
|1, 1〉f}, (4.45c)

Hinv
4 = span{ 1

2
√
2
|2,−2〉g +

√
3

2
|2, 0〉g +

1

2
√
2
|2, 2〉g}, (4.45d)

Hinv
5 = span{ 1√

2
|2,−1〉g +

1√
2
|2, 1〉g}, (4.45e)

Hinv
6 = span{ 1√

2
|1,−1〉f −

1√
2
|1, 1〉f}. (4.45f)

Subspaces Hinv
κ , κ ∈ {2, 3}, do not contain dark states, therefore it is possi-

ble to obtain complete population transfer from Hinv
g,κ′ to Hinv

f,κ′′ for pairs (κ′, κ′′) ∈
{(2, 1), (3, 2)}. Note that the complete population transfer requires the starting

states to be particular coherent superpositions. Conversely, the subspace Hinv
1 con-
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4.3 SCRAP IN A THREE-LEVEL ATOM

Figure 4.7: SCRAP in 87Rb among hyperfine levels 5S1/2, Fg = 2 and 5S1/2, Ff = 1
via 5P1/2, Fe = 1. Topmost: Time dependence of the Stokes, pump and Stark pulse
envelopes (arbitrary scaled). Other: Adiabatic (solid lines) and diabatic (dashed
lines) energies versus time, related to the invariant subspaces Hinv

κ , κ = 1 − 3 (left
column, top to bottom) and κ = 4− 6 (right column, top to bottom). The dashed
line starting from energy 0 (∆f ) corresponds to the degenerate g (f) states. The
two dashed lines originating from ∆e correspond to the states |1, 0〉e (smaller shift)
and |1,±1〉e (larger shift). Used parameters are ∆e = 100/Tp, ∆f = −1/2∆e,
S0 = 400/Tp, Ω0 = 4/5S0, sg = sf = 1/20, se = 1/20.
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4.3 SCRAP IN A THREE-LEVEL ATOM

tains the dark state from Hd
ef , so that the population transfers exclusively to the

excited level, not to the final. The subspaces Hinv
4 and Hinv

5 (Hinv
6 ) are dark for tran-

sition from ground (final) to excited level and retain the initial population during

the SCRAP process. Previous results can be illustrated by plotting the adiabatic en-

ergies corresponding to above-mentioned invariant subspaces. Figure 4.7 shows time

dependence of the pump, Stokes and Stark pulse envelopes (topmost part) and adia-

batic and diabatic energies versus time (lower parts). Topmost plot of energies in the

left column is related to Hinv
1 and shows that the population adiabatically transfers

to the excited level. Second and third energy plots in the left column correspond

to invariant subspaces Hinv
κ , κ ∈ {2, 3}. It is obvious that starting from appropriate

ground state, all the population transfers into the related final state. Similar to the

two-level case in the section 4.2.1, the total population transfer requires that the

initial ground state is prepared into the specific coherent superpositions. Different

situation is shown in the three right-column plots where the population rests within

ground (final) level subspaces Hinv
g,4 and Hinv

g,5 (Hinv
f,3), respectively.
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5. Conclusion

Alkali-metal vapors represent suitable media for studying various coherent effects

emerging from laser-atom interaction, e.g. EIT, EIA and SCRAP. In vacuum cells

containing alkali-metal vapor at low pressures, mean free path of the atoms is larger

than the cell dimensions. If an atom freely traverses the laser beam, its state will

continuously evolve. The unperturbed laser-atom interaction during the atomic

passage through the laser beam in vacuum cells enables the examination of a de-

velopment of the coherent effects. Different atomic states in various parts of the

laser beam will yield different coherent resonances obtained from these beam parts.

In general, coherent effects depend in a nonlinear way on the laser light intensity.

Transient atomic evolution will be essentially determined by the intensity profile of

the laser beam. Distinct physical processes can dominate the atomic evolution and

affect line shapes of the coherent resonances depending on the laser beam profile.

In this thesis coherent effects were studied for two laser beam profiles: Gaussian

and uniform intensity Π profile. Gaussian profile is commonly used is experiments,

while Π profile is usually assumed in theoretical treatments.

Examination of Hanle EIT resonances obtained from selected parts of the cross-

section of the Gaussian laser beam is performed. The open transition Fg = 2 →
Fe = 1 of 87Rb D1 line is used. transition The line shapes, widths and contrasts

of the EIT resonances strongly depend on the radial position of the sampled area

of the laser beam. The resonances originating from the central parts are different

than those obtained from the wings of the Gaussian laser beam. In the latter

case the resonances are much narrower with two sideband transmission minima.

The theoretical model reproduces the experimental EIT resonances and explains

the obtained EIT line shapes by the Ramsey-like interference between the atoms

coherently prepared in the central parts of the Gaussian beam with the laser light

in the wings of the beam. The interference features are partially masked due to

simultaneous contribution from atoms coming from the outside of the laser beam.
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The Ramsey-like interference together with lower power broadening leads to the

narrowing of the Hanle EIT resonances in the wings of the Gaussian laser beam. The

EIT line narrowing at larger distances from the beam axis becomes more prominent

as the total laser intensity increases. This kind of investigation revealed for the first

time that Ramsey-like interference can occur within a single laser beam. In addition,

it pointed out that the choice of the detected laser beam part is important and can

yield diverse results.

The evolution of atomic states in constant intensity laser field is investigated

using Π-shaped laser beam resonant to the aforementioned open transition of 87Rb.

The Π laser intensity profile allows the studies to be unaffected by intensity vari-

ations of the laser electric field. Information about the transient evolution of the

atomic state during the interaction with the laser beam was obtained by detailed

inspection of features in line shapes of the Hanle EIT resonances from small seg-

ments of the laser beam cross section. Theoretically and experimentally and such

resonances were obtained by sampling the transmitted laser light at various posi-

tions of the small aperture along the radius of laser beam, after the entire beam

had passed through the Rb cell. It is shown that considerable absorption occurs

immediately after atoms enter the laser beam. At low magnetic fields this leads to

the efficient preparation into a dark state and consequent evolution with low light

absorption throughout the inner region of the beam cross section. At higher mag-

netic fields, the initial absorption is followed by optical pumping into an uncoupled

ground hyperfine level Fg = 1 which dominates the evolution of the atomic state

throughout the laser beam cross section. The appearance of transmission minima,

as sidebands to the EIT resonance, in the inner regions of the Π laser beam is due

to strong dependence of optical pumping on the magnetic field. Thus, essentially

different physical mechanisms, optical pumping (incoherent) in Π laser beams and

Ramsey-like interference (coherent) in Gaussian laser beams, yield seemingly similar

results, i.e., the appearance of the transmission minima in Hanle EIT line shapes. In

addition, the observed narrowing of Hanle EIT resonances toward the center of the

Π-shaped laser beam cross section is induced by population loss during the atomic

transit through the laser beam. The aforementioned studies of the influence of the

laser beam profile imply that for the proper modeling of experiments and identifica-

tion and understanding of dominant processes affecting the atomic state evolution

within the laser beam, it is essential to take into account a real beam profile.

Hanle EIA resonances at the D2 line transition Fg = 2 → Fe = 3 in 87Rb
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were studied using Gaussian and Π-shaped laser beams of the same radius. It

is demonstrated that the atomic state experiences completely different evolution

depending on whether traverses one or the other profiled laser beam. This is shown

by the Hanle EIA obtained from transmission of small segments of the entire laser

beam cross-section. EIA resonances are narrower in outer regions of the Gaussian

beam. In central parts of the Gaussian beam, EIA resonances are widest due to

highest power broadening. For a Π-shaped laser beam, the narrowest EIA resonances

are obtained at the beam center, due to transit-time narrowing of the coherent

resonance. EIA amplitudes, in the range of applied laser intensities, are lowest

(highest) near the laser beam center for the Gaussian (Π-shaped) profile. Thus,

outer regions of the Gaussian beam and central regions of the Π-shaped beam are

the most valuable regions in the sense that they contribute the narrowest linewidths

and highest amplitudes to the whole-beam EIA resonance. The opposite variation of

EIA linewidths with the distance from the laser beam center for the two beam profiles

makes the linewidths of whole-beam EIA less dependent on the laser beam profile.

The dependence of whole-beam EIA resonance linewidths on the laser intensity for

the Π-shaped laser beam has a pronounced maximum which exceeds the values

obtained with the Gaussian beam that yields a flat linewidths intensity dependence.

Differences in EIA line shapes obtained using two laser beam profiles imply that a

theory with assumed Π-shaped radial dependence (common assumption in majority

of models) cannot produce good agreement with experiments done usually using a

Gaussian or similar beam shape. This work has shown that it is important to take

into account the real laser beam profile for proper modeling and analysis of coherent

effects in alkali-metal vapors.

The last topic covered by this thesis is a general formalism for describing Stark-

chirped rapid adiabatic passage among degenerate-level manifolds and the applica-

tion to the 87Rb atom. Cases of two and three degenerate manifolds were considered.

Analysis of a degenerate-level system is facilitated by its subdivision into a set of

smaller independently evolving subsystems that are related to the minimal-sized

invariant subspaces of the Hamiltonian. The evolution is restricted within such

invariant subspaces enabling separate analysis of each subsystem. Population trans-

fer from the ground to the final level is considered for different types of invariant

subspaces depending on the presence of dark states. It is shown that the complete

transfer is feasible if the initial state is prepared into specific coherent superpositions.

The developed formalism is applicable to the general case of arbitrary numbers of
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degenerate states within each level and arbitrary couplings of the appropriate tran-

sitions. It represents a generalization of the Morris-Shore transformation to the case

when the removed degeneracy of the sublevels leads to detuning from two-photon

resonance. Applying the general formalism, SCRAP among two and three hyperfine

levels in the 87Rb atom is examined in detail. The formalism gives a full descrip-

tion of the SCRAP population transfer process and should be useful for analyzing

adiabatic passage in a wide variety of atomic and molecular systems.
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